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Abstract Results of evaluation of the background sub-

traction algorithms implemented on a supercomputer

platform in a parallel manner are presented in the article.

The aim of the work is to chose an algorithm, a number of

threads and a task scheduling method, that together provide

satisfactory accuracy and efficiency of a real-time pro-

cessing of high-resolution camera images, maintaining the

cost of resources usage at a reasonable level. Two selected

algorithms: the Gaussian mixture models and the Code-

book, are presented and their computational complexity is

discussed. Various approaches to the parallel implemen-

tation, including assigning the image pixels to threads, the

task scheduling methods and the thread management sys-

tems, are presented. The experiments were performed on a

supercomputer cluster, using a single machine with 12

physical cores. The accuracy and performance of the

implemented algorithms were evaluated for varying image

resolutions and numbers of concurrent processing threads.

On a basis of the evaluation results, an optimal configu-

ration for the parallel implementation of the system for

real-time video content analysis on a supercomputer plat-

form was proposed.

Keywords Background subtraction � Parallel computing �
Object detection � Gaussian mixture models � Codebook

1 Introduction

Background subtraction is a procedure commonly used for

separation of the image pixels belonging to moving objects

from those representing a static background. This is one of

the most frequently used algorithms in video content

analysis frameworks for a detection and tracking of moving

objects and an automatic event detection [5]. At the same

time, it is one of the most computationally intensive image

analysis procedures. Video monitoring systems for the

automatic event detection require a real-time background

subtraction, which is difficult to achieve with high-reso-

lution cameras often employed in the modern video sur-

veillance systems. A solution to this problem is either to

reduce the image resolution or/and frame rate, which

decreases the accuracy of the background subtraction, or to

utilize parallel processing methods, dividing the task of

image analysis into several concurrently running process-

ing threads.

Recently, the authors faced a problem of implementing a

background subtraction algorithm within a parallel data

processing framework running on a supercomputer—a

multi-node system of multi-core machines. The framework

named KASKADA was designed for efficient processing

of high amounts of data from multiple sources [18]. In the

context of video monitoring, KASKADA will be used for

concurrent analysis of the images obtained from a large

number of cameras, for identifying specified objects or

safety threads. The chain of the processing algorithms is

run on multiple nodes of the supercomputer that commu-

nicate with each other using a message passing interface.

The background subtraction algorithm is one of the initial

processing stages: it receives the decoded camera images,

performs the background subtraction and sends the results

to further video analysis algorithms (object detection and
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tracking, automatic event detection, analysis of the crowd

behavior, etc.), running on other nodes of the supercom-

puter. Multiple instances of the background subtraction

algorithm have to run concurrently on separate nodes,

analyzing a large number of video streams in the real time.

The implementation of a background subtraction algo-

rithm within the KASKADA framework required answer-

ing several important questions: (1) which background

subtraction algorithm is the most suitable for parallel

implementation in this framework, (2) which thread man-

agement strategy is optimal, (3) how many computing units

are required for real-time processing and (4) which algo-

rithm is optimal in terms of balance between its perfor-

mance and the accuracy. The aim of this article is to

address these questions using a set of tests performed using

the real computing system. We assumed that in a produc-

tion system, a single instance of the background subtraction

algorithm will be run on a single node of the supercom-

puter and such a solution was implemented and tested.

A variety of methods for background estimation can be

found in the literature [13, 15, 16, 26]. Among all of them,

the approach based on Gaussian mixture models (GMM)

seems to be the most popular one. The algorithm repre-

senting the background model of a single pixel as a set of

weighted Gaussian distributions was first proposed by

Friedman and Russell [9], and later extended by Stauffer

and Grimson [29] who proposed an efficient method of

model updating. Numerous further improvements of the

original GMM method were proposed. KaewTraKulPong

and Bowden [12] used an expectation maximization

approach for improving the learning rate of the background

model. Setiawan et al. [25] applied the GMM method to an

improved hue-luminance-saturation color space in order to

achieve better sensitivity to color changes. An important

work by Zivkovic and Van der Heijden [33] resulted in an

improved adaptation of the GMM model to changes in the

analyzed scene by automatic selection of the number of

Gaussian components. On this, basis further work was

carried out by Sicre and Nicolas [27] to further improve the

model adaptation capabilities. Additionally, a modification

of the GMM model adaptation process leading to reduction

of the object detection errors in case of illumination vari-

ations is proposed by the authors of this work. An impor-

tant problem in the background subtraction is the shadow

removal, as moving shadows are assigned to the fore-

ground in the original GMM method, so an additional

procedure for removing the shadows is required. An

algorithm proposed by Horprasert et al. [10] based on

analysis of the color and brightness variations is often used

for this task.

Another, less popular approach to the background sub-

traction is the Codebook algorithm proposed by Kim et al.

[16]. This method represents a pixel in the background

model using a set of codewords describing the color,

brightness and statistical properties of the pixels. Accord-

ing to its author, this method outperforms the GMM

algorithm in terms of handling moving backgrounds and

illumination variations, as well as in computational com-

plexity. Kim et al. [17] improved this method for more

robust background maintenance. Li et al. [19] introduced

Gaussian distributions to the Codebook algorithm for

quantization of the temporal series in order to reduce the

rate of false-negative results. Sigari and Fathy [28] pre-

sented a two-layer implementation of the Codebook model

for handling background changes. Ilyas et al. [11]

improved maintenance of the codebook background model.

Several other background subtraction algorithms may be

found in the literature. A survey of such methods may be

found, e.g.. in works of Parks and Fels [20] or Benezeth

et al. [1]. This article focuses on two chosen algorithms: the

GMM, which is the most widely used, and the Codebook,

because the published test results are promising.

A published work on the parallel implementation of

background subtraction algorithms is mainly limited to the

GPU computing area, as presented, e.g., by Fauske et al.

[8] or Pham et al. [23]. The implementation of the algo-

rithm on a parallel system with a low number (up to 12) of

processing units requires a proper thread management and

a task scheduling approach. The Boost Threads library is a

commonly used solution for the platform-independent

thread management controlled by the programmer [14]. An

alternative is the automatic task scheduling, managed by an

external library. The most popular solutions of this type are

libraries based on the Open Multi-Processing (OpenMP)

application programming interface for the shared memory

multiprocessing computing [3] and the Thread Building

Blocks (TBB) library [24].

The article is organized as follows. First, both the GMM

and the Codebook algorithms are described. The compu-

tational complexity of both methods, as well as strategies

for their parallel implementation are discussed. Next, the

results of experiments in which the performance and

accuracy of both algorithms were tested in different con-

ditions are presented. The conclusions and the discussion

on the practical implications of the obtained results con-

clude the article.

2 Background subtraction algorithms

The purpose of background subtraction algorithms is to

divide all the image pixels into two groups: the foreground

pixels, representing moving objects, and the background

pixels, belonging to the static background. This separation

is necessary in order to select the pixels representing the

actual moving objects for the purpose of object detection,
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tracking, etc. [5]. The background modeling is usually

performed by constructing a background model, which

may be based, e.g., on the statistical analysis of the pixel

values. The actual subtraction is achieved by comparing

the current pixel values with the model and making a

binary foreground/background decision. The shadows of

the moving objects need to be eliminated from the fore-

ground pixels, either by the subtraction algorithm itself or

by using a separate post-processing method. The result of

the background subtraction usually needs to be post-pro-

cessed, e.g., with the morphological operations, in order to

clean the resulting binary mask (remove the noise and fill

small holes). The details of the two background subtraction

algorithms chosen for the evaluation are presented below.

2.1 Gaussian mixture model

The Gaussian mixture model proposed first by Friedman

and Russell [9] is a probabilistic method used for the

background modeling. This approach is based on the

assumption that upon the observations made to an image

pixel, the associated background representation can be

chosen as the most frequent appearing value. As this

esteem can fluctuate, even under the strictly controlled

conditions, e.g., due to the image noise, the background

model of each pixel is described by a Gaussian given by:

g X; l;Rð Þ ¼ 1

2pð Þ0:5D Rj j0:5
e�0:5 X�lð ÞTR�1 X�lð Þ½ �; ð1Þ

where l denotes the mean of the distribution, R represents

the covariance matrix and X stands for the pixel value. For

simplification, it is assumed that the color channels are

independent, then R ¼ r2 � I, where r is the standard

deviation of the distribution. Since the real life background

varies during the day and night, the Gaussian adaptation is

introduced in order to handle these changes. The formula

for the parameters update is given by:

lt ¼ 1� qð Þ � lt�1 þ qXt ð2Þ

r2t ¼ 1� qð Þ � r2t�1 þ q Xt � ltð ÞT Xt � ltð Þ; ð3Þ

where lt and rt are the mean and the standard deviation of

the distribution, q is the update factor and Xt denotes the

processed pixel value. This way, the background model is

adjusted to reflect changes in the analyzed video content. In

order to increase the model adaptation capabilities, each

image point is characterized by a mixture of (typically 3–5)

Gaussians. A number of Gaussians can either be constant

(defined when the algorithm is run) or it can vary

depending on the scene characteristics [25]. Regardless

of the implementation, this approach allows for handling

situations such as when an object is left or taken from the

scene. Although multiple distributions are utilized, only

one of them represents the current model. Hence, weight

factors are assigned to each of the Gaussians to indicate

their strengths. A weight adaptation procedure is defined

as:

xk;t ¼ 1� að Þ � xk;t�1 þ aMk;t; ð4Þ

where xk,t is the weight of the kth distribution, a is the

learning factor and Mk,t is a binary value equal to 1 if the

current pixel matched a distribution and 0 otherwise. In

order to verify whether the currently analyzed pixel should

be assigned to the background or foreground, its value

is tested against the distributions ordered by a descending

xk/rk factor. Typically, if the value fits the leading distri-

bution in the range of 2.5 standard deviations (defined as

the D parameter) from the Gaussian mean, the point is

marked as belonging to the background. Otherwise, the

pixel value is used to form a new distribution, which

replaces the one with the lowest xk/rk factor.
The detection accuracy obtained utilizing this method is

satisfactory in many cases. However, in the real life sce-

narios, changing lighting conditions can often cause the

detection errors. It can be observed especially for outdoor

scenes with high illumination variations. Therefore, further

algorithm improvements were developed to solve this

problem.

Detection errors for scenes with high illumination

variations are related to the distribution adaptation process,

which cannot update the model sufficiently fast to com-

pensate the changes. This could be solved by applying a

variable learning factor [30]. On the other hand, such a

modification can also cause the detection errors. Higher q
values affect the distribution mean and deviation adapta-

tion rate. Hence, in case of long-term lighting variations,

the leading Gaussian can be discarded from its position

(considering the x/r factor) due to the increasing devia-

tion. This problem can be partially solved by utilizing

independent adaptation factors for Gaussian mean and

deviation [4]. Another modification of the GMM intro-

duces spatial dependencies for the pixel assignment pro-

cess, making it more robust [32]. On the other hand,

KaewTraKulPong and Bowden [12] proposed different

adaptation formulas for various processing stages to

improve the initial model learning process.

The GMM modification proposed in this article applies

to scenes with lighting variations. It is based on the

observation that the illumination changes are smooth con-

sidering the inter-frame differences. For such conditions,

the background modeling algorithm should have high

adaptive capabilities. This is achieved by applying an

additional post-processing stage where particular model

regions are updated. To determine these regions, the pixel

variability is estimated as a mean differential of the con-

secutive video frames in which no objects are detected:
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diffn ¼ 1� cð Þdiffn�1 þ
1

C
c
X

c

Ic x; yð Þn�Ic x; yð Þn�1

�� ��;

ð5Þ

where I(x,y) denotes the image point at (x,y) coordinates,

c is the pixel variance learning factor in the range (0, 1) and
C is the number of image color channels. This way, a

matrix of values is created, size of which is equal to the

analyzed image resolution. Next, each value of this matrix

is thresholded (Dth) in order to determine regions charac-

terized by a low variability. For the pixels related to the

background, which fulfill this condition, an additional

update process is performed. This is acquired by shifting

(with a set weight) the leading distribution mean toward the

actual value from the input frame. This adaptation does not

change the variation of the Gaussian, hence the x/r factor

for the modified distribution is constant. Due to improved

adjustment capabilities of the leading distribution, it is

referred to as a short-term model further on. In order to

reduce local errors which can be caused by objects with the

color similar to the background model, an additional

Gaussian is utilized. It is considered as a long-term back-

ground representation. Adaptation of this distribution is

carried out utilizing the relations described by Eqs. (2) and

(3). Another advantage of this approach is that it allows for

reduction of the detection sensitivity in case of scene

illumination variations. It is achieved by utilizing the short-

and long-term models at the same time. Since the long-

term representation is independent from the regular model

adaptation procedure, it can cover the same value ranges as

the k Gaussians. Hence, in case of low image variability,

the short- and long-term distributions can be similar.

However, if lighting changes are present in the scene, the

short- and long-term Gaussians spread, resulting in the

sensitivity reduction.

2.2 The Codebook algorithm

The Codebook method was proposed by Kim et al. [16] for

the real-time foreground–background segmentation. The

author claims that this method is efficient in speed com-

pared to the other background subtraction methods and it is

more robust in scenes with illumination variations. How-

ever, so far this algorithm has not been used in video

analysis systems as widely as the GMM method. The

background model in the Codebook algorithm is based on

representing each image pixel by a number of codewords

[16]. A single codeword represents a range of color and

brightness variations of the pixel and is described using a

vector of nine parameters:

ci ¼ �Ri; �Gi; �Bi; I
^

i; I
_

i; fi; ki; pi; qi
D E

ð6Þ

where �Ri; �Gi; �Bið Þ are the pixel values in the RGB color

space, I
^

i; I
_

i

� �
define the lower and upper range of the

brightness variations, fi counts a number of times the

codeword was matched, ki is the maximum negative run-

length (MNRL), defined as a longest interval in which the

codeword has not recurred, pi and qi store the first and the

last access time of the codeword, respectively.

In the original Codebook algorithm, the background

model has to be built using a number of initial image

frames before the actual background subtraction may be

performed. During this initial training phase, the pixel

value in each image frame is compared with all the code-

words representing this pixel in the background model. If a

matching codeword is found, it is updated, otherwise a new

codeword is created and added to the background model. A

codeword ci matches a pixel (R, G, B) if two conditions are

fulfilled. The first condition describes the color difference

between the pixel and the codeword and is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ G2 þ B2ð Þ � R�Rþ G�Gþ B�Bð Þ2
�R2 þ �G2 þ �B2

s

� e; ð7Þ

where e is a constant threshold that defines the maximum

allowed color variation. The second condition is related to

the brightness variations and it is introduced in order to

take the illumination changes and shadows into account.

The condition is given by:

aI
_

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ G2 þ B2

p
�min bI

_

;
I

^

a

8
<

:

9
=

;; ð8Þ

where a and b are constants (the shadow and the highlight

threshold, respectively) that limit the range of the pixel

brightness variations.

If a matching codeword is found according to Eqs. (7)

and (8), its (R, G, B) values are updated with the current

pixel values, using a running average. The brightness range

of the codeword is extended if the pixel brightness was

outside this range. The statistic parameters of the codeword

(the update times and MNRL) are updated accordingly. If

none of the codewords representing the pixel were mat-

ched, a new codeword is created and initialized with the

current pixel values and the current frame number, then the

codeword is added to the background model [16]. There-

fore, during the training phase, new codewords are added

each time the color or the brightness of the pixel change

considerably.

After the training period is finished, the background

model is pruned by eliminating the codewords with MNRL

exceeding the threshold, which is typically equal to half of

the training time. Then, the detection phase is performed

simply by finding the matching codeword using the two
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conditions described before. If a match is found, the pixel

is assigned to the background and the matching codeword

is updated. If no match is found, the pixel is assigned to the

moving object, but no codeword is added to the model.

This approach has a drawback: the background model does

not adapt to the scene and illumination changes. Therefore,

a more complex approach to the background subtraction,

utilizing the method proposed by Kim is used for the

background maintenance [17]. Two layers are added to the

background model, already containing the permanent

background layer obtained during the training: a long-term

background (the codewords added to the model after the

training is finished) and a cache (the codewords created

during the detection phase, but not added to the back-

ground). Therefore, the modified detection procedure is

organized as follows.

• The search for a matching codeword is performed in all

model layers.

• If a match was found in the permanent or the long-term

model layer, the pixel is assigned to the background.

• If a matching codeword was not found or the only

match was found in the cache, the pixel is assigned to

the moving object (foreground).

• The matching codeword, if found, is updated.

• If no matching codeword was found, a new codeword is

created and put in the cache.

• The codewords in the cache that were not updated

during the time Th are removed.

• The codewords that remain in the cache longer than the

time Tadd are moved to the long-term model layer, from

this time on, they represent the background.

• The codewords in the long-term layer that were not

updated for a defined time Tdel (usually much longer

than Th) are removed from the model.

With this procedure, adaptation of the background to the

scene and illumination changes is achieved, at a cost of

increased computational complexity. For the proper adap-

tation of the model to varying conditions, the threshold

parameters need to be adjusted according to the character

of variations.

In the original Codebook method, the background

subtraction during the training phase is not possible. This

is a drawback in comparison to the GMM method.

Therefore, we modified the training phase by selecting the

matched codewords with MNRL lower than the half of

the elapsed training time as those representing the back-

ground, and the remaining ones as representing the

moving objects. With this modification, a coarse back-

ground subtraction may be performed during the training

phase. Additionally, in order to reduce the memory usage,

the codewords are not added to the model if the elapsed

training time is larger than the maximum allowed MNRL,

since these codewords would be removed after the

training anyway.

2.3 Morphological processing

The background subtraction result obtained using any of

the described methods is a binary mask with the back-

ground and foreground pixels encoded using different

values (usually 0 for the background and 255 or 1 for the

foreground). The raw binary mask obtained from the

background subtraction usually requires a post-processing

before it may be used by the following video analysis

algorithms. Due to imperfections of the background sub-

traction algorithms, the mask is distorted by the noise—

single pixels or small groups of pixels being the false-

positive results of the algorithm—and holes—a similar

effect for the false-negative results. A common method of

removing this noise and holes is using a morphological

processing [6]. Two typical morphological operations used

for this task are the dilation which increases the number of

foreground pixels and closes small holes, and the erosion—

a dual operation that reduces the number of foreground

pixels and removes the noise. Since these operations distort

the background subtraction result, they need to be per-

formed together in a sequence. Typically, first the mor-

phological opening (the erosion followed by the dilation) is

performed for removing the noise, then the morphological

closing (the dilation followed by the erosion) for closing

small holes. All the morphological operations are usually

performed using the same structuring element. In the pre-

sented work, a 3 9 3 pixels structuring element was used.

The cleaned mask is passed as an input to the next pro-

cessing stage, which usually performs the mask segmen-

tation and extracts the connected components representing

the moving objects. At this stage, groups of the false-

positive pixels are removed by imposing a limit on the

minimum connected component area.

3 Analysis of the computational complexity

There are two factors determining the time needed to

process a single image frame with the background sub-

traction algorithm. The first one is the image resolution—

the number of pixels to process. Assuming that no image

pixels are removed from processing (masked out), all the

pixels have to be processed independently, so the increase

in image resolution results in a prolonged processing time

(the relation should be linear in case of a sequential pro-

cessing). The second, more important factor is the image

content variability, which affects the processing time of a

single pixel. If the scene in the sequence of images is

‘empty’ and stable, the processing time for each pixel
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should be identical (provided that a stable background

model is already constructed). In practical situations, the

motion occurs only in parts of the image and the change-

ability of the image content is usually not uniform—there

are stable regions and the parts with different rate of con-

tent changes. Some of these changes may be recurring,

other may be the short-term ones. This has a serious impact

on the processing time of a single pixel.

3.1 The GMM algorithm

Complexity of the GMM method depends on many factors.

It is assumed that color images are processed and the model

for each of the image pixels is already created. The pro-

cessing time T is defined as:

T ¼ TM þ kTU ; ð9Þ

where TM represents the time needed to find a matching

Gaussian, k is the number of distributions, and TU is the

time required for the model update process. During the

matching stage (corresponding to the TM time), each image

pixel is compared with k Gaussians. To assess whether the

current pixel fits a particular distribution, its value is

compared with the mean and the standard deviation of this

distribution. This process is repeated for k existing distri-

butions, until a match is found. In order to improve the

performance, the Gaussians are typically sorted in the order

of decreasing x/r factor. Hence, the most probable match

can be acquired in the first iteration. In case the analyzed

pixel does not match any of the Gaussians, a new distri-

bution is created replacing one of the existing, which is

characterized by the lowest x/r factor.

The second GMM processing stage (corresponding to

TU time) is related to the model update procedure. First, for

the matching Gaussian, its parameters are adjusted

according to Eqs. (2) and (3). Additionally, the resulting

Gaussian variance is tested against a set minimum value.

Next, regardless of whether a match was previously found

or a new distribution was created, the distributions weights

are updated according to Eq. (4).

The described procedure is carried out for each image

pixel. However, the time required to analyze different

image regions can vary significantly due to various scene

characteristics. The more frequent movement can be

observed in the image, the more difficult it is to model the

background. Hence, more operations are required to be

carried out, extending the processing time. This generally

leads to increased TM time, since TU depends mostly on the

number of Gaussian distributions. The modifications

introduced to the original GMM method require extra

calculations to be performed. However, in experiments

with the adjusted adaptation method, fewer distributions

are utilized (three instead of five). This compensates the

time needed to carry out the additional update stage.

Hence, both these methods are considered as one during the

efficiency evaluation. Additional operations are needed to

detect the shadowed regions falsely recognized as objects

in the object detection stage.

3.2 The Codebook algorithm

In the Codebook algorithm, the total processing time of a

single image pixel is a sum of the times needed to find a

matching codeword (if any) and updating the matching

codeword (if it was found) or creating and adding a new

codeword to the model (in case a match was not found).

Because the creation of a new codeword is simple, this

factor was excluded from the analysis. The times needed

for the memory allocation and restructuring of the code-

book (removing the stale codewords, moving the code-

words between the layers, etc.) were also omitted.

Searching for a matching codeword requires testing the

brightness and color conditions for each codeword in the

model, until a codeword with the matching color and

brightness is found in any layer of the model (either the

permanent or the long-term one, but not in the cache). Since

the color condition described by Eq. (7) requires performing

a considerably larger number of operations than the

brightness condition expressed by Eq. (8), searching for a

matched codeword is started with the brightness condition

and, if it is fulfilled, the color condition is tested next.

Because both the conditions have to be fulfilled in order to

match the codeword, the non-matching codewords are dis-

carded from the further analysis after the simpler condition

was not met, which reduces the overall computation time.

There are two important factors that affect the analysis

time of a single image pixel. First, the number of codewords

representing the pixel is not constant in time, it depends on

the image changeability and the rates of the codebook

updating, from a single codeword in the stable regions to

five or even more codewords in the highly variable regions

(especially when the codebook cleaning is performed

rarely). This is an important difference compared to the

original GMMmethod in which the number of distributions

per pixel is constant. Second, the analysis time of a single

codeword depends on the number of codewords for which

testing of both conditions was necessary. Therefore, the

processing time in different regions of the image may differ

significantly. If the time needed for testing the brightness

and the color condition are denoted as TB and TC, respec-

tively, and the update time is TU, the total processing time

for a single image pixel can be expressed as:

T ¼ NBTB þ NC TB þ TCð Þ þ NU TB þ TC þ TUð Þ; ð10Þ

where NB is the number of codewords rejected after testing

the brightness condition, NC is the number of codewords
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rejected after testing both conditions, NU is one if a

matching codeword was found (so that it needs updating)

and zero otherwise. In order to reduce the processing time,

a matched codeword is moved to the front of the codebook,

so that it is tested as the first one in the next image frame

(because this codeword is a most likely match for the next

image).

As a practical example of the relations discussed above,

a camera view consisting of two regions will be presented.

One of these regions is stable, e.g., a wall of a building in a

constant lighting conditions, while the other is constantly

changing, e.g., a busy sidewalk with people in different

color clothing, moving continuously. In the first region, a

matching codeword will be usually found and updated in

the first step, so T1 = (TB ? TC ? TU). In the second

region, the processing time will be usually larger than T1,

but it cannot be predicted. The second codeword may be

matched (in case of a recurrent movement) or none of the

codewords may match. In the worst case, all the codewords

may be rejected after testing both conditions, so that

Tmax = N � (TB ? TC), where N is the number of code-

words representing the pixel. This may happen if a number

of objects of a similar brightness but different color move

through the observed region, so that a large number of

codewords is created.

The observation that the processing time depends on

variability of the image content has serious implications on

load balancing in the parallelized algorithm. This problem

will be discussed further in the article.

4 Parallelization strategies

The background subtraction algorithms described earlier—

the GMM and the Codebook—perform independent anal-

ysis of each pixel, i.e., the result of analysis of a given pixel

does not depend on the analysis result of any other pixel.

Therefore, both algorithms are suitable for implementation

in Single Instruction Multiple Data systems, as well as for a

multi-threaded, parallel processing. In a massively parallel

approach, each pixel could be analyzed in a separate

thread. While this approach may be suitable for GPU

computing, it is impractical in systems with a limited

number of processing units. Therefore, the image is typi-

cally divided into several parts and each part is assigned to

a processing thread. The main problem is a proper choice

of the thread management and task scheduling methods.

Four possible choices are presented in Table 1.

Two approaches to the thread management are possible:

a manual and an automatic one. In the manual method, the

programmer creates and manages the threads, e.g., using

the Boost Threads library [14], and controls the task

scheduling (assigning the image sections to the processing

threads). This approach has an advantage of a complete

control over the parallel processing. The automatic method

utilizes a framework for parallel processing, e.g., using the

OpenMP API [3], which performs the thread management

and task scheduling using the black-box approach. This

method is easier to implement, but the programmer loses

the complete control over the process.

The task scheduling may be done using different

approaches. Sections of the image may be assigned to the

threads a priori, before the processing is started, e.g., the

image may be cut into four horizontal stripes and each part

is processed by a separate thread. An alternative approach

is to assign smaller chunks of data to threads, e.g., a single

row of pixels may be initially given to each thread. When a

thread finishes its work, it receives another row of pixel to

process. This procedure is repeated until the whole image

is processed. This approach should, in theory, provide a

better work balancing between threads, at a cost of over-

head related to more complex thread management. In the

OpenMP API, these two approaches are named the static

and the dynamic task scheduling, respectively [3]. The

dynamic approach is easy to implement in the automatic

thread management, in OpenMP it only requires adding a

single pragma command to the code. Using the dynamic

method with the manual thread management is possible,

but requires additional work needed for creating an own

thread management system. Figure 1 presents simplified

block diagrams of both task scheduling methods.

As it was discussed previously, in both background

subtraction algorithms, especially in the Codebook method,

the processing time of a single pixel varies according to the

rate of image changeability. This is important when a

parallelization strategy is selected. The most intuitive

approach is to use manually managed threads with the

static task scheduling, e.g., to create four threads and assign

a horizontal image strip for each thread. However, let us

discuss what happens if one of these strips contains

changing content (e.g., a busy street) and the others are

static (the sky, buildings, a lawn, etc.). If the static

approach is used, the thread which receives the ‘street’ part

will have to work longer (more codewords or Gaussians to

check) and the other threads will finish their work earlier

and they will be idle, resulting in a poor work balance.

Therefore, the dynamic approach seems to be more suitable

for the background subtraction. The preliminary experi-

ments showed that even in case of more uniform movement

in the image, the dynamic approach was more efficient than

the static one [7]. This is further verified in the experiments

described in this article.

OpenMP was employed for the task scheduling in the

background subtraction, because it allows for selection of

either the dynamic or the static scheduling method. Since

the processing algorithm analyzes the image by rows (the
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outer loop) and then each row by pixel (the inner loop), it

was decided to parallelize the outer loop iterations (pragma

parallel for), so that a single row of pixels is assigned to a

thread at a given time. It was previously verified that

assigning larger data chunks to threads (more than one

pixel row) does not improve performance of the algorithm

[7]. Moreover, the OpenMP library also provides a guided

task scheduling method, which in theory should balance the

advantages and disadvantages of the static and dynamic

approaches [3]. However, the guided method in the current

Table 1 Possible implementation of thread management and task scheduling systems for parallel background subtraction in video

Thread management

Manual Automatic

Task scheduling

Static Threads managed by the programmer, e.g., with

boost::threads

Pre-allocation of image parts, OpenMP: #pragma parallel for schedule (static)

Dynamic As above ? task scheduling system written by the

programmer

Image rows assigned to threads on demand by OpenMP: #pragma parallel for

schedule (dynamic)

Fig. 1 Simplified block diagrams of the parallel background subtraction in image frames using a the static and b the dynamic task scheduling

methods
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Fig. 2 Results of performance testing of the parallel GMM and

Codebook algorithms, using the static and the dynamic task

scheduling in OpenMP, expressed as frames processed per second

versus the number of processing threads. The Y scale is different for

each subplot in order to provide better visualization of the results
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implementation of the GOMP library used for tests does

not perform better than the static one [7].

The morphological processing is parallelized using the

same approach. The static task scheduling method is suf-

ficient in this case, because the processing times for dif-

ferent pixels are comparable. Because the output value

depends on the input values of pixels in the neighborhood,

each dilation/erosion operation has to be run separately, in

sequence.

5 Experiments

5.1 Performance testing

The performance of the background subtraction algorithms

was tested on a live ‘supercomputer’ system using the

KASKADA framework. A single computing node con-

tained two six-core CPUs in Xeon EM64T architecture,

running at 2.27 GHz, with 16 GB RAM, controlled by the

Debian Linux operating system. The whole system consists

of 192 nodes connected with Infiniband network and its

computing power is rated at 20.9 TFLOPS [31]. The

algorithms were written in C?? language and compiled

with the GNU compiler in version 4.3.2 with the parame-

ters tuned to the supercomputer architecture. The GOMP

library (an implementation of the OpenMP API) was used

for the parallel task scheduling.

In the tests, a camera recording of HD resolution

(1,920 9 1,200 pixels, 25 fps) and several downscaled

versions of the same recordings were processed. Since it

was not possible to find a suitable HD recording in the

available benchmark sets, a typical recording from the city

traffic-monitoring camera, with an uniform movement of

vehicles in the camera frame was chosen. The initial 100

frames of the recording were used for the background

model training and the actual background subtraction was

timed in the remaining 1,400 frames. For each image res-

olution, seven values of concurrently running processing

threads, from 1 to 12, were tested. The hyperthreading

capabilities of the CPUs were not used, only the physical

cores were employed. Two task scheduling methods: the

static and the dynamic one, were evaluated using the

OpenMP system. Each test run (for a given resolution, task

scheduling method and number of threads) was repeated 12

times and the measured running times were expressed in a

number of frames processed per second (fps). Only the

background subtraction procedure was timed, other oper-

ations related to video decoding, memory buffer manage-

ment, etc., were not included in measurements, because

they are common for each tested algorithm in all configu-

rations. In each test run, the lowest and the highest recor-

ded fps values were discarded and the remaining 10 test

results were averaged.

The results of the performance testing for the original

GMM and the Codebook algorithms are presented in

Fig. 2. The modified GMM algorithm performed similarly

to the original one so it was omitted for the result clarity.

Surprisingly, the observed performance of the GMM

algorithm was significantly better compared with the

Codebook algorithm. In many cases, the GMM algorithm

was 3–4 times faster. A higher complexity of a single pixel

processing, varying number of the codewords per pixel and

the need for constant memory allocations and deallocations

are the most probable reasons for the observed worse

performance of the Codebook algorithm. The GMM

method, with a fixed number of Gaussians per pixel, was

faster despite the need for performing an additional shadow

removal. For lower image resolutions (up to 800 9 450), a

single thread is sufficient to achieve the processing speed

exceeding twice the source fps value if the GMM algorithm

is used. For larger resolutions, 4–6 threads are needed for

similar processing fps. However, in case of the HD

recording, the GMM algorithm was not able to achieve

satisfactory fps value. The Codebook algorithm needed

8–12 threads in order to achieve the same performance

level as the GMM with 2 or 4 threads.

In terms of the parallel processing, increasing the

number of threads for the Codebook algorithm resulted in

reduction of the processing time and the relation was, in

most of the cases, almost linear, although the fps values

obtained for higher resolutions are not satisfactory. With

the GMM algorithm, increasing the number of threads

gives a performance boost up to eight threads and using

more than six threads is not significantly beneficial. This is

especially evident for the lower image resolutions, where

too many threads decrease the algorithm performance.

However, this effect is observed for very large fps values

Table 2 Characterization of the dataset utilized for the algorithm quality assessment

Dataset Video name Resolution Fps Scene characteristics

PETS 2001 ds1_ts_c2 768 9 576 25 Outdoor, parking lot, low illumination variations

PETS 2001 ds3_ts_c1 768 9 576 25 Outdoor, parking lot, high illumination variations

PETS 2006 S1-T1-C3 720 9 576 25 Indoor, train station, constant illumination

PETS 2006 S3-T7-A3 720 9 576 25 Indoor, train station, constant illumination
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(more than 150), so it has no practical implications. The

most important observation is that for the HD recording,

using more than four threads do not improve the processing

time in a significant way. One possible explanation for the

abovementioned effects is that the payload related to run-

ning and managing a larger number of threads is not bal-

anced by the decrease in the actual processing time of a

single thread. It should be noted that when the input image

is divided into more than four parts, decrease in the chunk

size for a single thread is not as significant as when two or

four threads are used instead of one, especially for lower

image resolutions. Also, when the number of the process-

ing threads exceeds the number of the physical cores of a

single CPU (which is equal to six), some hardware issues,

especially related to the memory access, may influence the

results. However, these details are difficult to test and the

authors of this article did not have access to the low level

of the system architecture, they were only able to imple-

ment the tested algorithms in a way that the internal

organization of data structures or the order of pixel pro-

cessing do not influence the performance of the algorithm.

Comparing the dynamic and the static task scheduling

methods, it may be observed that the dynamic approach

improves the performance of the Codebook algorithm,

being 1.3–1.6 times faster than the static one when two to

six threads are used. The difference decreases with the

rising number of threads. For the low resolutions and a high

number of threads, the overhead of the dynamic method is

too high. For the GMM method, both approaches yield

comparable results in the range of up to 200 fps values, the

dynamic method is marginally better for the lower number

of threads. Therefore, the static approach is sufficient in

case of the GMM method, while for the Codebook algo-

rithm the dynamic method improves its performance.

5.2 Accuracy of background subtraction

In order to evaluate the detection accuracy of both imple-

mented methods, the experiments using a set of benchmark

videos were carried out. A precise and objective evaluation

of the object detection results is a difficult task. Most

authors verify the algorithms on the basis of a single

selected video frame. However, techniques based on the

virtual scenes can also be found in the literature [2]. In this

work, the following approach was utilized. Two recordings

from the PETS2001 [21] and two recordings from the

PETS2006 [22] datasets were chosen. Two of the selected

video samples from the PETS2006 dataset represent a

typical indoor scene (S1-T1-C3, S3-T7-A3) with medium

intensity of the object movement and a stable lighting.

Both recordings from the PETS2001 dataset depict an

outdoor scene with a parking lot (ds1_ts_c2, ds3_ts_c1).

Table 3 Object detection algorithms settings utilized during the

carried out experiments

Method Codebook GMM Modified GMM

Parameters a = 0.7 q = 0.0005 q = 0.0005

b = 1.2 a = 0.0005 a = 0.0005

e1 = 20 k = 5 k = 3

e2 = 20 T = 0.5 T = 0.5

Th = 20 D = 2.5 D = 2.5

Tadd = 100 c = 0.075

Tdel = 100 Dth = 5

Fig. 3 Results of object detection quality testing of the Codebook,

GMM and modified GMM algorithms. Precision, recall and accuracy

are expressed for each of the four recordings as a mean value with a

standard deviation bar
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The second of these videos represents difficult conditions

for object detection: illumination variations caused by the

clouds moving on the sky on a sunny day. Such a data-

set allows for evaluating the algorithms in different con-

ditions. The parameters of the test videos are presented in

Table 2.

For the purpose of assessment of the object detection

accuracy, the ground truth data was prepared. In order to

obtain it, a set of images in 60 frames intervals was

extracted from each of the analyzed recordings. These

images were then manually processed and, as a result, the

masks denoting the foreground objects were created. This

way, 223 images representing the ground truth data were

acquired.

For the assessment of the object detection results, the

following three measures based on errors of type I and II

were calculated:

Precision ¼ TP

TP + FP
ð11Þ

Recall ¼ TP

TP + FN
ð12Þ

Accuracy ¼ TPþ TN

TP + FP + FN + TN
; ð13Þ

where TP pixels correctly assigned to the foreground (true-

positive result), TN pixels correctly assigned to the back-

ground (true-negative), FP pixels incorrectly assigned to

the foreground (false-positive), FN pixels incorrectly

assigned to the background (false-negative).

The precision factor denotes the rate of the correct

detection results in relation to the whole foreground area.

The recall parameter indicates the degree of the relevant

detections. The accuracy is a more comprehensive mea-

sure, which shows the overall similarity of the result to the

ground truth data. All of these parameters should be

maximized for the optimal algorithm. These factors were

calculated for each of the prepared ground truth data.

In order to acquire the object detection results from the

implemented algorithms, all four test recordings were

analyzed by three algorithms (the original GMM, the

modified GMM and the Codebook). Identical algorithm

parameters, listed in Table 3, were used for each of the

processed videos. During the preliminary experiments,

various parameter values were tested. The chosen settings

allow for achieving a compromise between the results

acquired for all four analyzed recordings.

The aggregated results for each of the recordings are

illustrated in Fig. 3. Analyzing the precision plot, it can

be observed that for all the four videos, the modified

version of the GMM method gives the best results in

terms of the mean precision and the result stability.

Additionally, the high precision stability related to low

deviation of the measure for the utilized benchmark data

is achieved. A high precision value means that more

pixels were correctly assigned to the foreground and at the

same time, fewer pixels were incorrectly excluded from

the background. For the adjusted GMM method, this

outcome is related to better adaptation capabilities. Hence,

the static image regions observed under the changing

illumination were still recognized as the background ele-

ments. The most significant differences between the reg-

ular and the modified GMM method (in the favor of the

second) are noticeable for the recording with high lighting

variations.

The recall plot depicts the rate of how many of the

relevant results were correctly denoted. In other words, it is

related to the sensitivity of the algorithm. Hence, the higher

the recall is, the more objects are reliably detected. The

results show that the regular GMM method is the most

sensitive of all the evaluated object detection algorithms.

This outcome agrees with the predictions regarding the

modified GMM approach since the adjustments were

designed to lower the algorithm sensitivity. The Codebook

method turns out to perform worst, similarly as for the

precision factor. However, in the case of the outdoor

recording with illumination changes, it outperforms the

regular GMM algorithm significantly.

The accuracy factor is an overall score which describes

the rate of correct classifications to both categories, which

in this case are the background and the foreground. In

terms of the accuracy factor, all the assessed algorithms

produce comparable results. Only for the recording where

the dynamic illumination changes are present, relevant

differences can be seen. The mean accuracy value for the

Codebook and for the modified GMM method are similar.

However, the Codebook algorithm produces less stable

results.

The optimal object detection algorithm should be char-

acterized by maximized values of the precision, recall and

accuracy factors. Hence, a summary of the results with the

Fig. 4 The summary of object detection quality testing of Codebook,

GMM and modified GMM algorithms. The averaged results for all the

analyzed recordings are presented

122 J Real-Time Image Proc (2016) 11:111–125

123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


scores from each processed video aggregated is presented

in Fig. 4. Analyzing the overall score, it can be stated that

the best results for the prepared dataset in terms of the

object detection quality can be achieved with the modified

GMM method, followed by the regular GMM algorithm

and the Codebook as the least accurate one.

6 Conclusions

The task of the authors was to implement the background

subtraction algorithm in a parallel manner, within the

framework for a complex multimedia stream processing

running on a supercomputer. In order to realize this task,

a sufficiently accurate algorithm, a method of parallel

implementation and a strategy of assigning the image

pixels to the threads had to be chosen. The authors have not

found such a research in the published works, therefore the

results, which may be useful for other researchers imple-

menting the background subtraction procedure on a parallel

system, were presented in this article. The authors also

proposed an improvement to the original GMM algorithm

making it more robust in difficult lighting conditions and

also a modification of the training phase in the Codebook

algorithm.

Two background subtraction algorithms were tested—

the GMM (in two versions: the original one and the pro-

posed modification) and the Codebook—and the accuracy

and performance of their parallel implementation on a

supercomputer platform for the real-time video processing

were evaluated. The GMM algorithm proved to be signif-

icantly more efficient than the Codebook. For the high-

resolution images, the rate of processed frames per seconds

could not achieve the source fps rate, despite increasing the

number of processing threads running concurrently on the

separate physical processing units. For the lower image

resolutions, two to six threads provide a sufficient perfor-

mance, and increasing the number of threads above this

level does not reduce the processing time. The Codebook

algorithm is too slow for a practical application in the real-

time video analysis system. This method has some poten-

tial, but the algorithm requires reworking in order to reduce

the complexity, especially regarding the memory man-

agement procedures.

In terms of the object detection accuracy, all tested

algorithms provide a satisfactory level of the correct

results. When all three measures—the overall accuracy,

precision and recall—are taken into account, the GMM

algorithm provides the best results for both the indoor and

outdoor videos, and it outperforms the original GMM

method in case of difficult lighting conditions.

On a basis of the performed efficiency and accuracy

tests, the GMM algorithm with the proposed modification

was selected for the parallel implementation on a super-

computer. Because the conducted research employs mainly

cameras of PAL (768 9 576) and higher resolutions, six

physical CPU cores for six processing threads should be

sufficient for obtaining the processing fps rate at a level

suitable for the real-time processing, without the need for

decreasing resolution or dropping frames. An automatic

thread management with OpenMP API is used, because it

provides good performance and reduces the amount of

work related to adapting the algorithm for parallel imple-

mentation. It was also decided to use the dynamic task

scheduling, as the overhead related to the resource man-

agement is not significant and the dynamic approach may

be useful in case of camera scenes with movement limited

to some horizontal image sections.

In the future, the authors plan to test the performance of

the background subtraction algorithms together with other

video processing algorithms, such as object tracking,

classification and event detection, running on other super-

computer nodes and communicating with a message pass-

ing interface system. The future work will also focus on

processing high-resolution images using multiple super-

computer nodes in order to avoid the observed effect of

saturated performance of the algorithm. Additionally, the

authors plan to test the performance of the background

subtraction algorithms implemented on GPU devices in

order to compare the results with these presented in this

article and to asses the capabilities of the modern GPU

devices for the real-time processing of high-resolution

video streams from cameras.
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