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The problem of thermal contact between two bodies with a heat source at their interface presents 

great scientific and practical interest. On the time scale of a nanosecond or shorter, heat propagation 

should be considered in the form of thermal waves of finite speeds. This study investigated the 

thermal behaviour of hyperbolic conduction semispaces in perfect thermal contact subjected to the 

action of an interfacial heat source. An analytical solution was derived using the Laplace integral 

transform approach. The contact temperature and heat fluxes were analysed for different ratios of 

thermal conductivities 𝐾1 and 𝐾2, thermal diffusivities 𝑘1 and 𝑘2, and thermal relaxation times 𝜏1 

and 𝜏2 of the semispaces. It was shown that the interfacial heat generation results in a step-wise 

change in the contact temperature. It was also found that the initial partition of heat between the 

semispaces occurs due to the ratio of 𝐾1 √𝑘1𝜏1⁄  and 𝐾2 √𝑘2𝜏2⁄ . The applicability of the obtained

solution and its particular expressions was illustrated on the example of microscopic problems of 

ultra-short laser pulse welding and sliding friction. 
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Notation 

𝑐𝑣 volumetric heat capacity, J/(m3 °C) 

𝑒 thermal effusivity, 𝑒 = 𝐾 √𝑘⁄ , W s0.5/(m2 °C) 

𝑒𝜏 hyperbolic conduction thermal effusivity, 𝑒𝜏 = 𝐾 √𝑘𝜏⁄ , W/(m2 °C) 

erfc(∙) complementary error function 

𝑘 thermal diffusivity, 𝑘 = 𝐾 𝑐𝑣⁄ , m2/s 

𝑞 heat flux, W/m2 

𝑞0 specific power of heat source, W/m2 

𝑠 Laplace transform parameter 

𝑡 time variable, s 

𝑥 spatial coordinate, m 

𝐻(∙) Heaviside step function 

𝐼𝜐(∙) modified Bessel function of the first kind of order 𝜐 

𝐾 thermal conductivity, W/(m °C) 

𝑄 dimensionless heat flux, 𝑄 = 𝑞 𝑞0⁄  

𝑇 temperature, °C 

𝑇0 initial temperature, °C 

𝛼f heat partition coefficient 

𝜂 dimensionless time variable, 𝜂 = 𝑡 𝜏1⁄  

𝜗 dimensionless temperature, 𝜗 = 𝐾1(𝑇 − 𝑇01) (𝑞0√𝑘1𝜏1)⁄  

𝜗0 dimensionless initial temperature of semispace 2, 𝜗0 = 𝐾1(𝑇02 − 𝑇01) (𝑞0√𝑘1𝜏1)⁄  

𝜉 dimensionless spatial coordinate, 𝜉 = 𝑥 √𝑘1𝜏1⁄  

𝜏 thermal relaxation time, s 

𝜒 thermal diffusivity ratio, 𝜒 = 𝑘2 𝑘1⁄  

Θ thermal relaxation time ratio, Θ = 𝜏2 𝜏1⁄  

Λ thermal conductivity ratio, Λ = 𝐾2 𝐾1⁄  

ℒ[∙] Laplace transform operator 

∎̃ Laplace transform image 

∎1 related to semispace 1 

∎2 related to semispace 2 

∎1,2 related to semispaces 1 and 2 

∎p related to parabolic conduction equation 

∎∗ related to interface 𝑥 = 0 
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1. Introduction 

 One of the important problems of mathematical physics is the one of contact heat 

conduction which aims at finding temperature distributions in two coupled bodies with account of 

heat transfer between them. In many practical situations, this problem may involve a heat source 

acting at the interface. The heat source can be of mechanical nature (e.g. sliding friction, impact), 

electromagnetic nature (e.g. electromagnetic radiation, electrical contact resistance), chemical 

nature (e.g. thermic reaction, phase transition), etc. 

 The most natural way to define the problem of contact heat conduction is to assume a 

perfect thermal contact, which implies temperature continuity and heat energy conservation when 

crossing the interface (Carslaw [1], p.161, 214). Classical heat conduction in two or more bodies 

coupled by the perfect thermal contact conditions has been comprehensively studied for various 

domains, boundary conditions and heat sources (Carslaw and Jaeger [2], Luikov [3]). The classical 

heat conduction equation in the form of a parabolic partial differential equation is based on 

Fourier’s law [4] which represents the constitutive relationship �̅� = −𝐾∇𝑇 between the temperature 

gradient ∇𝑇 and heat flux vector �̅� with the thermal conductivity 𝐾 as a proportionality coefficient. 

Due to this relationship, the propagation of heat occurs with infinite speed. 

 The development of sciences and technologies poses new heat conduction problems that 

deal with instantaneous thermal processes in micro-volumes. For instance, short and ultra-short 

pulses of a laser used for processing of materials have duration from femtoseconds to nanoseconds 

(Mishra and Yadava [5]). Another example is a mechanical interaction of two roughness asperities 

located on the sliding surfaces that may last from nanoseconds to microseconds (Kragelskii [6]). 

Experimental studies suggest that on the time scale of a nanosecond or shorter, heat propagates as 

thermal waves of finite speeds and, accordingly, Fourier’s law is not applicable anymore (Joseph 

and Preziosi [7], Özişik and Tzou [8]). 

Cattaneo [9] and Vernotte [10] modified Fourier’s law by introducing a time derivative of 

the heat flux term, as presented in one-dimensional form below: 

𝜏
𝜕𝑞(𝑥, 𝑡)

𝜕𝑡
+ 𝑞(𝑥, 𝑡) = −𝐾

𝜕𝑇(𝑥, 𝑡)

𝜕𝑥
 (1) 

Here 𝑥 is the spatial coordinate; 𝑡 is the time variable; 𝑇 is the temperature; 𝑞 is the heat flux; 𝜏 is 

the thermal relaxation time which represents the time lag between ∇𝑇 and �̅�. It is generally accepted 

that the value of 𝜏 is of order 10−14 to 10−12 s for metals and 10−12 to 10−10 s for dielectric materials 

(Guillemet and Bardon [11]). Kaminski [12], Mitra et al. [13] and Roetzel et al. [14] reported that 

non-homogeneous materials, such as sand, sodium bicarbonate, processed meat, have dramatically 

longer 𝜏 of order 10−1 to 10 s, although the validity of this range is controversial (Maillet [15]). 

Combination of Eq.(1) and the statement of heat energy conservation 
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𝑐𝑣

𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
= 0  

yields the heat conduction equation in the form of hyperbolic partial differential equation 

𝜏
𝜕2𝑇(𝑥, 𝑡)

𝜕𝑡2
+

𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
= 𝑘

𝜕2𝑇(𝑥, 𝑡)

𝜕𝑥2
 (2) 

Here 𝑐𝑣 is the volumetric heat capacity; 𝑘 = 𝐾 𝑐𝑣⁄  is the thermal diffusivity. Eq.(2) implies that heat 

propagates with the speed equal to √𝑘 𝜏⁄ . It is apparent that this speed increases with decreasing 𝜏. 

As 𝜏 → 0, Eq.(1) reduces to Fourier’s law, while Eq.(2) transforms into the parabolic conduction 

equation. 

 It is important to note that in certain cases the hyperbolic conduction equation can lead to 

nonphysical results (Zhang [16]) such as violation of the second law of thermodynamics (Coleman 

et al. [17], Bai and Lavine [18], Bright and Zhang [19]), abnormally low or high temperatures 

(Porrà et al. [20], Körner and Bergmann [21], Yu et al. [22]). Nonetheless, this equation remains 

one of the basic research tools to study heat propagation of finite speed. 

 A number of studies have been reported on the problems of hyperbolic heat conduction and, 

in particular, contact problems. Baumeister and Hamill [23] derived analytical expressions of 

temperature and heat flux in a semispace due to a step-wise change in its surface temperature. 

Kazimi and Erdman [24] investigated the contact temperature of coupled semispaces with different 

initial temperatures. Kao [25] investigated thermally induced stress waves in a semispace caused by 

a step-wise change in the surface heat flux. Frankel et al. [26] obtained analytical expressions of 

temperatures and heat fluxes in a multilayer system with volumetric heat sources. Lor and Chu [27] 

investigated the heating of two coupled layers by an external pulsed heat source with account of a 

radiation boundary condition at their interface. Duhamel [28] proposed a finite integral transform 

technique for solution of the problems of heat conduction in heterogeneous media and illustrated its 

application to a multilayer system. Lewandowska [29] conducted an analytical study of temperature 

in a semispace due to a time-dependent laser heat source with an exponentially distributed 

volumetric power. Khadrawi et al. [30] investigated the thermal behaviour of two layers in 

imperfect thermal contact. Tsai and Hung [31] investigated the thermal behaviour of a bi-layered 

composite sphere due to a step-wise temperature change at its exterior surface. Ordóñez-Miranda 

and Alvarado-Gil [32] investigated the propagation of thermal waves in a layer–semispace domain 

excited by a modulated heat source at the exterior surface. Xue et al. [33] investigated thermal 

contact problems assuming that both parabolic and hyperbolic types of heat conduction coexist. 

Nosko [34] investigated temperature and heat flux in a semi-infinite body heated by a surface heat 

source and an exponentially distributed volumetric heat source taking account of the wear of the 

surface. Besides, one should mention the studies based on a dual-phase-lag heat conduction 
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concept, e.g. Ho et al. [35], Al-Huniti and Al-Nimr [36], Lee and Tsai [37], Ramadan [38], 

Akbarzadeh and Pasini [39]. 

Literature analysis shows that the problem of perfect thermal contact between two 

hyperbolic conduction bodies has not been systematically studied for the case of interfacial heat 

source. In particular, the question of how the generated heat is distributed between the hyperbolic 

conduction bodies remains unanswered. With this in mind, the purpose of the present study was to 

analytically derive temperatures and heat fluxes in the hyperbolic conduction semispaces coupled 

by the perfect thermal contact conditions with an interfacial heat source and perform parametric 

analysis of the contact temperature and heat fluxes.  

The paper is organised in the following manner. Section 2 defines the studied hyperbolic 

conduction problem and represents it in the dimensionless form. Section 3 describes an analytical 

solution of the problem based on the Laplace integral transform approach. Section 4 presents a 

parametric analysis of the derived expressions of temperature and heat flux. Finally, Section 5 

illustrates the application of the obtained results to simulation of microscopic problems of ultra-

short laser pulse welding and sliding friction. 

 

2. Problem definition 

 Consider semispace 1 and semispace 2 which occupy the respective domains 𝑥 > 0 and 𝑥 <

0 and are interfaced at 𝑥 = 0, as shown in Fig.1. Assume that the semispaces conduct heat 

according to Eq.(2). Then temperatures 𝑇1,2 in respective semispaces 1 and 2 satisfy the hyperbolic 

conduction equations 

𝜏1

𝜕2𝑇1

𝜕𝑡2
+

𝜕𝑇1

𝜕𝑡
= 𝑘1

𝜕2𝑇1

𝜕𝑥2
, 𝑥 > 0, 𝑡 > 0; 

𝜏2

𝜕2𝑇2

𝜕𝑡2
+

𝜕𝑇2

𝜕𝑡
= 𝑘2

𝜕2𝑇2

𝜕𝑥2
, 𝑥 < 0, 𝑡 > 0 

(3) 

where 𝑘1,2 are the thermal diffusivities; 𝜏1,2 are the thermal relaxation times. 
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Fig.1. Schematic of the thermal contact of semispaces 1 and 2 

 

 At the initial instance of time 𝑡 = 0, semispaces 1 and 2 have different temperatures 𝑇01 and 

𝑇02, that is  

𝑇1|𝑡=0 = 𝑇01; 

𝑇2|𝑡=0 = 𝑇02 
(4) 

In addition, the initial derivatives of 𝑇1,2 with respect to 𝑡 equal zero:   

𝜕𝑇1

𝜕𝑡
|

𝑡=0
=

𝜕𝑇2

𝜕𝑡
|

𝑡=0
= 0 (5) 

 The thermal contact between the semispaces is assumed to be perfect, implying temperature 

continuity 

𝑇1|𝑥=0 = 𝑇2|𝑥=0 (6) 

A heat source acts at the interface with specific power 𝑞0, resulting in a step-wise change in the heat 

flux: 

𝑞1|𝑥=0 − 𝑞2|𝑥=0 = 𝑞0 (7) 

where 𝑞1,2 are the heat fluxes in respective semispaces 1 and 2. The relationship between 𝑞1,2 and 

𝑇1,2 is described by Eq.(1): 

𝜏1

𝜕𝑞1

𝜕𝑡
+ 𝑞1 = −𝐾1

𝜕𝑇1

𝜕𝑥
; 

𝜏2

𝜕𝑞2

𝜕𝑡
+ 𝑞2 = −𝐾2

𝜕𝑇2

𝜕𝑥
 

(8) 

where 𝐾1,2 are the thermal conductivities. 

The absence of thermal disturbances at infinite distance from the interface yields 
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𝜕𝑇1

𝜕𝑥
|

𝑥→+∞
=

𝜕𝑇2

𝜕𝑥
|

𝑥→−∞
= 0 (9) 

 Representation of the problem in the dimensionless form allows to significantly decrease the 

number of parameters. The dimensionless spatial coordinate 𝜉, time variable 𝜂, temperatures 𝜗1,2 

and heat fluxes 𝑄1,2 are introduced as follows: 

𝜉 =
𝑥

√𝑘1𝜏1

, 𝜂 =
𝑡

𝜏1
, 𝜗1,2 =  

𝐾1(𝑇1,2 − 𝑇01)

𝑞0√𝑘1𝜏1

, 𝑄1,2 =
𝑞1,2

𝑞0
 

The dimensionless parameters are the thermal conductivity ratio Λ, thermal diffusivity ratio 𝜒, 

thermal relaxation time ratio Θ and initial temperature 𝜗0 of semispace 2 given by 

 Λ =
𝐾2

𝐾1
, 𝜒 =

𝑘2

𝑘1
, Θ =

𝜏2

𝜏1
, 𝜗0 =

𝐾1(𝑇02 − 𝑇01)

𝑞0√𝑘1𝜏1

 

 With the introduced quantities, the dimensionless definition of the problem of Eqs.(3)–(9) 

incorporates the heat conduction equations 

𝜕2𝜗1

𝜕𝜂2
+

𝜕𝜗1

𝜕𝜂
=

𝜕2𝜗1

𝜕𝜉2
, 𝜉 > 0, 𝜂 > 0; 

 Θ
𝜕2𝜗2

𝜕𝜂2
+

𝜕𝜗2

𝜕𝜂
= 𝜒

𝜕2𝜗2

𝜕𝜉2
, 𝜉 < 0, 𝜂 > 0 

(10) 

initial conditions 

𝜗1|𝜂=0 = 0; 

𝜗2|𝜂=0 = 𝜗0 
(11) 

and 

𝜕𝜗1

𝜕𝜂
|

𝜂=0

=
𝜕𝜗2

𝜕𝜂
|

𝜂=0

= 0 (12) 

contact conditions 

𝜗1|𝜉=0 = 𝜗2|𝜉=0 (13) 

and 

𝑄1|𝜉=0 − 𝑄2|𝜉=0 = 1 (14) 

remembering that 

𝜕𝑄1

𝜕𝜂
+ 𝑄1 = −

𝜕𝜗1

𝜕𝜉
; 

Θ
𝜕𝑄2

𝜕𝜂
+ 𝑄2 = −Λ

𝜕𝜗2

𝜕𝜉
 

(15) 

and conditions at infinity 

𝜕𝜗1

𝜕𝜉
|

𝜉→+∞

=
𝜕𝜗2

𝜕𝜉
|

𝜉→−∞

= 0 (16) 
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The temperatures 𝜗1,2 are thus disturbed by two factors: interfacial heat source of Eq.(14) 

and initial temperature difference of Eq.(11). 

 

3. Analytical solution 

 Application of the Laplace integral transform ℒ (Doetsch [40]) to Eq.(10) with respect to 𝜂 

and taking account of Eq.(11) and Eq.(12) yield 

𝜕2�̃�1

𝜕𝜉2
− 𝑠(𝑠 + 1)�̃�1 = 0; 

𝜒
𝜕2�̃�2

𝜕𝜉2
− 𝑠(Θ𝑠 + 1)�̃�2 + 𝜗0(Θ𝑠 + 1) = 0 

(17) 

where 𝑠 is the transform parameter; �̃�1,2 are the images of 𝜗1,2, i.e. �̃�1,2(𝜉, 𝑠) = ℒ[𝜗1,2(𝜉, 𝜂)]. The 

set of solutions of Eq.(17) satisfying Eq.(13) and Eq.(16) reads 

 

�̃�1(𝜉, 𝑠) = 𝐴(𝑠) exp {−𝜉√𝑠(𝑠 + 1)} ; 

�̃�2(𝜉, 𝑠) =
𝜗0

𝑠
+ (𝐴(𝑠) −

𝜗0

𝑠
) exp {

𝜉

√𝜒
√𝑠(Θ𝑠 + 1)} 

(18) 

Here 𝐴(𝑠) is a yet unknown function. 

 The heat flux images �̃�1,2(𝜉, 𝑠) = ℒ[𝑄1,2(𝜉, 𝜂)] can be determined from Eq.(15) as 

�̃�1(𝜉, 𝑠) = −
1

𝑠 + 1

𝜕�̃�1(𝜉, 𝑠)

𝜕𝜉
= 𝐴(𝑠)

√𝑠

√𝑠 + 1
exp {−𝜉√𝑠(𝑠 + 1)} ; 

�̃�2(𝜉, 𝑠) = −
Λ

Θ𝑠 + 1

𝜕�̃�2(𝜉, 𝑠)

𝜕𝜉
= (

𝜗0

𝑠
− 𝐴(𝑠))

Λ√𝑠

√𝜒√Θ𝑠 + 1
exp {

𝜉

√𝜒
√𝑠(Θ𝑠 + 1)} 

(19) 

Substitution of Eq.(19) into Eq.(14) in the space of images allows finding 𝐴(𝑠) in the form 

𝐴(𝑠) =
√𝜒√𝑠 + 1√Θ𝑠 + 1 + 𝜗0Λ√𝑠√𝑠 + 1

𝑠√𝑠(Λ√𝑠 + 1 + √𝜒√Θ𝑠 + 1)
 (20) 

 After rationalising the denominator of Eq.(20), Eq.(18) is represented as follows: 

�̃�1(𝜉, 𝑠) = 𝑏 exp {−𝜉√𝑠(𝑠 + 1)} (𝑐
(𝑠 + 1)√𝑠 + Θ−1

𝑠√𝑠(𝑠 + 𝑎)
− 𝑐2

(𝑠 + Θ−1)√𝑠 + 1

𝑠√𝑠(𝑠 + 𝑎)
+ 𝜗0

𝑠 + 1

𝑠(𝑠 + 𝑎)

− 𝜗0𝑐
√𝑠 + 1√𝑠 + Θ−1

𝑠(𝑠 + 𝑎)
) ; 

�̃�2(𝜉, 𝑠) =
𝜗0

𝑠
+ exp {

𝜉√Θ

√𝜒
√𝑠(𝑠 + Θ−1)} (𝑏𝑐

(𝑠 + 1)√𝑠 + Θ−1

𝑠√𝑠(𝑠 + 𝑎)
− 𝑏𝑐2

(𝑠 + Θ−1)√𝑠 + 1

𝑠√𝑠(𝑠 + 𝑎)

+ 𝜗0𝑏
𝑠 + 1

𝑠(𝑠 + 𝑎)
− 𝜗0𝑏𝑐

√𝑠 + 1√𝑠 + Θ−1

𝑠(𝑠 + 𝑎)
−

𝜗0

𝑠
) 

(21) 

where 
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𝑎 =
Λ2 − 𝜒

Λ2 − 𝜒Θ
; 

𝑏 =
Λ2

Λ2 − 𝜒Θ
; 

𝑐 =
√𝜒Θ

Λ
 

 Introduce the functions 

�̃�1(𝜉, 𝑠) =
exp {−𝜉√𝑠(𝑠 + 1)}

√𝑠(𝑠 + 1)
; 

�̃�2(𝜉, 𝑠) =
exp {𝜉√Θ 𝜒⁄ √𝑠(𝑠 + Θ−1)}

√𝑠(𝑠 + Θ−1)
; 

�̃�1(𝑠) =
𝑎(2 + Θ) − 1

𝑎2Θ𝑠
+

1

𝑎Θ𝑠2
+

(1 − 𝑎)2(1 − 𝑎Θ)

𝑎2Θ(𝑠 + 𝑎)
; 

�̃�2(𝑠) =
𝑎(2Θ + 1) − 1

𝑎2Θ2𝑠
+

1

𝑎Θ2𝑠2
+

(1 − 𝑎)(1 − 𝑎Θ)2

𝑎2Θ2(𝑠 + 𝑎)
; 

�̃�1(𝑠) =
√𝑠 + 1

√𝑠
− 1; 

�̃�2(𝑠) =
√𝑠 + Θ−1

√𝑠
− 1; 

�̃�(𝑠) =
𝑠

√𝑠 + 1√𝑠 + Θ−1
− 1; 

�̃�(𝑠) =
1

𝑎Θ𝑠
+

(1 − 𝑎)(𝑎Θ − 1)

𝑎Θ(𝑠 + 𝑎)
; 

�̃�(𝑠) =
1

𝑠 + 𝑎
 

(22) 

and express Eq.(21) in the following manner: 

�̃�1(𝜉, 𝑠) = 𝑏�̃�1(𝜉, 𝑠) (𝑐(�̃�1(𝑠) + 1)(�̃�(𝑠) + 1) − 𝑐2(�̃�(𝑠) + 1)

+ 𝜗0((1 − 𝑎)�̃�(𝑠) + 1)(�̃�1(𝑠) + 1) − 𝜗0𝑐((1 − 𝑎)�̃�(𝑠) + 1)(�̃�2(𝑠) + 1)) ; 

�̃�2(𝜉, 𝑠) =
𝜗0

𝑠
+ �̃�2(𝜉, 𝑠) (𝑏𝑐(�̃�(𝑠) + 1) − 𝑏𝑐2(�̃�2(𝑠) + 1)(�̃�(𝑠) + 1)

+ 𝜗0𝑏((1 − 𝑎)�̃�(𝑠) + 1)(�̃�2(𝑠) + 1)

− 𝜗0𝑏𝑐((Θ−1 − 𝑎)�̃�(𝑠) + 1)(�̃�1(𝑠) + 1) − 𝜗0(�̃�2(𝑠) + 1)) 

(23) 

 By applying the convolution theorem for the Laplace transform, the originals of Eq.(23) are 

finally found in the form 
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𝜗1(𝜉, 𝜂) = 𝑏(1 − 𝑐)(𝑐 + 𝜗0)𝜙1(𝜉, 𝜂) 

+𝑏 ∫ 𝜙1(𝜉, 𝜂 − 𝜍) (𝑐 ∫ 𝜓(𝜖)𝜃1(𝜍 − 𝜖)
𝜍

0

𝑑𝜖 + 𝜗0(1 − 𝑎) ∫ (𝜆1(𝜖) − 𝑐𝜆2(𝜖))𝜅(𝜍 − 𝜖)
𝜍

0

𝑑𝜖
𝜂

0

+ 𝑐𝜃1(𝜍) + 𝑐𝜓(𝜍) − 𝑐2𝜚(𝜍) + 𝜗0𝜆1(𝜍) − 𝜗0𝑐𝜆2(𝜍)

+ 𝜗0(1 − 𝑎)(1 − 𝑐)𝜅(𝜍)) 𝑑𝜍 ; 

𝜗2(𝜉, 𝜂) = 𝜗0 + (𝑏(1 − 𝑐)(𝑐 + 𝜗0) − 𝜗0)𝜙2(𝜉, 𝜂) 

+ ∫ 𝜙2(𝜉, 𝜂 − 𝜍) (−𝑏𝑐2 ∫ 𝜓(𝜖)𝜃2(𝜍 − 𝜖)
𝜍

0

𝑑𝜖
𝜂

0

+ 𝜗0𝑏 ∫ (𝑐(𝑎 − Θ−1)𝜆1(𝜖) + (1 − 𝑎)𝜆2(𝜖))𝜅(𝜍 − 𝜖)
𝜍

0

𝑑𝜖 − 𝑏𝑐2𝜃2(𝜍)

− 𝑏𝑐2𝜓(𝜍) + 𝑏𝑐𝜚(𝜍) − 𝜗0𝑏𝑐𝜆1(𝜍) + 𝜗0(𝑏 − 1)𝜆2(𝜍)

+ 𝜗0𝑏(1 − 𝑎 + 𝑐(𝑎 − Θ−1))𝜅(𝜍)) 𝑑𝜍 

(24) 

where 𝜙1,2, 𝜃1,2, 𝜆1,2, 𝜓, 𝜚 and 𝜅 are the respective originals of Eq.(22). 

 The originals 𝜃1,2, 𝜚 and 𝜅 are easily found using the basic Laplace transforms and the 

property of linearity (Doetsch [40]): 

𝜃1(𝜂) =
𝑎(2 + Θ) − 1

𝑎2Θ
+

𝜂

𝑎Θ
+

(1 − 𝑎)2(1 − 𝑎Θ)

𝑎2Θ
exp{−𝑎𝜂} ; 

𝜃2(𝜂) =
𝑎(2Θ + 1) − 1

𝑎2Θ2
+

𝜂

𝑎Θ2
+

(1 − 𝑎)(1 − 𝑎Θ)2

𝑎2Θ2
exp{−𝑎𝜂} ; 

𝜚(𝜂) =
1

𝑎Θ
+

(1 − 𝑎)(𝑎Θ − 1)

𝑎Θ
exp{−𝑎𝜂} ; 

𝜅(𝜂) = exp{−𝑎𝜂} 

  On the other hand, the originals 𝜙1,2, 𝜆1,2 and 𝜓 are non-elementary functions, and their 

determination requires application of the special Laplace transforms (Luikov [3], p.587,588): 

𝜙1(𝜉, 𝜂) = exp {−
𝜂

2
} 𝐼0 (

√𝜂2 − 𝜉2

2
) 𝐻(𝜂 − 𝜉); 

𝜙2(𝜉, 𝜂) = exp {−
𝜂

2Θ
} 𝐼0 (

√𝜂2 − 𝜉2 Θ 𝜒⁄

2Θ
) 𝐻 (𝜂 +

𝜉√Θ

√𝜒
) ; 

𝜆1(𝜂) =
1

2
exp {−

𝜂

2
} (𝐼0 (

𝜂

2
) + 𝐼1 (

𝜂

2
)) ; 

𝜆2(𝜂) =
1

2Θ
exp {−

𝜂

2Θ
} (𝐼0 (

𝜂

2Θ
) + 𝐼1 (

𝜂

2Θ
)) ; 
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𝜓(𝜂) =
1

2Θ
exp {−

1 + Θ

2Θ
𝜂} (−(1 + Θ)𝐼0 (

1 − Θ

2Θ
𝜂) + (1 − Θ)𝐼1 (

1 − Θ

2Θ
𝜂)) 

where 𝐼𝜐(∙) is the modified Bessel function of the first kind of order 𝜐; 𝐻(∙) is the Heaviside step 

function. 

Systematic analysis of the temperatures 𝜗1,2 and heat fluxes 𝑄1,2 should involve their 

comparisons with the dimensionless temperatures 𝜗p1,2 and heat fluxes 𝑄p1,2 obtained for the 

similar parabolic conduction problem defined as 

𝜕𝜗p1

𝜕𝜂
=

𝜕2𝜗p1

𝜕𝜉2
, 𝜉 > 0, 𝜂 > 0; 

 
𝜕𝜗p2

𝜕𝜂
= 𝜒

𝜕2𝜗p2

𝜕𝜉2
, 𝜉 < 0, 𝜂 > 0 

(25) 

The solution of Eq.(25) with the initial conditions, contact conditions and conditions at infinity 

coinciding with respective Eq.(11), Eqs.(13),(14) and Eq.(16) is built up from the known 

temperature expressions (Carslaw and Jaeger [2], p.87,88): 

𝜗p1(𝜉, 𝜂) =
√𝜒

Λ + √𝜒
(

2√𝜂

√𝜋
exp {

−𝜉2

4𝜂
} − 𝜉 erfc (

𝜉

2√𝜂
)) +

𝜗0Λ

Λ + √𝜒
erfc (

𝜉

2√𝜂
) ; 

𝜗p2(𝜉, 𝜂) = 𝜗0 +
√𝜒

Λ + √𝜒
(

2√𝜂

√𝜋
exp {

−𝜉2

4𝜒𝜂
} +

𝜉

√𝜒
 erfc (

−𝜉

2√𝜒√𝜂
)) −

𝜗0√𝜒

Λ + √𝜒
erfc (

−𝜉

2√𝜒√𝜂
) 

(26) 

where erfc(∙) is the complementary error function. 

 For shorter notation, the temperature distributions are denoted by 

𝜗(𝜉, 𝜂) = {
𝜗1(𝜉, 𝜂), 𝜉 ≥ 0; 

𝜗2(𝜉, 𝜂), 𝜉 < 0  
 

and 

𝜗p(𝜉, 𝜂) = {
𝜗p1(𝜉, 𝜂), 𝜉 ≥ 0; 

𝜗p2(𝜉, 𝜂), 𝜉 < 0  
 

The temperature 𝜗 given by Eq.(24) was validated by comparisons with the known 

analytical solutions, numerical computation and asymptotic analysis. A small portion of this 

validation is illustrated in Fig.2. If the semispaces possess the same properties, i.e. Λ = 𝜒 = Θ = 1, 

and there is no initial temperature difference, i.e. 𝜗0 = 0,  𝜗 is distributed symmetrically and 

matches the temperature expression by Kao [25]. A numerical algorithm based on the implicit 

finite-difference approximations validated 𝜗 for arbitrary combinations of the parameters. It is also 

seen that the behaviour of 𝜗 becomes asymptotically equivalent to that of 𝜗p given by Eq.(26) with 

increasing 𝜂. 
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Fig.2. Validation of Eq.(24): (a) contact temperature (𝜉 = 0); (b) temperature distribution at 𝜂 = 10 

 

4. Parametric analysis 

 There are four dimensionless parameters, namely, Λ, 𝜒, Θ and 𝜗0. The thermal conductivity 

ratio Λ and thermal diffusivity ratio 𝜒 are related as 

𝜒 = Λ
𝑐𝑣1

𝑐𝑣2
 

where 𝑐𝑣1,2 are the volumetric heat capacities. For temperatures above 0 °C, the vast majority of 

solid materials have volumetric heat capacities lying in a comparatively narrow range of 1–5 J/(cm3 

°C) [41, 42], whereas their thermal conductivities are of order 10−1 to 102 W/(m °C). Thereby, in 

general the influence of the ratio 𝑐𝑣1 𝑐𝑣2⁄  on 𝜒 is substantially weaker compared to that of Λ and is 

neglected in the following graphical illustrations by setting 𝜒 = Λ. 

 Equation (24) represents the superposition of the solution of the problem of heating by an 

interfacial heat source and that of the problem of contact heat transfer due to an initial temperature 

difference. The solution of the former problem is derived from Eq.(24) by setting 𝜗0 = 0. The latter 

problem implies zero in the right side of Eq.(14). Its solution can be obtained from Eq.(24) by 

eliminating the terms not associated with 𝜗0. The mentioned two solutions are analysed further in 

this section. A special focus is put on the following particular cases: contact of a semispace with a 

thermal insulator at Λ → 0, i.e. 𝐾2 → 0; contact of a semispace with a perfect thermal conductor at 

Λ → ∞, i.e. 𝐾2 → ∞; contact of a semispace with a parabolic conduction semispace (with infinite 

speed of heat propagation) at Θ → 0, i.e. 𝜏2 → 0; contact between semispaces with the same thermal 

relaxation time at Θ = 1, i.e. 𝜏1 = 𝜏2; contact of a semispace with a zero heat propagation speed 

semispace at Θ → ∞, i.e. 𝜏2 → ∞. 
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4.1. Interfacial heat source 

 If there is no initial temperature difference, i.e. 𝜗0 = 0, the contact temperature 𝜗∗ = 𝜗1|𝜉=0, 

derived from Eq.(24), reads 

𝑎Θ

𝑏𝑐
𝜗∗(𝜂) = Θ − 𝑐 + (𝑐(1 − 𝑎Θ) − Θ(1 − 𝑎)) exp{−𝑎𝜂}

−
𝑐

2
∫ (1 − (1 − 𝑎Θ) exp{−𝑎(𝜂 − 𝜍)}) exp {−

𝜍

2
} (𝐼0 (

𝜍

2
) + 𝐼1 (

𝜍

2
)) 𝑑𝜍

𝜂

0

+
1

2
∫ (1 − (1 − 𝑎) exp{−𝑎(𝜂 − 𝜍)}) exp {−

𝜍

2Θ
} (𝐼0 (

𝜍

2Θ
) + 𝐼1 (

𝜍

2Θ
)) 𝑑𝜍

𝜂

0

 

(27) 

 The partition of the heat generated at the interface 𝜉 = 0 is described by the heat flux 𝑄1
∗ =

𝑄1|𝜉=0 into semispace 1. The inverse transform of Eq.(19) leads to the following expression: 

𝑎2Θ

𝑏𝑐
𝑄1

∗(𝜂) = 𝑎(1 + Θ − 𝑐) − 1 + 𝑎𝜂 + (1 − 𝑎Θ)(1 − 𝑎(1 − 𝑐)) exp{−𝑎𝜂} 

−
1

2Θ
∫ (𝑎(1 + Θ) − 1 + 𝑎(𝜂 − 𝜍)

𝜂

0

+ (1 − 𝑎)(1 − 𝑎Θ) exp{−𝑎(𝜂 − 𝜍)}) exp {−
1 + Θ

2Θ
𝜍} ((1 + Θ)𝐼0 (

1 − Θ

2Θ
𝜍)

− (1 − Θ)𝐼1 (
1 − Θ

2Θ
𝜍)) 𝑑𝜍 

(28) 

Figure 3 illustrates the evolution of 𝜗∗ at different values of Λ. At Λ → 0 the entire heat 

generated is dissipated in semispace 1. With an increase in Λ, the ability of semispace 2 to remove 

heat from the interface increases and, accordingly, 𝜗∗ becomes lower. At Λ → ∞ the entire heat 

generated is immediately dissipated in semispace 2, which yields 𝜗∗ = 0. 

 

Fig.3. Influence of Λ on the contact temperature 𝜗∗ at Θ = 1 
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The influence of Θ on the thermal behaviour is described in Fig.4. As Θ → 0, heat 

propagates in semispace 2 with infinite speed, and the curve of 𝜗∗ is close to that of 𝜗p
∗ = 𝜗p1|

𝜉=0
 

obtained from Eq.(26). With an increase in Θ, both 𝜗∗ and 𝑄1
∗ increase, which is due to a lower heat 

propagation speed in semispace 2. Furthermore, as Θ → ∞, the heat is not transferred through 

semispace 2, resulting in 𝑄1
∗ = 1, while the curve of 𝜗∗ coincides with that of ‘Λ → 0’ in Fig.3. In 

the case of Θ = 1, the heat fluxes 𝑄1
∗ and 𝑄p1

∗ = 𝑄p1|
𝜉=0

 are identically equal between each other 

and are constant in time. 

 

 

Fig.4. Influence of Θ on the contact temperature 𝜗∗ (a) and heat flux 𝑄1
∗ (b) at Λ = 1 

 

 The qualitative difference between 𝜗∗ and 𝜗p
∗ lies in a step-wise change of the former at time 

𝜂 = 0. It follows from Eq.(27) and Eq.(28) that 

𝜗∗|𝜂→0 = 𝑄1
∗|𝜂→0 =

√𝜒Θ

Λ + √𝜒Θ
 (29) 

that is, 𝜗∗ and 𝑄1
∗ undergo the same jump. Fig.5 provides the relevant graphical illustration for Θ 

varying from 10−2 to 102 in logarithmic scale. It is seen that the magnitude of the jump increases 

with decreasing Λ or increasing Θ. 
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Fig.5. Influence of Λ and Θ on the jump of the contact temperature 𝜗∗ and heat flux 𝑄1
∗ 

 

 Of interest is the dimensional representation of Eq.(29) in the form 

(𝑇∗ − 𝑇01)|𝑡→0 =
𝑞0

𝑒𝜏1 + 𝑒𝜏2
 (30) 

and 

𝑞1
∗|𝑡→0 =

𝑒𝜏1

𝑒𝜏1 + 𝑒𝜏2
𝑞0 (31) 

where 𝑇∗ = 𝑇1|𝑥=0 is the contact temperature; 𝑞1
∗ = 𝑞1|𝑥=0 is the heat flux into semispace 1; 𝑒𝜏1,2 

are the coefficients given by 

𝑒𝜏1 =
𝐾1

√𝑘1𝜏1

; 

𝑒𝜏2 =
𝐾2

√𝑘2𝜏2

 

Consequently, the initial heat partition occurs due to the ratio of 𝑒𝜏1 and 𝑒𝜏2. The dimension of 𝑒𝜏1,2 

is W/(m2 °C). 

 In the case of parabolic conduction, the heat flux 𝑞p1
∗  into semispace 1 equals (Carslaw and 

Jaeger [2], p.88) 

𝑞p1
∗ =

𝑒1

𝑒1 + 𝑒2
𝑞0 (32) 

where 𝑒1 = 𝐾1 √𝑘1⁄  and 𝑒2 = 𝐾2 √𝑘2⁄  are the thermal effusivities of respective semispaces 1 and 

2. Comparison of Eq.(31) with Eq.(32) yields that the coefficients 𝑒𝜏1,2 play the role of hyperbolic 

conduction thermal effusivities. 
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When considering thermal contact problems with interfacial heat sources, a heat partition 

coefficient 𝛼f is often used to indicate the fraction of the generated heat which passes to one of the 

bodies (first body, for definiteness), while the reminder (1 − 𝛼f) passes to the other body. In our 

notation, 

𝑞1
∗ = 𝛼f𝑞0; 

−𝑞2
∗ = (1 − 𝛼f)𝑞0 

 

Eq.(31) suggests that to a first approximation, neglecting the variations of 𝑞1
∗ and 𝑞2

∗, one can accept 

that 

𝛼f =
𝑒𝜏1

𝑒𝜏1 + 𝑒𝜏2
 (33) 

Many theoretical methods have been proposed aiming at determination of 𝛼f. Table 1 

overviews the heat partition models based solely on the thermophysical properties of the contacting 

bodies. Comparison of the expressions presented in Table 1 shows that Eq.(33) degrades to the 

model by Blok [43] and Jaeger [44] at 𝑘1𝜏1 = 𝑘2𝜏2 and model by Charron [45] at 𝜏1 = 𝜏2. 

 

Table 1. Heat partition models based solely on the thermophysical properties 

Model Description Heat partition coefficient 

Blok [43], Jaeger [44] 
Stationary heat conduction in the semispaces 

coupled in a bounded region (circle, square). 
𝛼f =

𝐾1

𝐾1 + 𝐾2
 

Charron [45] 

Non-stationary parabolic heat conduction in 

coupled semispaces. 

𝛼f =
𝑒1

𝑒1 + 𝑒2
 

=
𝐾1 √𝑘1⁄

𝐾1 √𝑘1⁄ + 𝐾2 √𝑘2⁄
 

Hasselgruber [46] 

Non-stationary parabolic heat conduction in 

coupled semispaces with account of the 

efficient thermal layers. Here 𝜌1,2 are the 

densities. 

𝛼f =
𝐾1 𝜌1⁄

𝐾1 𝜌1⁄ + 𝐾2 𝜌2⁄
 

This study, Eq.(33) 

Hyperbolic heat conduction in coupled 

semispaces. 

𝛼f =
𝑒𝜏1

𝑒𝜏1 + 𝑒𝜏2
 

=
𝐾1 √𝑘1𝜏1⁄

𝐾1 √𝑘1𝜏1⁄ + 𝐾2 √𝑘2𝜏2⁄
 

 

4.2. Initial temperature difference 

 In the absence of interfacial heat source, 𝜗∗ is found by simplifying Eq.(24) into 
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𝑎2Θ

𝜗0𝑏
𝜗∗(𝜂) = 𝑎Θ + 𝑐(1 − 𝑎(1 + Θ)) − 𝑎𝑐𝜂 − (1 − 𝑎)(𝑐 + 𝑎Θ(1 − 𝑐)) exp{−𝑎𝜂} 

+
𝑐

2Θ
∫ (𝑎(1 + Θ) − 1 + 𝑎(𝜂 − 𝜍)

𝜂

0

+ (1 − 𝑎)(1 − 𝑎Θ) exp{−𝑎(𝜂 − 𝜍)}) exp {−
1 + Θ

2Θ
𝜍} ((1 + Θ)𝐼0 (

1 − Θ

2Θ
𝜍)

− (1 − Θ)𝐼1 (
1 − Θ

2Θ
𝜍)) 𝑑𝜍 

(34) 

while 𝑄1
∗ = 𝑄2

∗, defined in the space of images by Eq.(19), reads 

𝑄1
∗(𝜂)

𝜗0𝑏
= (1 − 𝑐) exp{−𝑎𝜂}

+
1

2
∫ exp{−𝑎(𝜂 − 𝜍)} (exp {−

𝜍

2
} (𝐼0 (

𝜍

2
) + 𝐼1 (

𝜍

2
))

𝜂

0

−
𝑐

Θ
exp {−

𝜍

2Θ
} (𝐼0 (

𝜍

2Θ
) + 𝐼1 (

𝜍

2Θ
))) 𝑑𝜍 

(35) 

 Figure 6 shows the influence of Λ on 𝑄1
∗. At Λ → 0 the heat flux through the interface equals 

zero, i.e. 𝑄1
∗ = 0. For a fixed value of 𝜂, 𝑄1

∗ increases with increasing Λ and reaches its maximum at 

Λ → ∞. 

 

Fig.6. Influence of Λ on the contact heat flux 𝑄1
∗ at Θ = 𝜗0 = 1 

 

Figure 7 shows the influence of Θ on the thermal behaviour. It is seen that an increase in Θ 

leads to a smaller value of 𝜗∗. In the case of Θ = 1, 𝜗∗ is constant in time, being identically equal to 

𝜗p
∗. As Θ → ∞, there is no heat flux through the interface, i.e. 𝑄1

∗ = 0, which is similar to the case of 

‘Λ → 0’ in Fig.6, and 𝜗∗ = 0. 
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Fig.7. Influence of Θ on the contact temperature 𝜗∗ (a) and heat flux 𝑄1
∗ (b) at Λ = 𝜗0 = 1 

 

 Analysis of Eq.(34) and Eq.(35) shows that 𝜗∗ and 𝑄1
∗ change at 𝜂 = 0 in a step-wise 

manner: 

𝜗∗|𝜂→0 = 𝑄1
∗|𝜂→0 =

𝜗0Λ

Λ + √𝜒Θ
 (36) 

The expression of Eq.(36) is illustrated in Fig.8. Apparently, its value increases with increasing Λ or 

decreasing Θ. 

 

 

Fig.8. Influence of Λ and Θ on the jump of the contact temperature 𝜗∗ and heat flux 𝑄1
∗ at 𝜗0 = 1 
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The dimensional representations of Eq.(36) can be written as 

(𝑇∗ − 𝑇01)|𝑡→0 =
𝑒𝜏2

𝑒𝜏1 + 𝑒𝜏2

(𝑇02 − 𝑇01) (37) 

and 

𝑞1
∗|𝑡→0 =

𝑇02 − 𝑇01

𝑒𝜏1
−1 + 𝑒𝜏2

−1 (38) 

According to Eq.(26), it is true that (Carslaw and Jaeger [2], p.88) 

𝑞p1
∗ |

𝑡→0
≅

𝑇02 − 𝑇01

√𝜋(𝑒1
−1 + 𝑒2

−1)√𝑡
 (39) 

Comparison of Eq.(39) and Eq.(38) shows a qualitative difference between them: 𝑞p1
∗  tends to 

infinity as 𝑡 → 0, whereas 𝑞1
∗ takes a finite value. The infiniteness of 𝑞p1

∗  suggests that the parabolic 

conduction equation cannot simulate the perfect thermal contact of bodies with initially different 

temperatures in a physical manner. The fundamental property of finiteness of heat flux can be, 

however, described by Eq.(38) based on the hyperbolic conduction equation. It should be mentioned 

that a similar finding was reported by Baumeister and Hamill [23]. 

 

5. Solution applications 

 The proposed solution of Eq.(24) and its particular expressions of Eqs.(26)–(39) can be 

useful in the field of mechanics, electromagnetism, optics, chemistry, etc., where an interaction of 

two bodies is studied involving an instantaneous interfacial source of heat. This section illustrates 

their application to simulation of microscopic problems of ultra-short laser pulse welding and 

sliding friction. Note that the following examples schematise spatial problems in the form of one-

dimensional problems, and the simulation results should be therefore treated as qualitative ones. 

 

5.1. Ultra-short laser pulse welding 

Welding by repetitive ultra-short laser pulses is a modern technology that is used to form 

high-strength joints of materials, in particular, glasses (Cvecek et al. [47]). Consider a problem of 

heating of two dissimilar glass pieces 1 and 2 at their interface by a single ultra-short laser pulse. 

Fig.9 presents the relevant schematic. The thermal conductivities of the pieces differ substantially 

between each other and equal 𝐾1 = 10 W/(m °C) and 𝐾2 = 1 W/(m °C), while their thermal 

diffusivities equal 𝑘1 = 10−5 m2/s and 𝑘2 = 10−6 m2/s. The pieces are assumed to have the same 

thermal relaxation time 𝜏 = 𝜏1 = 𝜏2. The initial temperature of the pieces equals 𝑇01 = 𝑇02 = 20 

°C. The laser pulse is oriented perpendicular to the interface 𝑥 = 0. Piece 1 is transparent to the 

laser wavelength and is not thermally affected when the laser pulse passes through it. The energy of 
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the laser pulse transforms into heat in the interfacial region. The specific power of the laser pulse is 

1011 W/m2, while its duration 𝑡 equals 0.1 ns. 

Figure 9 shows the temperature distribution 𝑇 in pieces 1 and 2 obtained by Eq.(24) 

depending on the value of 𝜏. For 𝜏 = 0.01 ns (𝜏 ≪ 𝑡), 𝑇 is slightly higher than 𝑇p calculated by 

Eq.(26). In the case of 𝜏 = 𝑡 = 0.1 ns, 𝑇 significantly exceeds 𝑇p in the vicinity of the interface. 

One can clearly see the thermal waves with sharp fronts. If 𝜏 = 1 ns (𝜏 ≫ 𝑡), 𝑇 is about 3 times 

higher than 𝑇p in the vicinity of the interface. Note that the considered range of 𝜏 is typical for 

dielectric materials (Guillemet and Bardon [11]). 

 

 

Fig.9. Influence of 𝜏 on the temperature 𝑇 in glass pieces 1 and 2 heated by a laser pulse 

 

5.2. Sliding friction 

The present example belongs to the field of tribology. Consider a single interaction of 

roughness asperities 1 and 2 located at the sliding discs of an aircraft brake in the middle of the 

braking process (Chichinadze et al. [48]). The discs are made of a carbon composite material with 

thermal conductivity 𝐾1,2 = 10 W/(m °C) and thermal diffusivity 𝑘1,2 = 10−5 m2/s. The 

characteristic size of either of the asperities is 0.1 µm. The velocity of sliding between the asperities 

equals 10 m/s, which corresponds to the interaction duration of order 𝑡 = 10 ns. The friction heat is 

generated in the interfacial region 𝑥 = 0 with specific power 𝑞0=1010 W/m2. The initial 

temperatures of the asperities equal 𝑇01 = 400 °C and 𝑇02 = 100 °C. 

Figure 10 shows the temperature distributions 𝑇 and 𝑇p in asperities 1 and 2 for different 

values of the thermal relaxation time 𝜏 = 𝜏1 = 𝜏2. It is seen that at 𝜏 = 1 ns (𝜏 ≪ 𝑡), the difference 

between 𝑇 and 𝑇p is negligibly small. By contrast, at 𝜏 = 𝑡 = 10 ns, 𝑇 is significantly higher than 
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𝑇p in the vicinity of the interface. Finally, for 𝜏 = 100 ns (𝜏 ≫ 𝑡), 𝑇 is about 2 times higher than 𝑇p 

in the vicinity of the interface. These results agree qualitatively with those reported by Nosko [34] 

for a hyperbolic conduction semispace subjected to the action of a surface heat source and an 

exponentially distributed volumetric heat source. 

 

 

Fig.10. Influence of 𝜏 on the temperature 𝑇 in sliding roughness asperities 1 and 2 

 

In the calculations above, 𝜏 takes values in the range of 10−9 to 10−7 s which are substantially 

larger than those of order 10−12 to 10−10 s reported for dielectric materials (Guillemet and Bardon 

[11]). Several studies including Kaminski [12], Mitra et al. [13] and Roetzel et al. [14] claim that 𝜏 

of non-homogeneous materials can be of order 10−1 to 10 s. Although this range is likely to be a 

substantial overestimate, the hypothesis that a non-homogeneous friction material can have 𝜏 

measured in nanoseconds looks plausible. 

 Thereby, consideration of the wave nature of heat conduction is critically important when 

investigating microscopic problems of ultra-short laser pulse welding and high-speed tribology. 

 

6. Conclusion 

A hyperbolic heat conduction problem for two semispaces coupled by the perfect thermal 

contact conditions with an interfacial heat source was defined. Its solution was derived using the 

Laplace integral transform approach and represented in the form of Eq.(24). The contact 

temperature and heat fluxes were analysed for different ratios of thermal conductivities 𝐾1 and 𝐾2, 

thermal diffusivities 𝑘1 and 𝑘2, and thermal relaxation times 𝜏1 and 𝜏2 of the semispaces. Special 

attention was paid to the initial instance of time when the thermal behaviour differs qualitatively 
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from that inherent in the similar parabolic conduction problem. The applicability of the solution and 

its particular expressions was illustrated on the example of microscopic problems of ultra-short 

laser pulse welding and sliding friction. The main findings can be summarised as follows: 

1. Heat generation at the interface between the hyperbolic conduction semispaces results in a step-

wise change in the contact temperature, described by Eq.(30). This contrasts with a continuous 

change in the contact temperature in the case of parabolic conduction. 

2. The initial heat partition between the hyperbolic conduction semispaces occurs due to the ratio 

of 𝐾1 √𝑘1𝜏1⁄  and 𝐾2 √𝑘2𝜏2⁄ , described by Eq.(31). The coefficients 𝐾1,2 √𝑘1,2𝜏1,2⁄  play the 

role of hyperbolic conduction thermal effusivities. 

3. The thermal contact of the hyperbolic conduction semispaces with different initial temperatures 

is characterised by a finite heat flux through the interface, described by Eq.(38). This 

fundamental property of finiteness of heat flux cannot be described by the parabolic heat 

conduction theory. 

 

The present work was supported by the National Science Centre, Poland [grant number 

2017/26/D/ST8/00142]. 
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