
Vol.:(0123456789)

The Journal of Supercomputing (2019) 75:7625–7645
https://doi.org/10.1007/s11227-019-02966-8

1 3

Performance evaluation of Unified Memory
with prefetching and oversubscription for selected parallel
CUDA applications on NVIDIA Pascal and Volta GPUs

Marcin Knap1 · Paweł Czarnul1

Published online: 20 August 2019
© The Author(s) 2019

Abstract
The paper presents assessment of Unified Memory performance with data prefetch-
ing and memory oversubscription. Several versions of code are used with: standard
memory management, standard Unified Memory and optimized Unified Memory
with programmer-assisted data prefetching. Evaluation of execution times is pro-
vided for four applications: Sobel and image rotation filters, stream image process-
ing and computational fluid dynamic simulation, performed on Pascal and Volta
architecture GPUs—NVIDIA GTX 1080 and NVIDIA V100 cards. Furthermore,
we evaluate the possibility of allocating more memory than available on GPUs
and assess performance of codes using the three aforementioned implementations,
including memory oversubscription available in CUDA. Results serve as recommen-
dations and hints for other similar codes regarding expected performance on modern
and already widely available GPUs.

Keywords CUDA · Unified Memory · Prefetching · Memory oversubscription

1 Introduction

General-purpose computing on graphic processing unit (GPGPU) has become very
popular. Significant advancements, both in hardware and in the CUDA API, have
been adopted in recent years. On the programming side, some of the most important
features of newer CUDA versions include dynamic parallelism allowing launching
a kernel from within a kernel already running on a GPU or Unified Memory (UM)
that proposes a programming abstraction of uniform memory space that can be

 * Paweł Czarnul
 pczarnul@eti.pg.gda.pl; pczarnul@eti.pg.edu.pl

 Marcin Knap
 marcknap@gmail.com

1 Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,
Gdansk, Poland

http://orcid.org/0000-0002-4918-9196
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02966-8&domain=pdf

7626 M. Knap, P. Czarnul

1 3

allocated and used without the need for explicit management of data location [21].
In other words, the underlying runtime system migrates memory pages between
host’s memory and global memory of a GPU according to when the code running on
either the CPU or the GPU refers to it. It allows to simplify the programming model
considerably and allows reasonably good performance compared to low-level mem-
ory management when Unified Memory is not used [28]. One of the recent features
of Unified Memory is the possibility to oversubscribe memory, i.e., to allocate more
memory than available on a GPU [26]. Performance of this feature is investigated in
this paper as well, compared to the standard CUDA implementation without Unified
Memory.

2 Related work and motivations

Modern parallel programming for contemporary HPC systems [3] typically involves
multithreading for multi- or many-core CPUs and accelerators such as GPUs and
efficient communication between cluster nodes. The former can be implemented
with, e.g., OpenMP, OpenCL or Pthreads for CPUs and CUDA, OpenCL, OpenACC
for GPUs, while the latter can be implemented typically with MPI. Paper [4] pre-
sents an exemplary implementation and optimization of parallelization of large vec-
tor similarity computations in a hybrid CPU+GPU environment, including load bal-
ancing and finding configuration parameters. CUDA-aware MPI implementations
allow using CUDA buffers in MPI calls which simplifies implementation.

Before NVIDIA’s Unified Memory was introduced, other researchers proposed
solutions for making GPU programming easier, especially with respect to easier
memory management. Paper [1] presents a compiler approach for automatic sched-
uling of data transfers from and to accelerators which is aimed at reduction of data
transferred between host and device. Only data needed or modified is transferred
in identified locations in contrast to a naive approach with all data being copied.
Significant gains were shown for selected Rodinia benchmarks such as: breadth-first
search, particlefilter, speckle reducing anisotropic diffusion and Needleman–Wun-
sch. In paper [11], the authors proposed design of region-based software virtual
memory (RSVM), a software virtual memory layer for both GPU and CPU. It
offered transparent swapping of GPU memory to main memory for multiple kernels
and fetching data from host to the GPU. NVIDIA’s Unified Memory [9, 19], intro-
duced in CUDA 6, simplifies implementation of a CUDA application since basically
it only requires allocation of memory using cudaMallocManaged() instead of
cudaMalloc() and proper synchronization on the host side after invocation of a
kernel function before reading results, since a kernel call is asynchronous from the
point of view of the host. Unified Memory was further expanded in subsequent ver-
sions of CUDA. Specifically, CUDA 8 with Pascal and later GPUs [26] extended
UM with 49-bit virtual addressing and on-demand page migration. The new UM
allows to use the whole system memory and memory oversubscription. In CUDA
9 and Volta [27], tracking accesses to pages through additional counters has been
introduced. Frequency of accesses can impact the driver when deciding on page

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7627

1 3

Performance evaluation of Unified Memory with prefetching…

movements. The driver can migrate pages proactively and perform intelligent evic-
tion [28].

In the Unified Memory version of the code, it is possible to provide hints on where
and how data are to be used. It can be done with function cudaMem Prefetch-
Async() for prefetching data to a GPU before a relevant kernel using that data are
launched. Furthermore, it is possible to specify how data in managed memory at the
given location with a given size will be used with a call to function cudaMemAd-
vise() [20, 27]. Value cudaMemAdviseSetReadMostly advises that it will
mostly be read and rarely written to, cudaMemAdviseSet PreferredLoca-
tion sets the preferred location to the memory of the given device, and cudaM-
emAdviseSetAccessedBy allows to hint that the data will be accessed from
a given device and causes the data to be mapped in the processor’s page tables. It
allows to prevent page faults [31].

In non-UM versions of the code, it is possible to arrange overlapping of compu-
tations and communication by launching sequences of copy, kernel execution and
copy in various streams such that copy and execute operations in various streams
can be overlapped. Streams can also be used with prefetching in the UM enabled
code [27].

In paper [14], the authors investigated Unified Memory access performance in
CUDA. Performed experiments used custom as well as Rodinia microbenchmarks
run on a system with Xeon E5530 CPUs and NVIDIA K20c GPUs. It has been dem-
onstrated that in order to see performance benefits from using UM, kernels should
operate on subsets of output data at a time allowing the paging subsystem to come
into play. Another advantage of using UM is for very complex data structures.
Other scenarios result in better performance for the regular memory management
approach. In work [22], the authors assessed relative performance of UM and non-
UM versions of code for computation of scalar products. Kepler generation NVIDIA
GeForce GTX 680 was used. The UM version resulted in 35% longer execution
times. In paper [15], the authors demonstrate an average 10% loss of performance
when using versions of benchmarks such as CUDA SDK’s Diffusion3D Benchmark,
Parboil Benchmark Suite and Matrix Multiplication ported to Unified Memory.
Tests were performed on NVIDIA Kepler K40 and the TK1. It seems to be a reason-
able performance penalty for potentially easier programming model. In paper [10],
we investigated performance of Unified Memory versions versus standard memory
implementations with cudaMalloc() for three applications with control and data
flow characteristic of SPMD, geometric SPMD and divide-and-conquer paradigms.
Parallel implementations of verification of Goldbach’s conjecture, 2D heat transfer
simulation and adaptive numerical integration were used. For the heat simulation,
depending on the number of iterations per which data transfer was performed for
visualization purposes, UM resulted in worse performance from about 1.5% for 50
iterations up to 8.7% for 10 iterations per visualization. For integration, UM ver-
sions resulted in worse performance as well, approximately 30% for integration of
100,000 subranges. Finally, for the implementation of Goldbach’s conjecture, per-
formance of UM versions was only up to 2% worse than the standard version.

Unified Memory can also be used in programs written using OpenACC [17, 25].
Article [25] presents a 2D Jacobi iteration code along with Unified Memory. A 7x

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7628 M. Knap, P. Czarnul

1 3

performance improvement over an OpenMP multicore CPU version running on Intel
Xeon E5-2698 version 3 is presented and no performance loss compared to a stand-
ard OpenACC version running on NVIDIA K40. For LULESH, OpenACC+Unified
Memory offered 3.14x performance increase over OpenMP run on the multicore
CPU and 92% performance of a standard OpenACC version. Article [26] shows fur-
ther performance increase of the OpenACC+Unified Memory code run on NVIDIA
Tesla Pascal P100 for 8.57x better than the CPU version.

Since OpenMP version 4.x support for GPU offloading has become available [5].
The authors of paper [18] have investigated usage and impact of Unified Memory
when using at the level of OpenMP with latest offloading features. They have modi-
fied the OpenMP runtime in the LLVM framework in order for it to allocate data in
Unified Memory. Tests were performed on SummitDev which has 54 nodes, each
with 2 POWER8 CPUs and 4 Tesla P100 GPUs. Tests were performed using back-
propagation, breadth-first search, CFD solver, K-means, kNN and speckle reducing
anisotropic diffusion benchmarks. For applications with little data reuse, perfor-
mance without Unified Memory is slightly better, as opposed to benchmarks with
significant data reuse. For the latter, performance with Unified Memory is better to
various degrees depending on input data size. Additionally, memory oversubscrip-
tion is possible as an additional benefit to the standard implementation. Sometimes,
though, as for BFS, CFD and SRAD it results in worse performance than for a CPU
version. CPU codes for backpropagation and NN offered lower execution times than
GPU versions. Usage of Unified Memory with OpenMP 4.5 and technical solutions
were described in paper [7].

Support for GPU Unified Memory in the OmpSs model and Nanos runtime is
discussed in work [30], along with its design and implementation as well as evalua-
tion using microbenchmarks and Rodinia. For Rodinia benchmarks, speedups up to
approximately 0.85 were obtained compared to pure CUDA versions.

Memory oversubscription has been studied in several papers in the literature.
Paper [33] investigates low-level implementation of paged GPU memory. It pro-
poses ways to improve performance of such a solution by combining replayable
far-faults along with demand prioritized prefetching. The results show results close
within 15% to best overlapped communication and execution version. For oversub-
scription, the authors claim that in general a random eviction algorithm performs
very well to more complex strategies, considering overheads of the latter. In paper
[13], the authors introduce GPUswap allowing relocation of application data from
the GPU to system RAM allowing oversubscription of memory. At the time of the
development and comparison with CUDA 6, the latter did not support memory
oversubscription. Memory relocation delays for allocation of memory or giving up
memory when another application is allocating memory are presented. Allocation
delays are presented for various chunk sizes.

Work [32] discusses design and results of running HPGMG (high-performance
geometric multigrid methods) on Pascal GPUs, including usage of Unified Memory.
Specifically, throughput from using the oversubscription feature is provided using
NVIDIA P100 (16 GB memory size) compared to the throughput for configurations
fitting within the GPU memory. For an NVLink P100 and a basic version, a perfor-
mance drop from 160 to approx. 55-75 MDOF/s was observed which was still 2.5x

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7629

1 3

Performance evaluation of Unified Memory with prefetching…

higher than for a 2 socket Intel E5-2630 version 3 system for large memory sizes.
After applying optimizations such as data prefetching using cudaMemPrefetch-
Async() and user hints results from around 175 MDOF/s for fitting within GPU
memory to 55-135 MDOF/s were observed for memory sizes exceeding the GPU
memory size.

In paper [2], it was shown how using multiple CUDA streams impacts perfor-
mance of a GPU application that processes a stream of data chunks sent from the
host. Specifically, considerable gains are shown for 2 streams compared to 1 stream,
around 20–30% for compute intensities below 1 and up to 50% for larger compute
intensities, among GPUs tested Tesla K20m, GTX 1060, GeForce 940MX and Tesla
V100. Further increase between 3.3 and 4.9% is shown for 4 streams. Such data
management optimization techniques can be especially profitable for frameworks for
parallel data processing, such as in KernelHive [23], able to process part of data on
CPUs and part of data on GPUs within a cluster.

Paper [6] proposes a CRUM (Checkpoint-Restart for Unified Memory) mecha-
nism that allows forked checkpointing for Unified Memory with overlaps writing
down a checkpoint during application execution. The work shows little overhead, 6%
on average, for running parallel hybrid MPI+CUDA applications such as HPGMG-
FV and HYPRE.

In paper [12], the authors assessed execution times with use of UM on NVIDIA
Tegra K1. The work analyzed UM-aware versions of benchmarks such as pathfinder,
needle, srad v2, Gaussian and lud Rodinia as well as Gauss–Seidel relaxation. As a
conclusion, the authors stated that in the case of kernel time percentage lower that
60%, UM exhibited gains on the K1 platform.

The motivation of this work is to assess preferable ways of programming effi-
cient parallel codes problems running on modern GPUs, especially to compare rela-
tive performance and ease of programming of standard and Unified Memory-based
approaches. What is important, assessment is to be performed also for computations
performed on very large data sets which do not fit into the memory size of a single
GPU. The relatively new memory oversubscription feature has not yet been assessed
thoroughly in the literature. Results of relevant experiments are of high importance
because they are applicable to codes from many domains falling into the same pro-
cessing paradigms as the tested applications.

3 Evaluation of modern Unified Memory features

3.1 Methodology

In order to assess Unified Memory performance, several applications have been imple-
mented and tested on two modern systems with latest GPU architectures: GTX 1080
representing Pascal and V100 representing the Volta generation. This way we can
assess whether the same or different behaviors of features can be observed on vari-
ous architectures, adjusting input data sizes for oversubscription experiments. Various
applications operating on data in parallel but with slightly different memory access pat-
terns allow to evaluate performance of both the standard Unified Memory code and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7630 M. Knap, P. Czarnul

1 3

Unified Memory with optimizations compared to the standard memory management
approaches. Applications and corresponding memory access patterns include:

– image filters such as Sobel with application of 3 × 3 kernels on an image and image
rotation with coalesced reads and non-coalesced writes,

– image stream processing with overlapping of computations and communication,
– fluid dynamic simulation with processing of a 2D space in successive iterations.

3.2 Applications

In order to assess Unified Memory performance, a set of common, representative, par-
allel applications was chosen. The main reason for such selection was the popularity
and flexibility of the applications. Actually, several common parallel problems can be
solved using one processing paradigm. Several simulation applications, image process-
ing or math computations can be reduced to the same basic data model: a finite number
of cells lined in 2 or 3 dimensions. In this model, adjacent cells need each other’s data
in order to calculate a final value.

Excellent examples are filters applied on images or specific kinds of simulations.
However, the former requires only one or a few iterations (depends on the number of
channels and the filter), while the latter is usually computationally demanding, memory
consuming and requires at least hundreds of iterations. Of course, the filters can be
applied on the videos, and as a consequence, image processing will also use a huge
amount of memory and require many iterations. For the sake of efficiency, usually
implementation of such processing incorporates usage of CUDA streams, in order to
overlap time-consuming memory migration and computations.

Another type of application is image rotation, which uses the GPU memory in a dif-
ferent manner that requires relocation of data with non-contiguous data access. A dif-
ferent way of reading memory can also affect Unified Memory’s efficiency.

3.2.1 Sobel filter

A Sobel filter, sometimes called a Sobel–Feldman operator, is used for image process-
ing, especially in edge detection algorithms. It creates more exposed edges. The authors
of [29] presented an idea of a discrete differentiation operator. The principle is that at
each point in the image, the result is estimation of the gradient obtained by the vector
summation of the 4 possible central gradients in a 3 × 3 kernel. In practice, the value
of the final gradient vector creates an image with large density of the edges; therefore,
normalization of the vector is used. The basic version of the operator requires two ver-
sions of the 3 × 3 kernel: one for horizontal and another for vertical edges in the image:

Gx =

⎡
⎢⎢⎣

1 0 − 1

2 0 − 2

1 0 − 1

⎤
⎥⎥⎦
,Gy =

⎡
⎢⎢⎣

1 2 1

0 0 0

− 1 − 2 − 1

⎤⎥⎥⎦

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7631

1 3

Performance evaluation of Unified Memory with prefetching…

The cells of the above matrix are multiplied by every area of the image, where a cur-
rent pixel is assigned to the 1, 1 position in the matrix. Accordingly, the other cells
correspond to its neighbors. As a consequence, a new value of the pixel is a result of
the sum of all preceded multiplications. For the sake of simplicity, it can be reduced
to the following formulas:

and

where A refers to a part of the image with size 3 × 3.
Consequently, the value of the pixel requires references to 8 neighbors. In addi-

tion, the whole gradient is calculated based on partial ones, as follows:

3.2.2 Image rotation

Although image rotation is a straightforward computational problem, it requires spe-
cific access to the memory. Considering a naive solution, there are efficient coalesc-
ing reads and non-coalesced writes to the memory, which are not desired in parallel
programming.

Figure 1 depicts the main idea of image rotation. In order to rotate an image to
the right, position compounds of each pixel have to be reverted. Accordingly, in the
case of rotation to the left, the indices should be swapped, with one small difference:

where n is the number of pixels in one horizontal row of the image.
Obviously, the algorithm could be more generic to rotate an image with an arbi-

trary angle with trigonometry equations. Nevertheless, it does not change the man-
ner of accessing memory, but only increases the number of operations that should
performed by a single thread to achieve the final result.

px = A[0, 0] + 2 ∗ A[0, 1] + A[0, 2] − A[2, 0] − 2 ∗ A[2, 1] − A[2, 2]

py = A[0, 0] + 2 ∗ A[1, 0] + A[2, 0] − A[0, 2] − 2 ∗ A[1, 2] − A[2, 2]

p =

√
p2
x
+ p2

y
.

xi = yj, yj = n − xj,

Fig. 1 Image rotation: 90◦ to
the right

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7632 M. Knap, P. Czarnul

1 3

3.2.3 Streamed image processing

It is common to use the CUDA streams mechanism for parallel applications that
require considerable amounts of data. The idea is to assign following images to dif-
ferent streams, as the memory migration and computations could be overlapped
[16]. Figure 2 shows the general flow with standard copying.

The situation is different with regard to the basic Unified Memory usage. The
pages with needed data are copied on demand; therefore, the case that memory
migration and kernel execution are overlapped cannot happen. Hence, an advan-
tage of applying streams into the application is not as significant as with standard
memory copying. The reason for that should be linked to the overhead of the page
faulting mechanism. Introducing prefetching enabled using Unified Memory with
overlapping. However, a new overlapping strategy has to be applied. The idea from
Fig. 2 cannot be performed with memory managed by the driver due to CPU block-
ing steps (mainly virtual address map management). Therefore, it is important to
assign different streams for data migration and computations. Of course, proper syn-
chronization is needed.

3.2.4 Fluid dynamic simulation

The aim of fluid dynamic simulation is to resolve the process of fluid flow, using
numerical methods. Thanks to discretization and numerical solving differential
equations, the approximate values of velocity or pressure of the issued fluid are
found. In this particular case, the Navier–Stroke equations were used in order to cre-
ate a model of the simulation. In addition, the FDM1 method was used to calculate
differentials with a GPU. The Navier–Stroke equations are the most common solu-
tion to describe physical phenomena, when considering fluids:

and

�u

�t
= −(u ∗ �)u −

1

�
p + ��2u + F

Fig. 2 Images are assigned to the streams

1 Finite Difference Method (FDM) numerical method used for solving differential equations. Discretiza-
tion method using Taylor series.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7633

1 3

Performance evaluation of Unified Memory with prefetching…

where:

� fluid density (const.),
� kinematic viscosity,
F external forces (vector quantity),
p pressure,
� (Nabla operator) three different use means: gradient, divergence and Laplace oper-
ator,
u velocity (vector quantity).

The equations describe the fluid flow in time [8]. There are a few assumptions concern-
ing the fluid characteristics: incompressibility and fluid homogeneity. A combination
of both attributes means that density is constant in time and space. The following phe-
nomena were implemented: advocation, pressure, diffusion, external forces.

This approach was implemented with a solution based on a mesh. It means that the
finite area is used for the simulation, where some fluid with initial values is placed.
After that, every cell in the area is processed in order to calculate new positions. Setting
a given �t allows to calculate the state of the fluid at arbitrary time (Fig. 3). In practice,
next to �t , the number of iterations is also set after which the simulation should be
finalized.

� ∗ u = 0

Fig. 3 Fluid fraction migration
scheme

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7634 M. Knap, P. Czarnul

1 3

4 Experiments

4.1 Test platforms

For benchmarking purposes, two different platforms were used with parameters
as shown in Tables 1 and 2. Each test was executed 5 times. Average results were
presented as gray and black boxes. Moreover, standard deviations of the samples
were added as bars for each result in relevant figures. In some cases, deviation
reached 7%, but overall it did not influence observations and conclusions.

4.2 Tests

This section presents final results of performed experiments. Each figure depicts
execution times for various versions of a given application. Three versions can be
distinguished:

– standard implementation uses standard, explicit copying between host and
device memories,

– UM implementation uses a basic Unified Memory mechanism,
– UMopt implementation uses Unified Memory with prefetching.

Table 1 Specifications of tested platforms

Hardware Platform 1 Platform 2

CPU Intel Core i7-8700K (6 cores, 12 threads)
4.7 GHz@3.7 GHZ

Intel Xeon E5-2698 version 4
(20cores, 40 threads) 2.20 GHz @
2.20 GHz

RAM 16 GB DDR4 256 GB DDR4
GPU Zotac GTX 1080 mini 8 GB GDDR5 Nvidia Tesla V100 16 GB HBM2
System Ubuntu 16.04 LTS Ubuntu 16.04 LTS
CUDA version 9.0 9.0

Table 2 Specifications of tested
GPU

GTX 1080 V100

CUDA capability 6.0 7.1
Core frequency 1600 MHz 1500 MHz
Bus width 256 bits 4096 bits
Memory bandwidth 320 GB/s 900 GB/s
CUDA cores 2560 5120 + 640

tensor
cores

Number of SMs 20 80

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7635

1 3

Performance evaluation of Unified Memory with prefetching…

Our implementations of prefetching are application specific. The one without
explicit streams is shown in Fig. 4.

This prefetching implementation was used for single-image processing tests. In
order to overlap data migration with kernel execution, the implemented approach,
similarly to [27], is more complex as shown in Fig. 5. Copying data to a GPU and

Fig. 4 Standard prefetching

Fig. 5 Second version with prefetching

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7636 M. Knap, P. Czarnul

1 3

computations use different streams. Of course, appropriate synchronization between
streams is performed to make sure the data were copied before kernel execution. The
implementation requires at least two streams: one for data migration to the GPU and
another one for kernel execution and data migration to the CPU. Tests have shown
that the optimal number of streams is five. Further increasing did not bring any visi-
ble improvements. This is in line with observations in [2] where differences between
performance of 2 and 4 stream benchmarks were already small. The approach was
used for tests with image processing using streams and fluid simulation.

Profiling applications have shown that GPU page faults were decreased by about
50% only in the cases where the streams were used. The standard approach did not
bring any visible differences.

4.2.1 UM optimizations: prefetching

Firstly, implementation for processing of a single image was tested with different
methods of using memory:

– Sobel filter implementation with coalesced and non-coalesced memory reads
(Figs. 6 and 7),

– image rotation (Fig. 8).

Tests used a single image of size: 30,000 × 30,000 × 3
(height × width × number of channels). Results indicate a visible impact of spe-
cific architectures on the performance of code with Unified Memory. There is a
minor boost or very similar execution time for the GTX 1080. An exception is the
rotation image processing using global memory, for which the Unified Memory

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

coalesced read non-coalesced read

E
xe

cu
tio

n
tim

e
[m

s]
STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 6 Sobel filter application on GTX 1080

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7637

1 3

Performance evaluation of Unified Memory with prefetching…

implementation is more than 2 times slower. The tests on V100 present performance
decrease in each case for standard memory management and no gains from prefetch-
ing for UM.

Potential of the newly introduced memory prefetching with streams has been
confirmed by the following tests. The Sobel filter kernel was applied on a group of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

coalesced read non-coalesced read

E
xe

cu
tio

n
tim

e
[m

s]
STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 7 Sobel filter application on V100

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

V100 GTX 1080

E
xe

cu
tio

n
tim

e
[m

s]

STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 8 Image rotation application for both GPUs

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7638 M. Knap, P. Czarnul

1 3

images that were assigned to streams (Fig. 9). Results present a visible advantage of
the implementation with prefetching for both GPUs.

The dynamic fluid simulation was performed with 100 iterations for a 3D mesh of
size 200 × 200 × 200 using a single-precision float data type. Subsequent tests inves-
tigated correlation of balance between computation and data migration, as shown in
Figs. 10 and 11. Therefore, a constant number of iterations was mixed with various
numbers of memory copies that can be used for data visualization. In each case,
prefetching resulted in performance improvement in the Unified Memory implemen-
tation. Moreover, the latter was even quicker compared to standard memory copies
for small memory size migrations. Improvement in the case of UMopt compared to
UM varied between 26% (100 copies for 100 iterations) and 1% (1 memory copy for
100 iterations).

4.2.2 UM oversubscription

Various types of implementation using the oversubscription mechanism were inves-
tigated for processing a single image first:

– standard single processing of a single image with standard memory copying. The
size of an image was chosen in order to exceed a GPU memory—5 GB/10 GB
memory was allocated for an input image and the same size buffer for an output
image accordingly for GTX 1080/V100. The implementation includes streams
and allocation of all available GPU memory. The solution requires to create a
portion of data that fits within the allocated memory, copying to the global mem-
ory, processing and fetching to the RAM. The whole process is repeated until all

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

V100 GTX 1080

E
xe

cu
tio

n
tim

e
[m

s]
STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 9 Image processing using streams

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7639

1 3

Performance evaluation of Unified Memory with prefetching…

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

100 50 20 10 5 1

E
xe

cu
tio

n
tim

e
[m

s]

Number of copies

STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 10 100 iterations of dynamic fluid simulation on V100

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

100 50 20 10 5 1

E
xe

cu
tio

n
tim

e
[m

s]

Number of copies

STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 11 100 iterations of dynamic fluid simulation on GTX 1080

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7640 M. Knap, P. Czarnul

1 3

data have been processed. Programmatically, such an approach is quite complex
and error-prone.

– UM single processing of a single image with Unified Memory. The solution sim-
ply allocates all needed memory in order to process the image further. Memory
migration is performed implicitly by the driver.

We have also investigated performance of stream-aware multi-image processing.
The following configurations were tested:

– standard multiple multi-image processing with standard memory copying. The
number of 1920 × 1080 × 3 images was adjusted to exceed a GPU memory size.
The solution is similar to the single-image approach, but each image is assigned
to one of the five streams.

– UM multiple multi-image processing with Unified Memory. The assumptions are
the same as those of standard multiple multi-image processing. The difference
is that there is no need for explicit copying of data for the each image. Such an
approach has also been benchmarked with memory prefetching (in order to mini-
mize page faults).

Results for the GTX 1080 are presented in Figs. 12 and 13 for single- and multi-
image configurations, respectively. Results for the V100 are shown in Figs. 14
and 15 for single- and multi-image configurations, respectively. Overall, over-
subscription with Unified Memory is slower compared to a proper implementa-
tion with explicit data migration. Optimization with prefetching brought 5–6%
improvement for the multi-image processing (Figs. 13 and 15). In case of the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

single image

G
B

/s
STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 12 Oversubscription mechanism for a single image (42, 303 × 42, 303 × 3) with 10 GB allocation on
GTX 1080

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7641

1 3

Performance evaluation of Unified Memory with prefetching…

Volta architecture, oversubscription with streams was even slightly better than the
version with explicit data migration (Fig. 15).

 0

 0.5

 1

 1.5

 2

 2.5

863 images

G
B

/s
STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 13 Oversubscription mechanism for 863 images (1920 × 1080 × 3) with 10 GB allocation on GTX
1080

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

single image

G
B

/s

STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 14 Oversubscription mechanism for a single image (59, 826 × 59, 826 × 3) with 20 GB allocation on
V100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7642 M. Knap, P. Czarnul

1 3

4.3 Discussion

The results have shown practical differences between the Pascal GTX 1080 dedi-
cated to desktop user platforms and the high-end Volta V100 released for profes-
sional purposes. Firstly, we can see much smaller differences between coalesced and
non-coalesced memory accesses for V100 compared to the GTX 1080. We should
note the 4096 bits memory bus compared to 256 bits for the two GPUs, respectively.

Secondly, an interesting correlation can be noticed in the fluid simulation figures
(Figs. 10 and 11). The larger the number of copies was taken during a simulation,
the worse the results Unified Memory had. With about 1–5 copies, Unified Mem-
ory has better performance than explicit memory copying, which suggests that the
mechanism is more suited for applications that are more computationally intensive.
It may result from Unified Memory specifics and its page faulting system. Moreover,
prefetching for UM resulted in a visible performance boost for all cases.

Tests undoubtedly indicated the type of applications that can really benefit from
memory prefetching when Unified Memory is used. Overall, it brings benefits when
streams are used. It allows to overlap memory migration and computations. In the
standard approach, the driver responsible for memory management is not aware of
the order of the data usage in further steps. Therefore, it is recommended to provide
a hint by explicit invocation of prefetching. Eventually, applications like simulations
and video processing would benefit the most.

The oversubscription mechanism is a significant improvement when ease of par-
allel programming is considered. The programmer does not have to bother with
complicated memory migration for huge amounts of data. Depending on a GPU, it
can either result in a significant decrease in performance (a totally naive UM ver-
sion versus streamed standard copying) by about even 30% or offer even marginally

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1726 images

G
B

/s
STD
UM

UMopt
std-SD
UM-SD

UMopt-SD

Fig. 15 Oversubscription mechanism for 1726 images (1920 × 1080 × 3) with 20 GB allocation on V100

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

7643

1 3

Performance evaluation of Unified Memory with prefetching…

faster execution (optimized UM streamed images processing versus streamed stand-
ard copying images processing on V100). Practically, it depends on programmer
skills how much optimized code they have created.

5 Summary and future work

Within this paper, performance of Unified Memory was assessed using the follow-
ing applications: image processing including the Sobel filter and rotation, streamed
image processing and fluid dynamic simulation. We compared performance of
standard Unified Memory implementations as well as Unified Memory with data
prefetching to standard implementation with implicit memory copying. Further-
more, we investigated performance of applications using Unified Memory for mul-
tistream codes as well as using Unified Memory with memory oversubscription. We
have presented conclusions on relative performances of the implementations for par-
ticular application types and have shown differences for two modern GPU models—
desktop Pascal series NVIDIA GTX 1080 and server Volta series NVIDIA V100
GPUs.

We have concluded that Unified Memory generally results in worse performance
than the standard memory management approach offering the benefit of easier pro-
gramming, and Unified Memory implementation also allows performance improve-
ments through programmer-assisted data prefetching. However, in our experiments
it resulted in better results than standard Unified Memory only for selected applica-
tions—namely multi-image processing with streams as well as for the fluid dynamic
simulation. Unified Memory can bring better results than explicit memory copying
for simulation codes such as fluid dynamic implementations with a relatively large
compute-to-communication ratio.

In the future, we plan to extend this research toward systems with more GPUs
as well as incorporation of UM into previous hybrid CPU+GPU implementations
[4]. Another direction of research will include testing impact of various host archi-
tectures on performance of GPU processing. Recently, we have tested impact of
IBM’s AC922 system architecture compared to NVIDIA’s DGX station, both with 4
NVIDIA V100 GPUs on the performance of training deep neural networks [24]. We
plan to make a similar comparison using various host architectures for the applica-
tions presented in this work, using Unified Memory.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

 1. Ashcraft MB, Lemon A, Penry DA, Snell Q (2017) Compiler optimization of accelerator data trans-
fers. Int J Parallel Prog. https ://doi.org/10.1007/s1076 6-017-0549-3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10766-017-0549-3
http://mostwiedzy.pl

7644 M. Knap, P. Czarnul

1 3

 2. Czarnul P (2018) Benchmarking overlapping communication and computations with multiple
streams for modern gpus. In: Ganzha M, Maciaszek LA, Paprzycki M (eds) Communication Papers
of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018,
Poznań, Poland, September 9–12, 2018, pp 105–110

 3. Czarnul P (2018) Parallel programming for modern high performance computing systems, 1st edn.
Chapman and Hall/CRC, Taylor&Francis, Boca Raton

 4. Czarnul P (2018) Parallelization of large vector similarity computations in a hybrid cpu+gpu envi-
ronment. J Supercomput 74(2):768–786. https ://doi.org/10.1007/s1122 7-017-2159-7

 5. Finkel H, Sharif H (2017) Openmp, unified memory, and prefetching. PADAL17: 2017-08-03,
Exascale Computing Project. https ://www.bnl.gov/comps ci/docs/Hal-Finke l-padal _2017.pdf

 6. Garg R, Mohan A, Sullivan M, Cooperman G (2018) CRUM: Checkpoint-Restart Support for
CUDA’s Unified Memory. ArXiv e-prints

 7. Grinberg L, Bertolli C, Haque R (2017) Hands on with openmp4.5 and unified memory: develop-
ing applications for ibm’s hybrid cpu + gpu systems (part ii). In: de Supinski BR, Olivier SL, Ter-
boven C, Chapman BM, Müller MS (eds) Scaling openMP for exascale performance and portability.
Springer International Publishing, Cham, pp 17–29

 8. Harris MJ (2007) Fast fluid dynamics simulation on the gpu. http://devel oper.downl oad.nvidi a.com/
books /HTML/gpuge ms/gpuge ms_ch38.html

 9. Hindriksen V (2013) Cuda 6 unified memory explained. http://strea mcomp uting .eu/blog/2013-11-
14/cuda-6-unifi ed-memor y-expla ined/. Accessed 17 Feb 2016

 10. Jarząbek Ł, Czarnul P (2017) Performance evaluation of unified memory and dynamic parallelism
for selected parallel cuda applications. J Supercomput 73(12):5378–5401. https ://doi.org/10.1007/
s1122 7-017-2091-x

 11. Ji F, Lin H, Ma X (2013) Rsvm: a region-based software virtual memory for gpu. In: Proceed-
ings of the 22nd International Conference on Parallel Architectures and Compilation Techniques,
PACT ’13. IEEE Press, Piscataway, NJ, USA, pp 269–278. http://dl.acm.org/citat ion.cfm?id=25237
21.25237 58

 12. Joseph J, Keville K (2015) An evaluation of cuda unified memory access on nvidia tegra k1.
Waltham, MA USA. IEEE High Performance Extreme Computing Conference (HPEC ‘15) Nine-
teenth Annual HPEC Conference

 13. Kehne J, Metter J, Bellosa F (2015) Gpuswap: enabling oversubscription of gpu memory through
transparent swapping. In: Proceedings of the 11th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’15. ACM, New York, NY, USA, pp 65–77. https ://
doi.org/10.1145/27311 86.27311 92

 14. Landaverde R, Zhang T, Coskun AK, Herbordt M (2014) An investigation of unified memory access
performance in cuda. In: 2014 IEEE High Performance Extreme Computing Conference (HPEC),
pp 1–6. https ://doi.org/10.1109/HPEC.2014.70409 88

 15. Li W, Jin G, Cui X, See S (2015) An evaluation of unified memory technology on nvidia gpus. In:
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp 1092–
1098. https ://doi.org/10.1109/CCGri d.2015.105

 16. Malinowski A, Czarnul P (2018) A solution to image processing with parallel MPI I/O and distrib-
uted NVRAM cache. Scalable Comput Pract Exp 19(1):1–14. https ://www.scpe.org/index .php/scpe/
artic le/view/1389

 17. Miles D (2017) Openacc and unified memory. Cray User Group Meeting, Redmond, Washington.
https ://cug.org/proce eding s/cug20 17_proce eding s/inclu des/files /ven11 2s1.pdf

 18. Mishra A, Li L, Kong M, Finkel H, Chapman B (2017) Benchmarking and evaluating unified
memory for openmp gpu offloading. In: Proceedings of the Fourth Workshop on the LLVM Com-
piler Infrastructure in HPC, LLVM-HPC’17. ACM, New York, NY, USA, pp 6:1–6:10. https ://doi.
org/10.1145/31481 73.31481 84

 19. Negrut, D., Serban, R., Li, A., Seidl, A.: Unified memory in cuda 6.0. a brief overview of related
data access and transfer issues. In: Tech. Rep. TR-2014-09, University of Wisconsin–Madison
(2014)

 20. NVIDIA: CUDA Toolkit Documentation. CUDA Runtime API (2018). V 10.0.130. https ://docs.
nvidi a.com/cuda/cuda-runti me-api/index .html

 21. NVIDIA: Cuda c programming guide (2019). https ://docs.nvidi a.com/cuda/cuda-c-progr ammin
g-guide /index .html

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1007/s11227-017-2159-7
https://www.bnl.gov/compsci/docs/Hal-Finkel-padal_2017.pdf
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html
http://streamcomputing.eu/blog/2013-11-14/cuda-6-unified-memory-explained/
http://streamcomputing.eu/blog/2013-11-14/cuda-6-unified-memory-explained/
https://doi.org/10.1007/s11227-017-2091-x
https://doi.org/10.1007/s11227-017-2091-x
http://dl.acm.org/citation.cfm?id=2523721.2523758
http://dl.acm.org/citation.cfm?id=2523721.2523758
https://doi.org/10.1145/2731186.2731192
https://doi.org/10.1145/2731186.2731192
https://doi.org/10.1109/HPEC.2014.7040988
https://doi.org/10.1109/CCGrid.2015.105
https://www.scpe.org/index.php/scpe/article/view/1389
https://www.scpe.org/index.php/scpe/article/view/1389
https://cug.org/proceedings/cug2017_proceedings/includes/files/ven112s1.pdf
https://doi.org/10.1145/3148173.3148184
https://doi.org/10.1145/3148173.3148184
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://mostwiedzy.pl

7645

1 3

Performance evaluation of Unified Memory with prefetching…

 22. Pirja A, Petrosanu M (2014) Improving parallel programming in the compute unified device archi-
tecture using the unified memory feature. ftp://ftp.repec .org/opt/ReDIF /RePEc /rau/jisom g/WI14/
JISOM -Wi14-A14.pdf

 23. Rościszewski P, Czarnul P, Lewandowski R, Schally-Kacprzak M (2019) Kernelhive: a new work-
flow-based framework for multilevel high performance computing using clusters and workstations
with cpus and gpus. Concur Comput Pract Exp(9):2586–2607. https ://doi.org/10.1002/cpe.3719.
https ://onlin elibr ary.wiley .com/doi/abs/10.1002/cpe.3719

 24. Rościszewski P, Iwański M, Czarnul P (2019) The impact of the ac922 architecture on performance
of deep neural network training. In: Proceedings of the 2019 International Conference on High Per-
formance Computing & Simulation (HPCS 2019). Dublin, Ireland. In press

 25. Sakharnykh N (2015) Combine openacc and unified memory for productivity and performance.
https ://devbl ogs.nvidi a.com/paral lelfo rall/combi ne-opena cc-unifi ed-memor y-produ ctivi ty-perfo
rmanc e/

 26. Sakharnykh N (2016) Beyond gpu memory limits with unified memory on pascal. https ://devbl ogs.
nvidi a.com/beyon d-gpu-memor y-limit s-unifi ed-memor y-pasca l/

 27. Sakharnykh N (2017) Maximizing unified memory performance in cuda. https ://devbl ogs.nvidi
a.com/maxim izing -unifi ed-memor y-perfo rmanc e-cuda/

 28. Sakharnykh N (2017) Unified memory on pascal and volta. http://on-deman d.gpute chcon f.com/
gtc/2017/prese ntati on/s7285 -nikol ay-sakha rnykh -unifi ed-memor y-on-pasca l-and-volta .pdf

 29. Sobel I (2014) An isotropic 3 × 3 image gradient operator. Presentation at Stanford A.I. Project 1968
 30. Soto AR (2017) Design and development of support for gpu unified memory in ompss. Master’s the-

sis, Universitat Polit‘ecnica de Catalunya. https ://upcom mons.upc.edu/bitst ream/handl e/2117/11243
7/12695 5.pdf

 31. Unified memory on p9+v100 (2018) ORNL workshop. https ://www.olcf.ornl.gov/wp-conte nt/uploa
ds/2018/03/ORNL_works hop_mar20 18.pdf

 32. Wang P, Sakharnykh N (2016) Hpgmg performance on pascal gpu architecture. https ://crd.lbl.gov/
asset s/Uploa ds/SC16-HPGMG -BoF-NVIDI A.pdf

 33. Zheng T, Nellans D, Zulfiqar A, Stephenson M, Keckler SW (2016) Towards high performance
paged memory for gpus. In: 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp 345–357. https ://doi.org/10.1109/HPCA.2016.74460 77

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

ftp://ftp.repec.org/opt/ReDIF/RePEc/rau/jisomg/WI14/JISOM-Wi14-A14.pdf
ftp://ftp.repec.org/opt/ReDIF/RePEc/rau/jisomg/WI14/JISOM-Wi14-A14.pdf
https://doi.org/10.1002/cpe.3719
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3719
https://devblogs.nvidia.com/parallelforall/combine-openacc-unified-memory-productivity-performance/
https://devblogs.nvidia.com/parallelforall/combine-openacc-unified-memory-productivity-performance/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
http://on-demand.gputechconf.com/gtc/2017/presentation/s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.pdf
https://upcommons.upc.edu/bitstream/handle/2117/112437/126955.pdf
https://upcommons.upc.edu/bitstream/handle/2117/112437/126955.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/03/ORNL_workshop_mar2018.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/03/ORNL_workshop_mar2018.pdf
https://crd.lbl.gov/assets/Uploads/SC16-HPGMG-BoF-NVIDIA.pdf
https://crd.lbl.gov/assets/Uploads/SC16-HPGMG-BoF-NVIDIA.pdf
https://doi.org/10.1109/HPCA.2016.7446077
http://mostwiedzy.pl

	Performance evaluation of Unified Memory with prefetching and oversubscription for selected parallel CUDA applications on NVIDIA Pascal and Volta GPUs
	Abstract
	1 Introduction
	2 Related work and motivations
	3 Evaluation of modern Unified Memory features
	3.1 Methodology
	3.2 Applications
	3.2.1 Sobel filter
	3.2.2 Image rotation
	3.2.3 Streamed image processing
	3.2.4 Fluid dynamic simulation

	4 Experiments
	4.1 Test platforms
	4.2 Tests
	4.2.1 UM optimizations: prefetching
	4.2.2 UM oversubscription

	4.3 Discussion

	5 Summary and future work
	References

