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Abstract
The paper presents assessment of Unified Memory performance with data prefetch-
ing and memory oversubscription. Several versions of code are used with: standard 
memory management, standard Unified Memory and optimized Unified Memory 
with programmer-assisted data prefetching. Evaluation of execution times is pro-
vided for four applications: Sobel and image rotation filters, stream image process-
ing and computational fluid dynamic simulation, performed on Pascal and Volta 
architecture GPUs—NVIDIA GTX 1080 and NVIDIA V100 cards. Furthermore, 
we evaluate the possibility of allocating more memory than available on GPUs 
and assess performance of codes using the three aforementioned implementations, 
including memory oversubscription available in CUDA. Results serve as recommen-
dations and hints for other similar codes regarding expected performance on modern 
and already widely available GPUs.

Keywords CUDA · Unified Memory · Prefetching · Memory oversubscription

1 Introduction

General-purpose computing on graphic processing unit (GPGPU) has become very 
popular. Significant advancements, both in hardware and in the CUDA API, have 
been adopted in recent years. On the programming side, some of the most important 
features of newer CUDA versions include dynamic parallelism allowing launching 
a kernel from within a kernel already running on a GPU or Unified Memory (UM) 
that proposes a programming abstraction of uniform memory space that can be 
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allocated and used without the need for explicit management of data location [21]. 
In other words, the underlying runtime system migrates memory pages between 
host’s memory and global memory of a GPU according to when the code running on 
either the CPU or the GPU refers to it. It allows to simplify the programming model 
considerably and allows reasonably good performance compared to low-level mem-
ory management when Unified Memory is not used [28]. One of the recent features 
of Unified Memory is the possibility to oversubscribe memory, i.e., to allocate more 
memory than available on a GPU [26]. Performance of this feature is investigated in 
this paper as well, compared to the standard CUDA implementation without Unified 
Memory.

2  Related work and motivations

Modern parallel programming for contemporary HPC systems [3] typically involves 
multithreading for multi- or many-core CPUs and accelerators such as GPUs and 
efficient communication between cluster nodes. The former can be implemented 
with, e.g., OpenMP, OpenCL or Pthreads for CPUs and CUDA, OpenCL, OpenACC 
for GPUs, while the latter can be implemented typically with MPI. Paper [4] pre-
sents an exemplary implementation and optimization of parallelization of large vec-
tor similarity computations in a hybrid CPU+GPU environment, including load bal-
ancing and finding configuration parameters. CUDA-aware MPI implementations 
allow using CUDA buffers in MPI calls which simplifies implementation.

Before NVIDIA’s Unified Memory was introduced, other researchers proposed 
solutions for making GPU programming easier, especially with respect to easier 
memory management. Paper [1] presents a compiler approach for automatic sched-
uling of data transfers from and to accelerators which is aimed at reduction of data 
transferred between host and device. Only data needed or modified is transferred 
in identified locations in contrast to a naive approach with all data being copied. 
Significant gains were shown for selected Rodinia benchmarks such as: breadth-first 
search, particlefilter, speckle reducing anisotropic diffusion and Needleman–Wun-
sch. In paper [11], the authors proposed design of region-based software virtual 
memory (RSVM), a software virtual memory layer for both GPU and CPU. It 
offered transparent swapping of GPU memory to main memory for multiple kernels 
and fetching data from host to the GPU. NVIDIA’s Unified Memory [9, 19], intro-
duced in CUDA 6, simplifies implementation of a CUDA application since basically 
it only requires allocation of memory using cudaMallocManaged() instead of 
cudaMalloc() and proper synchronization on the host side after invocation of a 
kernel function before reading results, since a kernel call is asynchronous from the 
point of view of the host. Unified Memory was further expanded in subsequent ver-
sions of CUDA. Specifically, CUDA 8 with Pascal and later GPUs [26] extended 
UM with 49-bit virtual addressing and on-demand page migration. The new UM 
allows to use the whole system memory and memory oversubscription. In CUDA 
9 and Volta [27], tracking accesses to pages through additional counters has been 
introduced. Frequency of accesses can impact the driver when deciding on page 
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movements. The driver can migrate pages proactively and perform intelligent evic-
tion [28].

In the Unified Memory version of the code, it is possible to provide hints on where 
and how data are to be used. It can be done with function cudaMem Prefetch-
Async() for prefetching data to a GPU before a relevant kernel using that data are 
launched. Furthermore, it is possible to specify how data in managed memory at the 
given location with a given size will be used with a call to function cudaMemAd-
vise() [20, 27]. Value cudaMemAdviseSetReadMostly advises that it will 
mostly be read and rarely written to, cudaMemAdviseSet PreferredLoca-
tion sets the preferred location to the memory of the given device, and cudaM-
emAdviseSetAccessedBy allows to hint that the data will be accessed from 
a given device and causes the data to be mapped in the processor’s page tables. It 
allows to prevent page faults [31].

In non-UM versions of the code, it is possible to arrange overlapping of compu-
tations and communication by launching sequences of copy, kernel execution and 
copy in various streams such that copy and execute operations in various streams 
can be overlapped. Streams can also be used with prefetching in the UM enabled 
code [27].

In paper [14], the authors investigated Unified Memory access performance in 
CUDA. Performed experiments used custom as well as Rodinia microbenchmarks 
run on a system with Xeon E5530 CPUs and NVIDIA K20c GPUs. It has been dem-
onstrated that in order to see performance benefits from using UM, kernels should 
operate on subsets of output data at a time allowing the paging subsystem to come 
into play. Another advantage of using UM is for very complex data structures. 
Other scenarios result in better performance for the regular memory management 
approach. In work [22], the authors assessed relative performance of UM and non-
UM versions of code for computation of scalar products. Kepler generation NVIDIA 
GeForce GTX 680 was used. The UM version resulted in 35% longer execution 
times. In paper [15], the authors demonstrate an average 10% loss of performance 
when using versions of benchmarks such as CUDA SDK’s Diffusion3D Benchmark, 
Parboil Benchmark Suite and Matrix Multiplication ported to Unified Memory. 
Tests were performed on NVIDIA Kepler K40 and the TK1. It seems to be a reason-
able performance penalty for potentially easier programming model. In paper [10], 
we investigated performance of Unified Memory versions versus standard memory 
implementations with cudaMalloc() for three applications with control and data 
flow characteristic of SPMD, geometric SPMD and divide-and-conquer paradigms. 
Parallel implementations of verification of Goldbach’s conjecture, 2D heat transfer 
simulation and adaptive numerical integration were used. For the heat simulation, 
depending on the number of iterations per which data transfer was performed for 
visualization purposes, UM resulted in worse performance from about 1.5% for 50 
iterations up to 8.7% for 10 iterations per visualization. For integration, UM ver-
sions resulted in worse performance as well, approximately 30% for integration of 
100,000 subranges. Finally, for the implementation of Goldbach’s conjecture, per-
formance of UM versions was only up to 2% worse than the standard version.

Unified Memory can also be used in programs written using OpenACC [17, 25]. 
Article [25] presents a 2D Jacobi iteration code along with Unified Memory. A 7x 
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performance improvement over an OpenMP multicore CPU version running on Intel 
Xeon E5-2698 version 3 is presented and no performance loss compared to a stand-
ard OpenACC version running on NVIDIA K40. For LULESH, OpenACC+Unified 
Memory offered 3.14x performance increase over OpenMP run on the multicore 
CPU and 92% performance of a standard OpenACC version. Article [26] shows fur-
ther performance increase of the OpenACC+Unified Memory code run on NVIDIA 
Tesla Pascal P100 for 8.57x better than the CPU version.

Since OpenMP version 4.x support for GPU offloading has become available [5]. 
The authors of paper [18] have investigated usage and impact of Unified Memory 
when using at the level of OpenMP with latest offloading features. They have modi-
fied the OpenMP runtime in the LLVM framework in order for it to allocate data in 
Unified Memory. Tests were performed on SummitDev which has 54 nodes, each 
with 2 POWER8 CPUs and 4 Tesla P100 GPUs. Tests were performed using back-
propagation, breadth-first search, CFD solver, K-means, kNN and speckle reducing 
anisotropic diffusion benchmarks. For applications with little data reuse, perfor-
mance without Unified Memory is slightly better, as opposed to benchmarks with 
significant data reuse. For the latter, performance with Unified Memory is better to 
various degrees depending on input data size. Additionally, memory oversubscrip-
tion is possible as an additional benefit to the standard implementation. Sometimes, 
though, as for BFS, CFD and SRAD it results in worse performance than for a CPU 
version. CPU codes for backpropagation and NN offered lower execution times than 
GPU versions. Usage of Unified Memory with OpenMP 4.5 and technical solutions 
were described in paper [7].

Support for GPU Unified Memory in the OmpSs model and Nanos runtime is 
discussed in work [30], along with its design and implementation as well as evalua-
tion using microbenchmarks and Rodinia. For Rodinia benchmarks, speedups up to 
approximately 0.85 were obtained compared to pure CUDA versions.

Memory oversubscription has been studied in several papers in the literature. 
Paper [33] investigates low-level implementation of paged GPU memory. It pro-
poses ways to improve performance of such a solution by combining replayable 
far-faults along with demand prioritized prefetching. The results show results close 
within 15% to best overlapped communication and execution version. For oversub-
scription, the authors claim that in general a random eviction algorithm performs 
very well to more complex strategies, considering overheads of the latter. In paper 
[13], the authors introduce GPUswap allowing relocation of application data from 
the GPU to system RAM allowing oversubscription of memory. At the time of the 
development and comparison with CUDA 6, the latter did not support memory 
oversubscription. Memory relocation delays for allocation of memory or giving up 
memory when another application is allocating memory are presented. Allocation 
delays are presented for various chunk sizes.

Work [32] discusses design and results of running HPGMG (high-performance 
geometric multigrid methods) on Pascal GPUs, including usage of Unified Memory. 
Specifically, throughput from using the oversubscription feature is provided using 
NVIDIA P100 (16 GB memory size) compared to the throughput for configurations 
fitting within the GPU memory. For an NVLink P100 and a basic version, a perfor-
mance drop from 160 to approx. 55-75 MDOF/s was observed which was still 2.5x 
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higher than for a 2 socket Intel E5-2630 version 3 system for large memory sizes. 
After applying optimizations such as data prefetching using cudaMemPrefetch-
Async() and user hints results from around 175 MDOF/s for fitting within GPU 
memory to 55-135 MDOF/s were observed for memory sizes exceeding the GPU 
memory size.

In paper [2], it was shown how using multiple CUDA streams impacts perfor-
mance of a GPU application that processes a stream of data chunks sent from the 
host. Specifically, considerable gains are shown for 2 streams compared to 1 stream, 
around 20–30% for compute intensities below 1 and up to 50% for larger compute 
intensities, among GPUs tested Tesla K20m, GTX 1060, GeForce 940MX and Tesla 
V100. Further increase between 3.3 and 4.9% is shown for 4 streams. Such data 
management optimization techniques can be especially profitable for frameworks for 
parallel data processing, such as in KernelHive [23], able to process part of data on 
CPUs and part of data on GPUs within a cluster.

Paper [6] proposes a CRUM (Checkpoint-Restart for Unified Memory) mecha-
nism that allows forked checkpointing for Unified Memory with overlaps writing 
down a checkpoint during application execution. The work shows little overhead, 6% 
on average, for running parallel hybrid MPI+CUDA applications such as HPGMG-
FV and HYPRE.

In paper [12], the authors assessed execution times with use of UM on NVIDIA 
Tegra K1. The work analyzed UM-aware versions of benchmarks such as pathfinder, 
needle, srad v2, Gaussian and lud Rodinia as well as Gauss–Seidel relaxation. As a 
conclusion, the authors stated that in the case of kernel time percentage lower that 
60%, UM exhibited gains on the K1 platform.

The motivation of this work is to assess preferable ways of programming effi-
cient parallel codes problems running on modern GPUs, especially to compare rela-
tive performance and ease of programming of standard and Unified Memory-based 
approaches. What is important, assessment is to be performed also for computations 
performed on very large data sets which do not fit into the memory size of a single 
GPU. The relatively new memory oversubscription feature has not yet been assessed 
thoroughly in the literature. Results of relevant experiments are of high importance 
because they are applicable to codes from many domains falling into the same pro-
cessing paradigms as the tested applications.

3  Evaluation of modern Unified Memory features

3.1  Methodology

In order to assess Unified Memory performance, several applications have been imple-
mented and tested on two modern systems with latest GPU architectures: GTX 1080 
representing Pascal and V100 representing the Volta generation. This way we can 
assess whether the same or different behaviors of features can be observed on vari-
ous architectures, adjusting input data sizes for oversubscription experiments. Various 
applications operating on data in parallel but with slightly different memory access pat-
terns allow to evaluate performance of both the standard Unified Memory code and 
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Unified Memory with optimizations compared to the standard memory management 
approaches. Applications and corresponding memory access patterns include:

– image filters such as Sobel with application of 3 × 3 kernels on an image and image 
rotation with coalesced reads and non-coalesced writes,

– image stream processing with overlapping of computations and communication,
– fluid dynamic simulation with processing of a 2D space in successive iterations.

3.2  Applications

In order to assess Unified Memory performance, a set of common, representative, par-
allel applications was chosen. The main reason for such selection was the popularity 
and flexibility of the applications. Actually, several common parallel problems can be 
solved using one processing paradigm. Several simulation applications, image process-
ing or math computations can be reduced to the same basic data model: a finite number 
of cells lined in 2 or 3 dimensions. In this model, adjacent cells need each other’s data 
in order to calculate a final value.

Excellent examples are filters applied on images or specific kinds of simulations. 
However, the former requires only one or a few iterations (depends on the number of 
channels and the filter), while the latter is usually computationally demanding, memory 
consuming and requires at least hundreds of iterations. Of course, the filters can be 
applied on the videos, and as a consequence, image processing will also use a huge 
amount of memory and require many iterations. For the sake of efficiency, usually 
implementation of such processing incorporates usage of CUDA streams, in order to 
overlap time-consuming memory migration and computations.

Another type of application is image rotation, which uses the GPU memory in a dif-
ferent manner that requires relocation of data with non-contiguous data access. A dif-
ferent way of reading memory can also affect Unified Memory’s efficiency.

3.2.1  Sobel filter

A Sobel filter, sometimes called a Sobel–Feldman operator, is used for image process-
ing, especially in edge detection algorithms. It creates more exposed edges. The authors 
of [29] presented an idea of a discrete differentiation operator. The principle is that at 
each point in the image, the result is estimation of the gradient obtained by the vector 
summation of the 4 possible central gradients in a 3 × 3 kernel. In practice, the value 
of the final gradient vector creates an image with large density of the edges; therefore, 
normalization of the vector is used. The basic version of the operator requires two ver-
sions of the 3 × 3 kernel: one for horizontal and another for vertical edges in the image:

Gx =

⎡
⎢⎢⎣

1 0 − 1

2 0 − 2

1 0 − 1

⎤
⎥⎥⎦
,Gy =

⎡
⎢⎢⎣

1 2 1

0 0 0

− 1 − 2 − 1

⎤⎥⎥⎦
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The cells of the above matrix are multiplied by every area of the image, where a cur-
rent pixel is assigned to the 1, 1 position in the matrix. Accordingly, the other cells 
correspond to its neighbors. As a consequence, a new value of the pixel is a result of 
the sum of all preceded multiplications. For the sake of simplicity, it can be reduced 
to the following formulas:

and

where A refers to a part of the image with size 3 × 3.
Consequently, the value of the pixel requires references to 8 neighbors. In addi-

tion, the whole gradient is calculated based on partial ones, as follows:

3.2.2  Image rotation

Although image rotation is a straightforward computational problem, it requires spe-
cific access to the memory. Considering a naive solution, there are efficient coalesc-
ing reads and non-coalesced writes to the memory, which are not desired in parallel 
programming.

Figure 1 depicts the main idea of image rotation. In order to rotate an image to 
the right, position compounds of each pixel have to be reverted. Accordingly, in the 
case of rotation to the left, the indices should be swapped, with one small difference:

where n is the number of pixels in one horizontal row of the image.
Obviously, the algorithm could be more generic to rotate an image with an arbi-

trary angle with trigonometry equations. Nevertheless, it does not change the man-
ner of accessing memory, but only increases the number of operations that should 
performed by a single thread to achieve the final result.

px = A[0, 0] + 2 ∗ A[0, 1] + A[0, 2] − A[2, 0] − 2 ∗ A[2, 1] − A[2, 2]

py = A[0, 0] + 2 ∗ A[1, 0] + A[2, 0] − A[0, 2] − 2 ∗ A[1, 2] − A[2, 2]

p =

√
p2
x
+ p2

y
.

xi = yj, yj = n − xj,

Fig. 1  Image rotation: 90◦ to 
the right
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3.2.3  Streamed image processing

It is common to use the CUDA streams mechanism for parallel applications that 
require considerable amounts of data. The idea is to assign following images to dif-
ferent streams, as the memory migration and computations could be overlapped 
[16]. Figure 2 shows the general flow with standard copying.

The situation is different with regard to the basic Unified Memory usage. The 
pages with needed data are copied on demand; therefore, the case that memory 
migration and kernel execution are overlapped cannot happen. Hence, an advan-
tage of applying streams into the application is not as significant as with standard 
memory copying. The reason for that should be linked to the overhead of the page 
faulting mechanism. Introducing prefetching enabled using Unified Memory with 
overlapping. However, a new overlapping strategy has to be applied. The idea from 
Fig. 2 cannot be performed with memory managed by the driver due to CPU block-
ing steps (mainly virtual address map management). Therefore, it is important to 
assign different streams for data migration and computations. Of course, proper syn-
chronization is needed.

3.2.4  Fluid dynamic simulation

The aim of fluid dynamic simulation is to resolve the process of fluid flow, using 
numerical methods. Thanks to discretization and numerical solving differential 
equations, the approximate values of velocity or pressure of the issued fluid are 
found. In this particular case, the Navier–Stroke equations were used in order to cre-
ate a model of the simulation. In addition, the FDM1 method was used to calculate 
differentials with a GPU. The Navier–Stroke equations are the most common solu-
tion to describe physical phenomena, when considering fluids:

and

�u

�t
= −(u ∗ �)u −

1

�
p + ��2u + F

Fig. 2  Images are assigned to the streams

1 Finite Difference Method (FDM) numerical method used for solving differential equations. Discretiza-
tion method using Taylor series.
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where:

� fluid density (const.),
� kinematic viscosity,
F external forces (vector quantity),
p pressure,
� (Nabla operator) three different use means: gradient, divergence and Laplace oper-
ator,
u velocity (vector quantity).

The equations describe the fluid flow in time [8]. There are a few assumptions concern-
ing the fluid characteristics: incompressibility and fluid homogeneity. A combination 
of both attributes means that density is constant in time and space. The following phe-
nomena were implemented: advocation, pressure, diffusion, external forces.

This approach was implemented with a solution based on a mesh. It means that the 
finite area is used for the simulation, where some fluid with initial values is placed. 
After that, every cell in the area is processed in order to calculate new positions. Setting 
a given �t allows to calculate the state of the fluid at arbitrary time (Fig. 3). In practice, 
next to �t , the number of iterations is also set after which the simulation should be 
finalized.

� ∗ u = 0

Fig. 3  Fluid fraction migration 
scheme

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


7634 M. Knap, P. Czarnul 

1 3

4  Experiments

4.1  Test platforms

For benchmarking purposes, two different platforms were used with parameters 
as shown in Tables 1 and 2. Each test was executed 5 times. Average results were 
presented as gray and black boxes. Moreover, standard deviations of the samples 
were added as bars for each result in relevant figures. In some cases, deviation 
reached 7%, but overall it did not influence observations and conclusions.

4.2  Tests

This section presents final results of performed experiments. Each figure depicts 
execution times for various versions of a given application. Three versions can be 
distinguished:

– standard implementation uses standard, explicit copying between host and 
device memories,

– UM implementation uses a basic Unified Memory mechanism,
– UMopt implementation uses Unified Memory with prefetching.

Table 1  Specifications of tested platforms

Hardware Platform 1 Platform 2

CPU Intel Core i7-8700K (6 cores, 12 threads) 
4.7 GHz@3.7 GHZ

Intel Xeon E5-2698 version 4 
(20cores, 40 threads) 2.20 GHz @ 
2.20 GHz

RAM 16 GB DDR4 256 GB DDR4
GPU Zotac GTX 1080 mini 8 GB GDDR5 Nvidia Tesla V100 16 GB HBM2
System Ubuntu 16.04 LTS Ubuntu 16.04 LTS
CUDA version 9.0 9.0

Table 2  Specifications of tested 
GPU

GTX 1080 V100

CUDA capability 6.0 7.1
Core frequency 1600 MHz 1500 MHz
Bus width 256 bits 4096 bits
Memory bandwidth 320 GB/s 900 GB/s
CUDA cores 2560 5120 + 640 

tensor 
cores

Number of SMs 20 80
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Our implementations of prefetching are application specific. The one without 
explicit streams is shown in Fig. 4.

This prefetching implementation was used for single-image processing tests. In 
order to overlap data migration with kernel execution, the implemented approach, 
similarly to [27], is more complex as shown in Fig. 5. Copying data to a GPU and 

Fig. 4  Standard prefetching

Fig. 5  Second version with prefetching
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computations use different streams. Of course, appropriate synchronization between 
streams is performed to make sure the data were copied before kernel execution. The 
implementation requires at least two streams: one for data migration to the GPU and 
another one for kernel execution and data migration to the CPU. Tests have shown 
that the optimal number of streams is five. Further increasing did not bring any visi-
ble improvements. This is in line with observations in [2] where differences between 
performance of 2 and 4 stream benchmarks were already small. The approach was 
used for tests with image processing using streams and fluid simulation.

Profiling applications have shown that GPU page faults were decreased by about 
50% only in the cases where the streams were used. The standard approach did not 
bring any visible differences.

4.2.1  UM optimizations: prefetching

Firstly, implementation for processing of a single image was tested with different 
methods of using memory:

– Sobel filter implementation with coalesced and non-coalesced memory reads 
(Figs. 6 and 7),

– image rotation (Fig. 8).

Tests used a single image of size: 30,000 × 30,000 × 3 
( height × width × number of channels ). Results indicate a visible impact of spe-
cific architectures on the performance of code with Unified Memory. There is a 
minor boost or very similar execution time for the GTX 1080. An exception is the 
rotation image processing using global memory, for which the Unified Memory 
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Fig. 6  Sobel filter application on GTX 1080
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implementation is more than 2 times slower. The tests on V100 present performance 
decrease in each case for standard memory management and no gains from prefetch-
ing for UM.

Potential of the newly introduced memory prefetching with streams has been 
confirmed by the following tests. The Sobel filter kernel was applied on a group of 
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Fig. 7  Sobel filter application on V100
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Fig. 8  Image rotation application for both GPUs
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images that were assigned to streams (Fig. 9). Results present a visible advantage of 
the implementation with prefetching for both GPUs.

The dynamic fluid simulation was performed with 100 iterations for a 3D mesh of 
size 200 × 200 × 200 using a single-precision float data type. Subsequent tests inves-
tigated correlation of balance between computation and data migration, as shown in 
Figs.  10 and 11. Therefore, a constant number of iterations was mixed with various 
numbers of memory copies that can be used for data visualization. In each case, 
prefetching resulted in performance improvement in the Unified Memory implemen-
tation. Moreover, the latter was even quicker compared to standard memory copies 
for small memory size migrations. Improvement in the case of UMopt compared to 
UM varied between 26% (100 copies for 100 iterations) and 1% (1 memory copy for 
100 iterations).

4.2.2  UM oversubscription

Various types of implementation using the oversubscription mechanism were inves-
tigated for processing a single image first:

– standard single processing of a single image with standard memory copying. The 
size of an image was chosen in order to exceed a GPU memory—5 GB/10 GB 
memory was allocated for an input image and the same size buffer for an output 
image accordingly for GTX 1080/V100. The implementation includes streams 
and allocation of all available GPU memory. The solution requires to create a 
portion of data that fits within the allocated memory, copying to the global mem-
ory, processing and fetching to the RAM. The whole process is repeated until all 
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Fig. 10  100 iterations of dynamic fluid simulation on V100
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Fig. 11  100 iterations of dynamic fluid simulation on GTX 1080
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data have been processed. Programmatically, such an approach is quite complex 
and error-prone.

– UM single processing of a single image with Unified Memory. The solution sim-
ply allocates all needed memory in order to process the image further. Memory 
migration is performed implicitly by the driver.

We have also investigated performance of stream-aware multi-image processing. 
The following configurations were tested:

– standard multiple multi-image processing with standard memory copying. The 
number of 1920 × 1080 × 3 images was adjusted to exceed a GPU memory size. 
The solution is similar to the single-image approach, but each image is assigned 
to one of the five streams.

– UM multiple multi-image processing with Unified Memory. The assumptions are 
the same as those of standard multiple multi-image processing. The difference 
is that there is no need for explicit copying of data for the each image. Such an 
approach has also been benchmarked with memory prefetching (in order to mini-
mize page faults).

Results for the GTX 1080 are presented in Figs. 12 and 13 for single- and multi-
image configurations, respectively. Results for the V100 are shown in Figs.  14 
and  15 for single- and multi-image configurations, respectively. Overall, over-
subscription with Unified Memory is slower compared to a proper implementa-
tion with explicit data migration. Optimization with prefetching brought 5–6% 
improvement for the multi-image processing (Figs.  13 and  15). In case of the 
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Volta architecture, oversubscription with streams was even slightly better than the 
version with explicit data migration (Fig. 15).
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1080
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4.3  Discussion

The results have shown practical differences between the Pascal GTX 1080 dedi-
cated to desktop user platforms and the high-end Volta V100 released for profes-
sional purposes. Firstly, we can see much smaller differences between coalesced and 
non-coalesced memory accesses for V100 compared to the GTX 1080. We should 
note the 4096 bits memory bus compared to 256 bits for the two GPUs, respectively.

Secondly, an interesting correlation can be noticed in the fluid simulation figures 
(Figs. 10 and 11). The larger the number of copies was taken during a simulation, 
the worse the results Unified Memory had. With about 1–5 copies, Unified Mem-
ory has better performance than explicit memory copying, which suggests that the 
mechanism is more suited for applications that are more computationally intensive. 
It may result from Unified Memory specifics and its page faulting system. Moreover, 
prefetching for UM resulted in a visible performance boost for all cases.

Tests undoubtedly indicated the type of applications that can really benefit from 
memory prefetching when Unified Memory is used. Overall, it brings benefits when 
streams are used. It allows to overlap memory migration and computations. In the 
standard approach, the driver responsible for memory management is not aware of 
the order of the data usage in further steps. Therefore, it is recommended to provide 
a hint by explicit invocation of prefetching. Eventually, applications like simulations 
and video processing would benefit the most.

The oversubscription mechanism is a significant improvement when ease of par-
allel programming is considered. The programmer does not have to bother with 
complicated memory migration for huge amounts of data. Depending on a GPU, it 
can either result in a significant decrease in performance (a totally naive UM ver-
sion versus streamed standard copying) by about even 30% or offer even marginally 
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faster execution (optimized UM streamed images processing versus streamed stand-
ard copying images processing on V100). Practically, it depends on programmer 
skills how much optimized code they have created.

5  Summary and future work

Within this paper, performance of Unified Memory was assessed using the follow-
ing applications: image processing including the Sobel filter and rotation, streamed 
image processing and fluid dynamic simulation. We compared performance of 
standard Unified Memory implementations as well as Unified Memory with data 
prefetching to standard implementation with implicit memory copying. Further-
more, we investigated performance of applications using Unified Memory for mul-
tistream codes as well as using Unified Memory with memory oversubscription. We 
have presented conclusions on relative performances of the implementations for par-
ticular application types and have shown differences for two modern GPU models—
desktop Pascal series NVIDIA GTX 1080 and server Volta series NVIDIA V100 
GPUs.

We have concluded that Unified Memory generally results in worse performance 
than the standard memory management approach offering the benefit of easier pro-
gramming, and Unified Memory implementation also allows performance improve-
ments through programmer-assisted data prefetching. However, in our experiments 
it resulted in better results than standard Unified Memory only for selected applica-
tions—namely multi-image processing with streams as well as for the fluid dynamic 
simulation. Unified Memory can bring better results than explicit memory copying 
for simulation codes such as fluid dynamic implementations with a relatively large 
compute-to-communication ratio.

In the future, we plan to extend this research toward systems with more GPUs 
as well as incorporation of UM into previous hybrid CPU+GPU implementations 
[4]. Another direction of research will include testing impact of various host archi-
tectures on performance of GPU processing. Recently, we have tested impact of 
IBM’s AC922 system architecture compared to NVIDIA’s DGX station, both with 4 
NVIDIA V100 GPUs on the performance of training deep neural networks [24]. We 
plan to make a similar comparison using various host architectures for the applica-
tions presented in this work, using Unified Memory.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, 
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