
Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 227–238. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

PARALLELIZATION OF COMPUTE INTENSIVE APPLICATIONS INTO WORKFLOWS
BASED ON SERVICES IN BEESYCLUSTER

PAWEL CZARNUL∗

Abstract. The paper presents an approach for modeling, optimization and execution of workflow applications based on
services that incorporates both service selection and partitioning of input data for parallel processing by parallel workflow paths.
A compute-intensive workflow application for parallel integration is presented. An impact of the input data partitioning on the
scalability is presented. The paper shows a comparison of the theoretical model of workflow execution and real execution times.
The execution of this distributed workflow is compared to a highly parallel approach using MPI. Finally, results for an integrated
workflow/MPI approach are shown.

Key words: workflow management, service selection, data partitioning, parallel computing, numerical integration

1. Introduction. Parallel and distributed processing is now possible thanks to a variety of architectures,
application models and technologies. First, these are available for both shared memory and distributed memory
processing within HPC clusters [30]. Secondly, approaches such as grid, sky and cloud computing [5] allow
integration of services at a high level.

Several models and frameworks have been proposed for complex distributed applications. Quality of Service
(QoS) needs to be considered where resources are usually shared among various users requesting their own
jobs [13, 29, 35]. Such approaches need to offer enough flexibility in constructing a distributed application and
provide the ability to process input data in parallel. Ideally, the user should not be involved in low level details
such as selection of services for particular tasks or selection of resources to execute the code. The user should
define functional and QoS goals and rely on automatic selection to meet the goals.

2. Related Work. Parallel processing is currently being implemented at various levels within:
1. computing nodes using GPU programming [2], programming many processor cores,
2. local systems such as HPC clusters in which computing nodes are interconnected with a reasonably fast

interconnect such as Infiniband, Gigabit Ethernet etc. [6, 30],
3. at a distributed level using e.g. grid [17], cloud computing [5].

One of practical approaches for modeling complex distributed processing based on services is done using
workflow applications. A workflow application is modeled as an acyclic graph in which vertexes denote tasks to
be executed while directed edges dependencies between the tasks. For scheduling in utility grids [34]/workflow
scheduling in grids [31] for each task ti there is a set of services Si out of which one service is selected to execute
ti. Other attributes such as service costs are considered [33]. As proposed by [34, 35] the goal is to find the
best assignment of ti → (sk, tst

ik) where sk is a service able to execute task ti and tst
ik is the starting time of

execution of task ti using service sk. Execution of ti and tj on one sk must not overlap. The workflow execution
time should be minimized while keeping the cost of selected services below a predefined minimum [7, 8]. In the
context of typical business interactions, many more quality attributes are considered such as execution time,
cost, availability [7, 27, 36], accessibility [27], fidelity [9] or conformance [27], security [27], reputation [36] is
minimized. Usually no dependencies between or overlapping of services executing different tasks are considered
in these applications.

From the infrastructure point of view, several MPI [26] implementations have been traditionally used for
parallel programming. OpenMPI supports threads and MPI simultaneously. Additionally, several tools can be
used for parallel programming within nodes such as CUDA [2], OpenCL, Pthreads [30] etc.

For the distributed workflow model, there are several workflow management systems for grid computing.
Paper [32] provides a review and comparison of Gridbus, Kepler [23], Pegasus [16], Triana [25], P-GRADE
[22], Directed Acyclic Graph Manager (DAGMan), ICENI, GridFlow, GrADS, Askalon, UNICORE, Taverna,
GridAnt. These grid-oriented systems rely mainly on middlewares such as Globus Toolkit, Grid Application
Toolkit or other resource management systems for starting and management jobs. Business oriented systems
such as Meteor-S [3] incorporate support for BPEL for modeling workflows and use semantic service discovery
and composition. As suggested by [24], BPEL can also be used for grid environments. Input data can often be

∗Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland,
(pczarnul@eti.pg.gda.pl) http://fox.eti.pg.gda.pl/∼pczarnul.

227

228 P. Czarnul

defined as values, files or data streams [19], as in Gridbus. Input data can drive workflows as in Kepler [1]. The
input data from one or several preceding workflow tasks can be treated and processed in several ways [18].

3. Motivations. While this paper builds on the model presented in [14], the contribution of this paper is
as follows:

1. assessment of the impact of input data partitioning of input data on the scalability for a workflow with
parallel paths,

2. comparison of the theoretical model of processing in a workflow and real results,
3. assessment of the overhead of the parallelization using workflows with distributed services and a highly

parallel solution using MPI,
4. integration of parallel processing by parallel workflow paths and parallelization within services using

MPI.

4. Model of the Workflow Scheduling with Data Distribution. The model proposed by the author
is based on the workflow model with service selection [13, 35] and is extended to consider data distribution for
parallel paths of the workflow.

A directed graph G(V, E) represents a workflow in which nodes V correspond to tasks while edges E
represent task dependencies. At least one starting node with initial data and one termination node which
terminates computations are distinguished. The starting nodes do not have predecessors. Each node should
have a successor apart from the termination node. The model allows to define:

1. a sequence – a service assigned to the second task in a sequence successor is executed only after the
service selected for the predecessor has completed (Figure 4.1a),

2. fork – services assigned to the tasks following the forked task are executed in parallel provided these
were installed on separate processors (Figure 4.1b),

3. join – the service selected for the task to which other tasks are connected are executed only after each
of the predecessors has finished (Figure 4.1b).

The following parameters are distinguished following [14]:
• Si = {si0, si1, ..., si(|Si|−1)} – a set of services out of which one is selected to execute task ti,
• cij – the cost of processing a unit of data by service sij ,
• Nij – the node on which service sij was installed,
• spn – the speed of node n,
• Pij – the provider of service sij ,
• din

ij and dout
ij denote the sizes of the input and output data accepted and produced by service sij . These

are linked with formula dout
ij = fti

(din
ij) where fti

defines the size of output data for task ti based on
the input data size.
• di denotes the size of data processed by task ti.
• dijkl denotes the size of data to be sent from service sij to service skl. dout

ij can be sent and/or partitioned
into input files of successors. In particular, all the data can be sent to all the successors or it can be
partitioned into non-overlapping parts that will be distributed for parallel processing by the following
tasks.
• texec

ij (din
ij) – the execution time of service sij ,

• ttrijkl – additional time for data conversion between output/input formats if connected services are offered
by various providers,
• tst

i : i ∈ |V | – the time at which service sij chosen to execute ti starts processing it, we have ∀i,k:(vi,vk)∈E

tst
k ≥ tst

i +
∑

j texec
ij +

∑

j,l t
comm
ijkl +

∑

j,l t
tr
ijkl . texec

ij will be larger than 0 only for one j. Similarly, for

the given i and k tcomm
ijkl and ttrijkl will be larger than 0 only for one pair of l and k since only one service

per node i and one per node k will be selected.
• tworkflow – the workflow execution time i.e.

tworkflow = ttermination not∃q(vtermination, vq) ∈ E.
Traditionally, several optimization goals can be considered such as minimization of tworkflow with a bound

on the total cost of selected services i.e.
∑

din
ij cij < B where B is the budget (problem MIN T C BOUND)

and tworkflow is the time when the last service finishes. Problem MIN TC is minimization of vMIN TC =
αtworkflow +

∑

din
ij cij . α > 0.

It should be noted that some descriptions of services with respect to e.g. execution times or reliability may
not be accurate. An adaptive technique for learning of service reliability were proposed by the author and his

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 229

team in [15].

ti

a b c

ti ti’

si0,si1
si0

si’0=si1
si’1=si2

ti tk

tj tl

Fig. 4.1: Selection and Parallelization in the Model

4.1. Selection of Solutions and Data Parallelization. The proposed formulation allows to model
several issues typical of workflows composed of independent services offered and managed by various users:

1. selection of alternative solutions (services) si0, ..., si(|Si|−1) to particular task ti. This is possible thanks
to the well known service selection concept i.e. selecting only one service out of the ones defined for the
given task (one of several services is selected for task ti in Figure 4.1a).

2. data parallelism – partitioning of input data for parallelization of computations on this data. This can
be achieved in the model in several configurations, depending on the needs:
(a) parallelization of task ti where input data is divided and possibly processed by services si0 and si1

or si0 and si2 in parallel. Note that si1 and si2 are modeled as exclusive services which combines
selection with parallelization. Task ti is split into ti and t′i which are functionally equivalent
(Figure 4.1b) and initial services are assigned to these two tasks.

(b) parallelization of a complex task (composed of more than one task) by possibly execution of various
sub-solutions in parallel. Input data is divided into flows so that ti → tj and tk → tl are executed
in parallel. It can be that ti 6= tk and tj 6= tl (Figure 4.1c).

Assuming the user has access to services si0, ..., si(|Si|−1) for task ti, parallelization where the algorithm
determines partitioning of data between possibly all services, can be modeled as splitting services for many
tasks (in fact functionally equivalent) as in Figure 4.2 where ∀i,ks

′n
i0 = sin.

4.2. Real and Integer Data Sizes. Additional constraints on partitioning of data could be set e.g.
di ∈ Z dijkl ∈ Z for integer values suitable for partitioning of a set of e.g. pictures of same size for processing
in parallel. This makes the problem harder to solve but the algorithms proposed and discussed by the author
in Section 5 can handle this case.

4.3. Synchronization. In Figure 4.2 all services are synchronized on the following task tj which means

that even after s
′2
i0 has finished processing its portion of data, tj will not start until all s

′n
i0 have finished. If there

are tasks ti and tj which need to process the input data subsequently, the proposed model can allow pushing a
portion of data to the following task even if the previous steps on the other portions of data have not completed
yet. This can be accomplished as in Figure 4.3. Namely, as soon as t′i has finished processing its portion of
data, it can send results for processing by t′j without waiting for completion of processing by e.g. ti.

The question arises into how many virtual tasks processing of the given task should be split. This should
cover the number of services which can process the given task. In such a case, potentially all services for the
original task ti and tj could participate in parallel execution of the corresponding task with the possibility of
pushing parts of data from task ti to task tj even when execution of other parts of ti’s data is still in progress.
Furthermore, this could be set up to the potential number of partitions the initial data could be divided into
to allow pushing smaller portions of data sooner.

In one workflow there may be both tasks with multiple services (for selection of one service for task) and
virtual tasks with one service assigned to each of them meant for data parallelization. The former may be used

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

230 P. Czarnul

ti ti’

si0
si’ 0

ti’(n-1)

si’(n-1) 0

tj

Fig. 4.2: Data Parallelization

ti ti’

si0 si’ 0

ti’(n-1)

si’(n-1) 0

tj tj’ tj’(n-1)

sj0,...,sj(|S_j|-1)
sj0,...,sj(|S_j|-1)

sj0,...,sj(|S_j|-1)

Fig. 4.3: Data Parallelization without Synchronization
between Tasks

when there is a task to be executed on a portion of the input data where it is not possible to split data among
services or it would be too costly compared to the execution by one service (e.g. a conversion of an image to
another format). Data partitioning can be used when it is possible and beneficial to split the data and there
are enough services to execute in parallel.

5. Algorithms. If the graph contains only tasks with one service for each, the problem becomes how
to distribute data with possibly cost constraints. In this case and assuming that data can be divided into
chunks of any size, fast linear programming [28] can be used where variables denote the sizes of data processed
by particular services. This also assumes that the execution times for the serviceare linear functions of input
data size which does not have to be the case. For service selection, the literature suggests introducing integer
variables [3, 4, 36] that denote which service is selected for the particular task.

The author has proposed and implemented three different algorithms to solve the problem [14]:

1. genetic algorithm (GA) – in this case a solution is represented by a chromosome. It encodes both
selection of particular services for the tasks and also order of execution for pairs of parallel tasks in the
graph for which the order is not determined by the workflow graph.

2. mixed genetic algorithm and linear programming (MGALP) – in this case services are assigned to
the tasks by a genetic algorithm and data distribution for the given schedule is determined by linear
programming [28],

3. mixed integer linear programming (MILP) – similarly to the known approaches [36, 3, 4], integer
variables mean which service is selected for a particular task. Additionally though, real or integer
variables denote sizes of data flowing from task to task.

6. Management, Optimization and Execution of Workflow Applications in BeesyCluster. The
author has created a workflow management environment for modeling, scheduling and execution of workflow
applications, both for the proposed model [14] and also for dynamic selection of services at runtime [13].

The environment uses BeesyCluster as a middleware to access distributed services and is available at
https://lab527.eti.pg.gda.pl:10030/ek/Main at Faculty of Electronics, Telecommunications and Infor-
matics, Gdansk University of Technology, Poland.

BeesyCluster allows its users to access accounts on distributed resources through SSH and compile and
run applications, among others (Figure 6.1). Furthermore, such applications can be published as BeesyCluster
services to which access may be granted to other users. In particular, costs of running services can be defined.
BeesyCluster users have virtual purses from which can pay for services published by others. Similarly, users
may earn from others running their own services.

Furthermore, the workflow management environment allows:

1. definition of a workflow using a graphical interface (Figure 6.2),
2. selection of services and defining data flows between tasks [10, 12],
3. actual execution of the workflow in a distributed environment [10, 12].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 231

BeesyCluster
server

cluster
BeesyCluster
server

server
database

ssh

ssh

ssh

company
server

WWW/Web services

cluster

clients

A

B
Sun

Sun

Sun

Sun

����
����
����
����

����
����
����
����

����
����
����
����

������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 6.1: BeesyCluster Architecture

Fig. 6.2: Workflow Editor in BeesyCluster

6.1. Compute Intensive Scientific Workflow: Adaptive Quadrature Distributed Integration.
As an example for demonstration of the goals defined in Section 3 a compute intensive application was imple-
mented by the author and analyzed. This application computes a numerical integrate of a given function on
the given range with a certain accuracy using the adaptive quadrature integration algorithm presented in [30].

6.1.1. Testbed Environment and Services. The testbed environment consists of 16 nodes installed at
the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology. Each node
along with services installed on them was accessed by BeesyCluster using SSH. The relative speeds of 8 nodes
were 1 while the speeds of the other nodes were 0.575 for the application. Each node uses its local disks to store
input and output data. As an example function f(x) = sin(x)cos(sin(x)) + 1

x2 was integrated on given ranges.
The following services were developed:

partition a b rpf filecount – partitions range [a, b] recursively into the given number of files filecount and
subranges per file rpf so that the execution time per subrange is approximately similar. At the given
step, for each subrange [a,b] 10 points c0, ..., c9 are selected so that a < ci < b. Then the maximum
of areas of the triangles formed by (a, f(a)), (ci, f(ci)), (b, f(b)) is selected for each subrange [a, b]. Out
of all available subranges the one with the largest area is selected and partitioned into two subranges
[a, a+b

2], [a+b
2 , b]. The procedure is repeated until the desired number of subranges is generated.

integration – an application written in C that integrates all subranges from input files in its directory and
produces a single output file with extension out with the total integrate of the given subranges. The al-

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

232 P. Czarnul

gorithm divides the given subrange recursively like described above until the maximum area of triangles
is smaller than 0.000000001 in which case the integrate is approximated by a sum of rectangles.

adder – adds the values supplied in files with out extension supplied in its directory
Figure 6.3 presents the workflow in which the initial range [a, b] is partitioned into filecount files each

of which contains rpf subranges. Then the initial files with subranges are sent to separate nodes for parallel
processing. It is important to note that filecount must be sufficiently large to distribute files with input subranges
among parallel tasks for integration especially if services assigned to them run on nodes of different speeds.
Similarly, rpf can be set larger than 1 to further improve load balance since it increases the number of initial
subranges and makes their computation times more even. The model assumes that the processing time of each
input file is the same.

part i t ion

[a,b]

integrat ion adder

rpf ranges
in f i lecount
files

1 0

2 0

n 0

n+1 01

2

n

n paths, n>0

DF

distr ibuted
fork

t

t

t

s

s

s

s

Fig. 6.3: A Parallel Integration Workflow

6.1.2. Workflow Configurations and Results. The algorithm is able to adapt data distribution to
various speeds of processing nodes and also does it under budget constraints. The following configurations were
tested (optimization goals are noted):
MIN TC: granularity test (Figure 6.3) – for up to 8 nodes it is best to select 1 file per node as the nodes

have same speeds but vary the number of subranges. On the other hand, for 12 and 16 processors
we must increase the number of files to let the algorithm balance work between processors of different
speeds. Figure 6.4 presents execution times for these settings for range [1,1000]. Setting the number of
files or subranges too large causes too much overhead related to opening files, loop overhead with no
further gain in load balance. Finally, best settings were selected for following tests.

MIN TC:parallel (Figure 6.3) – execution times and corresponding speed-ups are shown in Figures 6.5 and
6.7 for three different ranges of [1, 250], [1, 1000] and [1, 2000]. It can be seen that the algorithm achieves
very good speed-ups for larger ranges even though there are various node speeds. For a small run the
overhead of the solution including preparation of directories on the nodes, copying of data take their
toll. In fact the speed-up for range [1,1000] is slightly better than for range [1,2000] presumably because
of some temporary load on one of the nodes during the runs. It also suggests that this is the upper
limit on the speed-up for this configuration as increasing the size does not increase the speed-up.

MIN T C BOUND: parallel under budget constraints (Figure 6.6) – we define the costs of services de-
pending on the clusters they are installed on and the time of day according to Table 6.1. Three logical
clusters are distinguished with 8, 4 and 4 nodes (with different costs) respectively. Figures 6.8 and 6.9
show the impact of decreasing the budget on the execution time of the workflow for two configurations:
clusters 1 and 2 (total of 12 nodes), clusters 1, 2 and 3 (total of 16 nodes) for day and night. Cluster
costs are the same as for the digital photography workflow since the same clusters were used. However,
for this particular integration code clusters 2 and 3 (the speed of each node is 0.575) are slower than
cluster 1 (the speed of each node is 1). The budget is varied from the minimum budget allowing full
parallelization, then 0.9 and 0.8 of this value. Clearly tightening the budget increases execution times
as the algorithm does not allow to pass input data to more expensive services causing the use of a
smaller number of cheaper but slower paths.

6.2. Comparison of Theoretical Model and Simulation Results. The image processing workflow
analyzed and tested in [14] is a good example for comparing theoretical execution times of the adopted model and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 233

Fig. 6.4: Adaptive Integration on range [1,1000]: Execution Times [s] vs Number of Subranges per File (1-8
nodes) or Files Per Node (16 nodes)

Fig. 6.5: Adaptive Integration: Execution Times [s]

cost per second

Cluster services node count day night

1 s1 0 to s24 0 8 20 10
2 s25 0 to s36 0 4 10 20
3 s37 0 to s48 0 4 15 15

Table 6.1: Services and Cost per Processor Second for Testbed Clusters

simulation results as it involves transfers of large portions of data of different sizes for the three configurations
tested. The simulation results shown in [14] were compared to the theoretical model in Figure 6.10. The
parameters of the model in this case were computed as follows. The execution time of each path of the workflow

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

234 P. Czarnul

part i t ion

[a,b]

integrat ion adder

rpf ranges
in f i lecount
files

1 0

2 0

n 0

n+1 01

2

n

n paths, n>0

if the budget is l imited
for day simulations: services from cluster1 wil l be omitted f irst
as too expensive
for night simulations: services from cluster2 wil l be omitted f irst
as too expensive

cost of each service
depends on the cluster
it is installed on
cluster1: services s to s
cluster2: services s to s
cluster3: services s to s

DF
distr ibuted
fork

t

t

t
s

s s

s

1 0 8 0

9 0 12 0

13 0 16 0

Fig. 6.6: A Parallel Integration Workflow with Budget Constraints

Fig. 6.7: Adaptive Integration: Speed-up

including web album generation as the last workflow task is as follows: execution time = a + d
p
(c + e) + df

where d is the number of initial images, p the number of paths, a is an accumulated constant from startup
times, overhead for preparation of directories for each workflow node, e and c correspond to computation and
communication times and df corresponds to the execution time of Web album generation.

The execution times are known as are data sizes d. The execution times of the Web generation phase were
read from the system logs and thus it was possible to determine f . The execution time of web album generation
is always the same as requires the same number of images. Then linear regression was used to determine a and
c + e.

The simulation results are very close to the model (Figure 6.10) being slightly too optimistic regarding
performance. The source node is a bottleneck in copying data to several following nodes.

6.3. Integration of BeesyCluster and MPI and Overhead of the Solution. It is possible to assess
the overhead of the workflow support in BeesyCluster mechanism by comparing execution times to highly
dedicated parallel solutions run in the same environment. A C+MPI based implementation can be regarded
as a lower bound on the execution time of the service-based BeesyCluster workflow. Obviously neither the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 235

Fig. 6.8: Adaptive Integration: Execution Time [s]
under Cost Constraints: Day

Fig. 6.9: Adaptive Integration: Execution Time [s]
under Cost Constraints: Night

Fig. 6.10: Comparison of Theoretical Model and Simulation Results

standard MPI nor grid-enabled versions such as MPICH-G2 [20], PACX-MPI [21] or BC-MPI [11] offer easy
integration of services with performance and cost aware optimization.

Distributed integration was used as an example in the following configurations:

MPI on 2 clusters. Two MPI environments each with 8 nodes were configured. The partitioning application
divides the initial range into a predefined number of subranges and saves them to the number of files
equal to the number of distinct MPI environments used (1 up to 8 nodes, 2 for 16 nodes in this case)
considering relative speeds of the latter. Subsequently, MPI applications launched on the clusters divide
the ranges between processes using MPI and compute results for their parts.

workflow in BeesyCluster with services using MPI. Two services were used each of which was imple-
mented as a parallel C+MPI application. For 1-8 nodes one service implemented by one MPI applica-
tion using from 1 to 8 nodes was used. For 16 nodes, two BeesyCluster services each of which ran an
MPI application on 8 nodes just like in the previous example. It allows to assess the overhead of the
BeesyCluster layer. Initial data was prepared as in the previous example.

workflow in BeesyCluster. The configuration considered in Paragraph 6.1 was used where the number of
services is equal to the number of nodes. Each service is a sequential application.

Figure 6.11 presents a comparison of speed-ups between these three solutions. The reference run used 1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

236 P. Czarnul

Fig. 6.11: Performance Comparison of BeesyCluster Workflow and MPI: Speed-up

processor.

It can be seen that the MPI implementation is not far below the theoretical best result while the BeesyCluster
based implementations introduce slightly more overhead. It is not significant for the [1,1000] range but is
visible for short runs for range [1,250] and 16 nodes. This is because the overhead introduced by the Java EE
implementation is significant compared to the short execution time in this case. Nevertheless, for longer runs
the performance of the workflow solution is very good. Secondly, as expected the overhead of the workflow
with MPI-based services is much smaller than for a larger number of sequential services. The overhead of the
workflow with MPI-based services compared to an MPI-only implementation on 16 nodes for range [1,1000]
was 13 seconds. This encourages to use workflows with MPI-based services as it allows very easy integration
of services with scheduling and data partitioning incorporating performance and costs which is not available in
MPI implementations.

7. Summary. The paper formulated a problem on service selection and scheduling with data distribution
encountered in the integration of distributed services offered by various providers. Both the model and the
algorithm were implemented in BeesyCluster allowing to consume distributed services from various providers.
Additionally, an easy-to-use workflow editor and an execution engine were implemented. As an example,
a distributed numerical integration was constructed as a workflow application were prepared and executed
a distributed service-based environment. The solution achieves good speed-ups. It is able to minimize the
execution time and keep the total cost of selected services below a threshold. The paper demonstrates the
impact of input data partitioning on the scalability of the approach. Secondly, simulation results are compared
to the theoretical model which confirms its correctness. Finally, the overhead of the implementation is analyzed
compared to a pure parallel MPI implementation. Results for an integrated workflow/MPI solution are also
presented.

Acknowledgment. Research partially sponsored by research grant N N516 383534
“Strategies for management of information services in distributed environments”.

REFERENCES

[1] Kepler user manual, May 2008.
[2] CUDA Programming Guide 3.1. http://developer.download.nvidia.com/compute/cuda/3 1/toolkit/

docs/NVIDIA CUDA C ProgrammingGuide 3.1.pdf, June 2010.
[3] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, Constraint driven web service composition in meteor-s, in Proceedings

of IEEE International Conference on Services Computing (SCC’04), 2004, pp. 23–30.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 237

[4] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, Dynamic web service composition in meteor-s, technical report,
LSDIS Lab, Computer Science Dept., UGA, May 2004.

[5] S. A. Ahson and M. Ilyas, eds., Cloud Computing and Software Services: Theory and Techniques, CRC Press, 2011. ISBN
978-1-4398-0315-8.

[6] R. Buyya, ed., High Performance Cluster Computing, Programming and Applications, Prentice Hall, 1999.
[7] G. Canfora, M. D. Penta, R. Esposito, and M. Villani, A Lightweight Approach for QoS-Aware Service Composition.

ICSOC 2004 forum paper, IBM Technical Report Draft.
[8] , Qos-aware replanning of composite web services, in Procs. of 2005 IEEE International Conference on Web Services,

vol. 1, Res. Centre on Software Technol., Sannio Univ., Italy, July 2005, pp. 121–129.
[9] J. Cardoso, A. Sheth, and J. Miller, Workflow quality of service, tech. report, LSDIS Lab, Department of Computer

Science, University of Georgia, Athens, GA 30602, USA, March 2002.
[10] P. Czarnul, Integration of compute-intensive tasks into scientific workflows in beesycluster, in Computational Science –

ICCS 2006, vol. 3993 of LNCS, Springer, 2006, pp. 944–947.
[11] , Bc-mpi: Running an mpi application on multiple clusters with beesycluster connectivity, in Proceedings of Parallel

Processing and Applied Mathematics 2007 Conference,, Springer Verlag, May 2008. Lecture Notes in Computer Science,
LNCS 4967.

[12] , A JEE-based Modelling and Execution Environment for Workflow Applications with Just-in-time Service Selection,
in proceedings of Grid and Pervasive Computing, Geneva, Switzerland, May 2009.

[13] P. Czarnul, Modeling, run-time optimization and execution of distributed workflow applications in the JEE-
based BeesyCluster environment, The Journal of Supercomputing, (2010), pp. 1–26. 10.1007/s11227-010-0499-7,
http://dx.doi.org/10.1007/s11227-010-0499-7.

[14] P. Czarnul, Modelling, optimization and execution of workflow applications with data distribution, service selection and
budget constraints in beesycluster, in Proceedings of 6th Workshop on Large Scale Computations on Grids and 1st Work-
shop on Scalable Computing in Distributed Systems, International Multiconference on Computer Science and Information
Technology, 2010, pp. 629–636. Wisla, Poland.

[15] P. Czarnul, M. Matuszek, M. Wjcik, and K. Zalewski, BeesyBees — agent-based, adaptive & learning workflow execution
module for BeesyCluster, in Faculty of ETI Annals, Information Technologies vol. 18, Gdansk, Poland, 2010.

[16] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and M. Livny, Pegasus : Mapping
Scientific Workflows onto the Grid, in Across Grids Conference, Nicosia, Cyprus, 2004. http://pegasus.isi.edu.

[17] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration, in Open Grid Service Infrastructure WG, June 22 2002. Global Grid Forum,
http://www.globus.org/research/papers/ogsa.pdf.

[18] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, Flexible and Efficient Workflow Deployment of Data-Intensive
Applications On Grids With MOTEUR, International Journal of High Performance Computing Applications, 22 (2008),
pp. 347–360.

[19] Gridbus Project, Workflow language (xwfl2.0). gridbus.cs.mu.oz.au/workflow/2.0beta/ docs/xwfl2.pdf.
[20] N. Karonis and B. Toonen, Mpich-g2 – a grid-enabled implementation of the mpi v1.1 standard.

http://www.hpclab.niu.edu/mpi/, Department of Computer Science at Northern Illinois University and Mathe-
matics and Computer Science Division (MCS) at Argonne National Laboratory.

[21] R. Keller and M. Mller, The Grid-Computing library PACX-MPI: Extending MPI for Computational Grids.
www.hlrs.de/organization/amt/projects/pacx-mpi/.

[22] Laboratory of Parallel and Distributed Systems, MTA SZTAKI, Hungary, Parallel Grid Runtime and Application
Development Environment, User’s Manual, ver. 8.4.2.

[23] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao, Scientific
Workflow Management and the Kepler System, Concurrency and Computation: Practice & Experience, Special Issue on
Scientific Workflows, (2005).

[24] R.-Y. Ma, Y.-W. Wu, X.-X. Meng, S.-J. Liu, and L. Pan, Grid-enabled workflow management system based on bpel, Int.
J. High Perform. Comput. Appl., 22 (2008), pp. 238–249.

[25] S. Majithia, M. S. Shields, I. J. Taylor, , and I. Wang, Triana: A Graphical Web Service Composition and Execution
Toolkit, in IEEE International Conference on Web Services (ICWS’04), IEEE Computer Society, 2004, pp. 512–524.

[26] Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface Standard, July 1997.
[27] C. Patel, K. Supekar, and Y. Lee, A QoS Oriented Framework for Adaptive Management of Web Service based Workflows,

in Proceedings of the 14th International Database and Expert Systems Applications Conference (DEXA 2003), LNCS,
Prague, Czech Republic, September 2003, pp. 826–835.

[28] M. M. Syslo, N. Deo, and J. S. Kowalik, Discrete Optimization Algorithms, Prentice-Hall, 1983.
[29] M. Wieczorek, A. Hoheisel, and R. Prodan, Towards a general model of the multi-criteria workflow scheduling on the

grid, Future Generation Comp. Syst., 25 (2009), pp. 237–256.
[30] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and

Parallel Computers, Prentice Hall, 1999.
[31] Yingchun, X. Li, and C. Sun, Cost-effective heuristics for workflow scheduling in grid computing economy, in GCC ’07:

Proceedings of the Sixth International Conference on Grid and Cooperative Computing, Washington, DC, USA, 2007,
IEEE Computer Society, pp. 322–329.

[32] J. Yu and R. Buyya, A taxonomy of workflow management systems for grid computing, Journal of Grid Computing, 3
(2005), pp. 171–200.

[33] J. Yu and R. Buyya, A budget constrained scheduling of workflow applications on utility grids using genetic algorithms, in
Workshop on Workflows in Support of Large-Scale Science, Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing (HPDC 2006), Paris, France, June 2006.

[34] , Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms, Scientific

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

238 P. Czarnul

Programming Journal, (2006). IOS Press, Amsterdam.
[35] J. Yu, R. Buyya, and C.-K. Tham, Cost-based scheduling of workflow applications on utility grids, in Proceedings of the 1st

IEEE International Conference on e-Science and Grid Computing (e-Science 2005), IEEE CS Press, Melbourne, Australia,
December 2005.

[36] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng, Quality driven web services composition, in Pro-
ceedings of WWW 2003, Budapest, Hungary, May 2003.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

