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Abstract. In this paper we demonstrate that it is possible to obtain
considerable improvement of performance and energy aware metrics for
training of deep neural networks using a modern parallel multi-GPU
system, by enforcing selected, non-default power caps on the GPUs. We
measure the power and energy consumption of the whole node using
a professional, certified hardware power meter. For a high performance
workstation with 8 GPUs, we were able to find non-default GPU power
cap settings within the range of 160–200W to improve the difference
between percentage energy gain and performance loss by over 15.0%,
EDP1 by over 17.3%, EDS with k=1.5 by over 2.2%, EDS with k=2.0
by over 7.5% and pure energy by over 25%, compared to the default
power cap setting of 260W per GPU. These findings demonstrate the
potential of today’s CPU+GPU systems for configuration improvement
in the context of performance-energy consumption metrics.

Keywords: deep neural network training, power capping, multi GPU,
performance-energy optimization

1 Introduction and motivation

Training of deep neural networks is a time consuming and a computationally
demanding process. In recent years one could have observed a rapid develop-
ment in the machine learning field, leading to a constant stream of innovation
resulting in the emergence of new neural network topologies of growing complex-
ity (e.g. GPT-3: 175 billion parameters, DLRM-2020: 100 billion parameters).
Both models of such record breaking complexity, as well as other frequently used
models (e.g. BERT: 340M parameters), require an immense amount of comput-
ing power in order to train on enormously large datasets (e.g. GPT-3: 45TB of
data). This trend of creating more and more power hungry models and creating
more extensive data corpse leads to time and energy consuming training pro-
cesses (e.g. OpenAI Five training took 180 days), resulting in concerns regarding

1 Abbreviations and terms used are described in main text.
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the monetary cost and carbon footprint, correlated with growing significance of
deep learning related research. One of the proposed solutions, that would not
limit the progression of modern day artificial intelligence (AI), is to utilize the
mechanism of power capping,2 which has already been proven to be able to pro-
vide with the desired energy consumption – execution time trade-off in other
applications [9].

The main goal of this study is to expand knowledge gained during research
regarding power capping during deep neural network (DNN) training on a single
GPU [10] by acquiring meaningful data for multi-GPU configurations. In this
paper we investigate the degree of potential gains when optimizing performance-
energy metrics by application of power caps when performing a deep neural net-
work training in a multi-GPU hardware environment. Consideration of multiple
GPUs is important as it is a straightforward and commonly applied technique
to increase system performance, especially for AI workloads. Additionally, the
novelty of our research lies in precise measurements using a professional certified
hardware power meter and consideration of whole node’s power and - conse-
quently - energy consumption, contrary to power and energy of computing de-
vices, as typically measured using Intel RAPL or NVIDIA NVML. We consider
this approach much more practical in situations involving power-performance
optimisation of whole clusters running AI workloads.

Additional motivation comes from the current state in the machine learning
field. In case of natural language processing, the point where increasing the model
size stops positively impacting its performance has not been, and it does not look
like it will be reached anytime soon. With a growing network size and constant
efforts being made to expand quality data corpse that fits the needs of NLP
models, many concerns have been raised in regard to ecological consequences, as
well as total cost of conducting work in the AI field (training of GPT-3 model
from the ground up is estimated to cost 4.6 million USD, with energy usage as
high as 936 MWh) [12]. When taking into consideration that the development
process of a new model, or even fine tuning an existing model to a specific task
using transfer learning takes multiple training cycles in an unavoidable process
of hyper-parameter tuning, the estimated cost and carbon footprint of machine
learning is a considerable problem [23] that needs to be tackled with, both for
AI application feasibility as well as for environmental reasons. Those issues can
be expected to only grow, when considering that models as big as 1.6 trillion
parameters (Google’s Switch-C model) have been announced.

The remaining part of the paper is structured as follows. Section ”Related
work” discusses similar research in this field, focusing on energy aware opti-
mizations in AI. The ”Methodology” section contains a description of the tested
model, data, metrics and conditions necessary to obtain meaningful results. Next

2 Power capping is a mechanism allowing limiting the power draw of a computing
device such as a CPU or a GPU, available through Intel RAPL for Intel CPUs
and NVIDIA NVML for NVIDIA GPUs, resulting in potentially lower performance
but potential for optimization of energy consumption, even throughout extended
application execution time [9–11].
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comes the ”Experiments” section, containing detailed descriptions of the testbed
environment and experiments themselves. This description should help interested
parties to reproduce our measurements. Finally, we conclude with a summary
and an outline of future work.

2 Related work

Research regarding energy consumption – execution time trade-off is not a nov-
elty, as the topic is constantly being explored, for example in context of multi-
and many-core processors [6], or regarding AI workloads using specific frame-
works on different platforms [14]. Optimization concerning energy consumption
of AI workloads requires methods of estimation of energy and time (such as train-
ing or inference). While general frameworks and tools for optimization of energy
efficiency of high performance computing (HPC) applications exist (e.g. [17]),
a specific energy estimation method and tool has been proposed3 for a deep neu-
ral network model based on its architecture, bitwidth and sparsity [22]. The au-
thors concluded that the number of weights and multiplication-and-accumulation
operations are not good metrics for energy consumption estimates and that data
movement is more expensive than computation. Energy efficiency of using deep
neural networks is considered in the context of using GPUs [24], FPGAs [18], hy-
brid GPU-FPGA [5] and severely energy and power constrained devices such as
unmanned aerial vehicles (UAVs), smartphones [21], Internet of Things (IoT) [16]
etc. For example, in [15] authors emphasize the need for energy reduction of
machine learning and natural natural language processing (NLP), citing inter-
esting trade-offs between decrease of energy usage and performance loss while
training a transformer-based language model, thanks to power capping. Using
NVIDIA V100 it was possible to save approx. 12.3% of energy at the cost of
8.5% performance loss for BERT, and to save approx. 15% energy at the cost of
approx. 10% performance loss for DistilBERT. Energy efficiency of neural net-
works training is studied in paper [20], in particular stating correlation between
CO2 emissions and energy consumed and network architectures. Testing VGG16,
VGG19 and ResNet50 architectures and CIFAR10, MNIST datasets in various
locations, optimizing accuracy/energy led to either improvement of both energy
efficiency and accuracy (MNIST) or improvement of energy efficiency with a loss
of accuracy (CIFAR10). The authors also compared energy measurements from
software-based CodeCarbon (based on hardware performance counters and I/O
models), to those from a hardware meter, showing ratio of values from the for-
mer to the latter between 42% and 46% (generally software methods measure
power of compute devices and memory only). This results in strong correlation
but slightly different offsets for various configurations.

Multiple ways of searching for optimal configurations were proposed, one of
them being GPOEO [19], an online energy optimization framework for machine
learning applications run on GPUs. The framework’s course of action can be
divided into two phases. Firstly, during the offline phase, the framework collects

3 https://energyestimation.mit.edu/
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performance and energy logs for various frequency of streaming multiprocessors
and memory, which is later used during the online phase, where the frequencies
that exhibited best characteristics are applied during the training to optimize a
function of energy and time.

Similar goals were achieved by using the widely recognised GPU DVFS tech-
nique [25], where a defined power limit was used to limit energy consumption
while maintaining the optimal resource utilization leading to limiting the per-
formance loss. It is worth mentioning that this technique is well grounded in
energy preserving research regarding GPU computing, with a history of great
results (14.4% energy savings with 3% performance loss) in non machine learning
RODINIA and ISPASS benchmarks [13].

Visible results achieved in reduction of energy consumption by two explo-
ration algorithms (56% energy consumption decrease, 12% execution time in-
crease) showcase the possibilities of power capping (authors used DEPO, an
automatic power capping software tool) when it comes to achieving consider-
able savings of energy while maintaining an acceptable performance loss, that
hopefully can be transferred for other computationally complex tasks.

Another interesting mention is that not all approaches to limit the energy
consumption during deep learning workloads revolve around power capping.
A great example would be the effort made to minimize the energy expenditure
of a computing cluster by shutting down unused nodes using a job allocation
method using a MINLP formulation [7]. In paper [23] authors proposed a solu-
tion for reduction of a carbon footprint of DNN training. The method realized
periodical adjustment of the GPU power limit in order to do so and utilizes a
regression model for carbon intensity, taking into account historical data. They
formulate a cost minimization problem that takes into account power, carbon
intensity, throughput (inversely proportional to time-to-accuracy) and a param-
eter for definition of importance of carbon efficiency and performance of the
training. For evaluation training ResNet50 on the ImageNet dataset, run on an
NVIDIA A40 GPU was used, demonstrating reduction of carbon emission by
13.6% at the cost of 2.5% increase of training time compared to the default
power configuration.

Even though our study revolves around optimizing the training process of
a machine learning model, it is worth noting that it is not the only targeted
part of AI by the energy consumption lowering efforts. In paper [1] authors
managed to achieve high inference accuracy while keeping the process in the
range of desired latency and obtaining gains in terms of energy saving. The pro-
posed solution utilized multi-input-multi-output control framework OptimML,
that flexibly adjusts the model size, effectively decreasing the required resources
for inference depending on the server’s set power cap.

In summary, while there exist works optimizing performance-energy metrics,
in particular for AI oriented workloads, there is lack of research if and to what
degree power capping can be beneficial in multi-GPU setups when optimizing
performance-energy metrics.
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3 Methodology

In order to create a way to compare different configurations, a convolutional neu-
ral network (CNN) using transfer learning technique utilizing the XCeption [2]
model and a custom network top was implemented to solve a classification prob-
lem, which was based on a reduced version of well grounded dataset for 450
bird species from kaggle.com. The number of classes was reduced to 69 in order
to shorten the test duration, while maintaining a considerable amount of time
required to reach the assumed model quality metric (98%) accuracy over the
test subset containing five entries for each of the classes kept. In order to keep
the workload as stable as possible, a constant dataset was sub-sampled from the
original dataset into a reduced version that contained 10000 training images,
345 validation images and 345 test images. The training length was established
during several pilot training sessions using the early stopping technique, and
was set for a constant five epochs for every configuration, as it was proved to
converge for every configuration taking into account slight quality drops con-
nected to multi-GPU training when compared to a single GPU approach. It
shall be noted that for our purposes, we actually needed to generate a stable
training workload for assessment of power capping impact. The reason behind
this approach, compared to one using pretrained models without interfering into
their top (e.g. Inception-V3, MobileNet, DenseNet [4]), is to be able to mimic a
frequent situation, where a developer is using the transfer learning technique to
solve a specific problem.

For the presented measurements we used a certified hardware meter Yoko-
gawa WT310E (0.1% basic measurement accuracy according to the manufac-
turer), with the sampling frequency set to 10Hz. Hardware under test was lo-
cated in a temperature-controlled server room, with ambient temperature set at
18 deg. Celsius. The ultimate goal was to establish best power capping settings,
that provide the user with improved (versus the default power cap configuration)
performance-energy conserving trade-offs, in 1/2/4/8 GPUs configurations, mea-
sured using the following metrics:

– percentage of energy gain,
– difference between percentage of energy gain and percentage of execution

time loss,
– Energy Delay Product (EDP),
– Energy Delay Sum (EDS) – in this case we consider a weighted sum of energy

and time αE+βt, reference point of (tref , Eref ) as well as coefficient k which
determines a potential performance loss ratio. This leads to determination
of α = k−1

k·Eref
and β = 1

k·tref [11].

The first metric may be of interest if energy consumption shall be preferred
over execution time (such as when the latter is not critical e.g. we are waiting
for input data for subsequent computations that are taking much time). The
second metric weighs percentage energy gain and percentage performance loss
compared to the energy consumption and execution time of the default power
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cap configuration. In this case positive values of the metric indicates optimized
configurations. EDP and EDS are other frequently used single metrics finding
trade-offs between energy consumption and execution time [11].

4 Experiments

4.1 Testbed environment

The tests were performed on an HPC server installed at Gdańsk University
of Technology. The system is equipped with the following compute devices: 2x
Intel(R) Xeon(R) Silver 4210 @ 2.20GHZ CPUs (10 physical cores, HT; for
a total of 40 logical processors), 8x NVIDIA Quadro RTX 6000 GPUs, each
with 24GB global memory, and 384 GB RAM. For these GPUs, the settable
power cap values are in the range of 100 to 260W. The node is powered by
four 1kW gold standard power supply units, for which we used custom adapter
that would allow the Yokogawa meter to measure the power intake of the whole
system.

4.2 Application

Due to the vast number of required tests to achieve assumed experiment cover-
age, an automated way of changing configurations and collecting data from tests
has been developed. The application can be divided into four parts, depicted in
Figure 1:

test.py

master.py

yokotool.py

kask.eti.pg.gda.pl

Fig. 1: Test application architecture

– master.py - application entry point containing the scheduler responsible for
changing the test parameters (power cap values, the number of GPUs used),

– test.py - main part of the application containing code related to model compi-
lation and the training process. Data is fetched from the user home directory
for the needs of the training task. The code manages calling and terminating
processes responsible for logging energy consumption data,

– yokotool.py - a Python script responsible for handling the yokotool daemon.
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4.3 Efficient parallelization

In order to guarantee a high level of scalability and efficient parallelization of
the training process, several steps have been taken in order to avoid performance
drops related to loading data into multiple GPUs, and to ensure an optimized
all-reduce step bound to distributed training.

A common problem in non-optimized training scripts is losing performance
due to the lack or sub-optimal usage of caches present in GPU execution units. It
was solved by utilizing prefetching with an autotuned buffer size provided by the
tensorflow.data API. Such a solution makes for an efficient data pipeline, that
provides training data batches, as well as optimizes data accesses of threads by
moving future batches into L1/L3 caches, allowing for much faster data access.

Optimized distributed training has been achieved by using Horovod, a frame-
work designed and built for highly efficient distributed training of artificial neural
networks. Horovod has many advantages over Tensorflow, when it comes to im-
plementation of multi-GPU training scirpts, with the most relevant to the goal
of this paper being highly efficient communication that utilizes MPI [3] with
multithreading and an efficient ring-all-reduce implementation that guarantees
good scalability of this step.

4.4 Testing process and results

The assumption necessary for sufficient coverage of the power range is to traverse
the search-space using a step of 10W, for each considered hardware configura-
tion (1/2/4/8 GPUs). Regardless of the number of GPUs used in a particular
configuration, the same power cap setting was applied to each GPU. The range
of tested power cap settings per GPU is shown on the X axes of following charts.
After conducting all of the required tests we obtained training results for all con-
sidered configurations.4 For each configuration, i.e. the number of GPUs used for
training and a given power cap, 10 runs were executed and results averaged. We
measured average execution times, corresponding (low) time standard deviation
values, average energy measured over training time (integrated power readings
from the hardware power meter over time), corresponding (low) energy standard
deviation values, as well as computed metrics for each configuration including:
EDP, EDS for k=1.5 and k=2.0 (following [11]).

For 1, 2 and 4 GPUs, interesting results, in the context of optimization of
the aforementioned metrics, can be seen in terms of energy gains, as shown in
Figure 2. In those cases, where we are using only 1, 2 and 4 out of the total
of 8 GPUs the unused GPUs are left idle. Idle GPUs still contribute to the
total power consumption of the node. This does not allow to obtain interesting
(notably improved) EDP, EDS nor percentage difference in energy gain and
performance loss, compared to the default power cap. It is different, though, for

4 Due to space constraints this data is available at https://cdn.files.pg.

edu.pl/eti/KASK/RAW2023-paper-supplementary-data/Supplementary_data_

Performance_and_power_analysis_of_training_and_performance_quality.pdf
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Fig. 2: Percentage energy decrease vs
power cap – configurations with 1, 2,
4 and 8 GPUs, compared to default
power cap

Fig. 3: Execution time increase vs
power cap – 8 GPUs, compared to de-
fault power cap

Fig. 4: EDP vs power cap – 8 GPUs Fig. 5: EDS (k=1.5 and k=2.0) vs power
cap – 8 GPUs

Fig. 6: Difference between percentage
energy decrease and percentage time
increase vs power cap – 8 GPUs, com-
pared to default power cap

Fig. 7: Training times [s] versus the
number of GPUs – for 260W and 170W
power caps

the largest tested configuration, which is the one with 8 GPUs when we use the
system to its full potential. In this case we definitely see other than the default
power cap configurations, for which energy (Figure 2), EDP (Figure 4), EDS
(Figure 5) and percentage difference between energy gain and performance loss
(Figure 6) are significantly improved over those for the default power cap, at
the cost of slightly increased running time (Figure 3). This is summarized in
Table 1. While for EDS and k=1.5 there is a 2.2% improvement, for EDS k=2.0
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we see the improvement of 7.5%, for EDP a notable 17.3%, for the difference of
percentage energy gain and percentage performance loss over 15% and for pure
energy the maximum gain is over 25%. Our conclusion is that, depending on the
chosen goal, power capping can offer a significant improvement in DNN training
using a high performance system with multiple (8 in this case) GPUs.

Table 1: Best power cap values and gains for particular metrics – 8 GPUs
Metric Gain for metric over

default power cap
configuration [%]

Obtained for power
cap setting [W]

Energy 25.39 160
Difference between energy
gain [%] and performance
loss [%]

15.03 170

EDP 17.32 170
EDS (k=1.5) 2.26 200
EDS (k=2.0) 7.52 170

Finally, we can observe scalability of the training process in the multi-GPU
setup. In Figure 7 we present execution times for 1, 2, 4 and 8 GPUs for the two
most important power caps: default 260W per GPU as well as 170W per GPU
being best for optimization of the difference between percentage energy gain and
performance loss compared to the default power cap configuration, EDP, EDS
with k=2.0 and close to best for k=1.5. We can see that increasing the number
of GPUs results in good scaling of the training. Specifically, for 4 GPUs we can
observe a time speed-up of approx. 3.3 in both cases. For 8 GPUs and the power
cap of 260W a speed-up of 4.95 can be seen while for 170W a speed-up of 5.1
can be observed.

5 Summary

In the paper we performed performance-energy analysis of training a deep neural
network under various power caps in a multi-GPU enironment, using 1, 2, 4 and 8
NVIDIA Quadro RTX 6000 GPUs, within a high performance server with 2 Intel
Xeon Silver 4210 CPUs. Power measurements were taken and considered for the
whole system using a professional hardware power meter Yokogawa WT310E.
We show that, depending on the number of GPUs used, enforcing an appropriate
power cap allows to obtain percentage energy savings of approx. 3% when using 1
GPU out of 8 GPUs, 5.5% when using 2 GPUs, 11.5% for 4 GPUs and over 25%
for 8 GPUs. These growing savings result from the fact that the total power of a
smaller number of GPUs constitutes a smaller percentage of the whole machine
power (the other GPUs remain idle). The main contribution of our paper is that
for the most powerful configuration with 8 GPUs, we were able to determine that
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enforcing selected power caps, different from the default one (260W per GPU in
our case), allows to obtain significantly optimized values of various performance-
energy metrics. In particular, we can improve the difference between percentage
energy gain and performance loss by over 15.0% using the power cap of 170W,
EDP by over 17.3% using the power cap of 170W, EDS with k=1.5 by over 2.2%
using the power cap of 200W (similar gains within the range of 170-210W) and
EDS with k=2.0 by over 7.5% using the power cap of 170W.

Future work will include, given a particular domain problem, optimization
that involves, apart from execution time and energy, the neural network model
and compute device models, taking into account the monetary cost of compute
devices and the system. At a higher level of abstraction, such simulations will be
used within a workload stream for which scheduling algorithms enhanced with
power capping will be adopted in a supercomputing center, as identified in [8].
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