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Abstract—Viscous Dampers (VDs) are widely used as 

passive energy dissipation system for improving seismic 

performance levels especially in retrofitting of buildings. 

Residual Inter-story Drift Ratio (R-IDR) is another 

important factor that specifies the condition of building 

after earthquake. The values of R-IDR illustrates the 

possibility of retrofitting and repairing of a building. 

Therefore, this study aims to explore the vector-valued 

Intensity Measures (IMs) for predicting the R-IDR of two 

group of steel Moment-Resisting Frames (MRFs) with and 

without implementing VDs. Incremental Dynamic Analysis 

(IDA) was performed with considering RIDR using 

OpenSees software. Efficiency and sufficiency have been 

quantified for 18 vector-valued IMs with respect to the 

Residual Interstory Drift Ratio (R-IDR). Results showed 

that two vector-valued IMs of (Sa(T1), SaRatioM-D) and 

(Sa(T1), IM-D) had lower σlnSaRD|IM2 values in the R-IDR of 

0.002, 0.005, 0.01, and 0.02, and they had higher FR in the 

mean dispersion, (σlnSaRD|IM2)avg, compared to other 

IMs. In addition, two vector-valued IMs of (Sa(T1), 

SaRatioM-D) and (Sa(T1), IM-D) achieved p-values higher than 

0.05 with respect to seismic ground motion features of M, R, 

and Vs30, and can be used as optimal vector-valued IMs.  

Index Terms— Vector-valued intensity measure, Spectral 

shape, Residual drift assessment, viscous damper, 

Incremental dynamic analysis. 

I. INTRODUCTION

It was shown that some uncertainty in the ground 

motion intensity, known as Intensity Measure (IM), has 

some limitation for describing the seismic demands. 

Therefore, identifying a simple while practical IM that 

presents the key features of the ground motion record was 

the main purpose of many researchers. Some studies 

focused on the mathematical methods to identify the 

pulses in the acceleration series using continuous wavelet 
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transformation [1, 2], while these methods are more 

complicated for seismic design procedures. IMs can be 

described based on either scalar-valued or vector-valued 

IMs [3, 4]. To overcome the insufficiency of some scalar-

valued IMs, vector-valued IMs have been proposed to 

incorporate spectral ordinates at other than fundamental 

period known as T1 [5, 6]. It is worth to mention that all 

these IMs are used for assessing the seismic response of 

structures or the seismic collapse capacity of structures 

considering interstory drift ratio as engineering demand 

parameter (EDP) [7-9]. While the maximum Residual 

Interstory Drift Ratio (R-IDR) plays a crucial role for 

retrofitting decision and repairing cost of a building 

during severe earthquake [10-12]. For example, several 

buildings, damaged during the 1985 Michoacán 

earthquake in Mexico City, had to be demolished due to 

the large residual drifts of columns [13]. Many 

researchers recommended that the estimation of residual 

displacement could be significant in design procedures 

and also the seismic performance evaluation of existing 

structures [14, 15]. During the past two decades, some 

numerical studies identified that the post-yield stiffness 

ratio (i.e. ratio of post-yield stiffness to initial elastic 

stiffness) is one of the main parameters affecting residual 

deformations [16, 17]. Moreover, the ground motion 

intensity, the component hysteretic behavior, and the 

over-strength of structure can influence the residual drift 

amplitude and distribution over the height. In addition, 

some studies have been conducted to investigate the 

seismic collapse capacities and seismic performance 

levels of steel buildings using Sa(T1) as IM [18, 19]. This 

paper aims to investigate the vector-valued IMs for 

predicting R-IDR of the steel Moment-Resisting Frames 

(MRFs) considering Viscous Dampers (VDs). This study 

proposes optimal vector-valued IMs based on the 

efficiency and sufficiency of the IM with a certain 

confidence level. The proposed IMs can be used in 
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nonlinear dynamic analysis to achieve seismic response 

of structures with high reliability. 

II. VECTOR-VALUED INTENSITY MEASURE 

This paper aims to elaborate the vector-valued IMs for 

predicting the R-IDR of two group of steel Moment-

Resisting Frames (MRFs) to improve the quantification 

of ground motion records. In this section, 18 vector-

valued IMs are defined as (IM1, IM2). In this definition, 

spectral acceleration at the fundamental period of the 

structure, T1, known as Sa(T1), was selected as IM1, and 

IM2 was selected as the un-scalable part with no changing 

during the scaling the ground motion record. Table I 

presents the vector-valued IMs assumed in this study and 

their definition [4]. 

TABLE I.  VECTOR-VALUED IMS ASSUMED IN THIS STUDY. 
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III. MODELS AND DESIGNING PROCESS 

To better investigate the reliability of vector-valued 
IMs, two group of steel Moment-Resisting Frames 

(MRFs) were modeled. The first group includes the 3-
Story, 6-Story, and 9-Story-SAC steel MRFs that were 
used in the SAC project [20] and can be find in detail in 
FEMA 355C [21]. Fig. 1 illustrates the dimensions and 
configuration of the 3-Story, 6-Story, and 9-Story-
Reference steel MRFs with implementing the linear VDs. 
The second group includes the 3-Story, 6-Story, and 9-
Story-SAC steel MRFs that were used by Kazemi et al. 
[22-25] and designed in accordance with ASCE07-10 
[26]. Fig. 2 illustrates the dimensions and configuration 
of the 3-Story, 6-Story, and 9-Story-Reference steel 
MRFs with implementing the linear VDs. It should be 
noted that the linear VDs were implemented as a 
retrofitting strategy to improve the seismic performance 
levels of the considered steel MRFs. The P-Delta effects 
play a crucial role in the seismic vulnerability assessment 
of steel MRFs and should be considered in modeling 
procedure. Therefore, all columns except those in the 
steel MRFs were considered as the leaning column that 
was used by many researcher for considering the P-Delta 
effects [7, 19, 22-26] to model structures in OpenSees 
[28]. Moreover, a concentrated plasticity model which 
includes the nonlinear rotational spring with nonlinear 
behavior of the Modified Ibarra–Krawinkler bilinear-
hysteretic model was used in modeling of the structural 
elements like as beams and columns [1, 2, 7-9, 29-31]. 
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Figure 1.  Documentation of the 3-Story, 6-Story, and 9-Story-SAC 

steel MRFs with implementing the linear VDs. 
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Figure 2.  Documentation of the 3-Story, 6-Story, and 9-Story-

Reference steel MRFs with implementing the linear VDs. 

Previous studies showed that linear VDs could 
improve the seismic performance levels of structures 
more than nonlinear VDs [8, 22-24]. Therefore, in this 
study, the linear VDs were implemented in the 
aforementioned steel MRFs. For this purpose, a uniform 
vertical distribution of damping coefficients was assumed, 
and the supplemental viscous damping ratio of 0.15 
(ξVD=0.15) was considered, which can be calculated from 
following equations: 
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Where ND presents the number of VDs, Ci presents the 

damping coefficient, Ns presents the number of story 

levels, θi presents the angle of damper direction, mj 

presents the mass of each story, φri1 presents the first 

mode component at the top of the story, and φj1 presents 

the relative deformation between two ends of the VD. In 

addition, CVD can be used to calculate the damping 

coefficient for all linear VDs. To perform Incremental 

Dynamic Analysis (IDA), ground motion records 

considered by Jamshidiha et al. [3, 4] were used. In 

addition, four RIDRmax of 0.2%, 0.5%, 1.0%, and 2.0% 

were assumed according to Yahyazadeh et al. [32]. 

IV. INVESTIGATING THE EFFICIENCY OF THE IMS 

This section investigates the efficiency of the vector-

valued IMs. The efficiency of an IM describes as the 

ability of the IM to predict the R-IDR of steel MRFs with 

lower dispersion compared to other assumed IMs. The 

dispersion of the IMs for predicting R-IDR can be 

compared using the logarithmic standard deviation of IM 

values known as σlnSaRD|IM2. Fig. 3 presents the 

comparison of σlnSaRD|IM2 values for vector-valued IMs 

in the 3-Story-SAC, 6-Story-SAC, and 9-Story-SAC steel 

MRFs, without and with implementing linear VDs, 

respectively. According to Fig. 3, it can be seen that in 

the 3-Story-SAC steel MRF, (Sa(T1), SaRatioM-D) 

achieved σlnSaRD|IM2 values of 0.26, 0.36, 0.33, and 0.24 

in the R-IDR of 0.002, 0.005, 0.01, and 0.02, respectively, 

which were lower than other IMs. 

 

Figure 3.  Comparison of σlnSaRD|IM2 values for vector-valued IMs in 
the, a) 3-Story-SAC, b) 6-Story-SAC, and c) 9-Story-SAC steel MRFs. 

For the 6-Story-SAC steel MRF, (Sa(T1), SaRatioM-D) 

achieved σlnSaRD|IM2 values of 0.35, 0.28, and 0.24 in 

the R-IDR of 0.005, 0.01, and 0.02, respectively, and for 

the 9-Story-SAC steel MRF, (Sa(T1), SaRatioM-D) 

achieved σlnSaRD|IM2 values of 0.28, 0.28, and 0.25 in 

the R-IDR of 0.005, 0.01, and 0.02, respectively. 

Similarly, (Sa(T1), SaRatioM-D) achieved the lowest 

σlnSaRD|IM2 values in the 3-Story-SAC, 6-Story-SAC, 

and 9-Story-SAC steel MRFs with implementing linear 

VDs.  

 

Figure 4.  Comparison of σlnSaRD|IM2 values for vector-valued IMs in 

the, a) 3-Story-Reference, b) 6-Story-Reference, and c) 9-Story-
Reference steel MRFs. 

Therefore, this vector-valued IM had the highest 

efficiency compared to other IMs. Fig. 5 presents 

comparison of σlnSaRD|IM2 values for vector-valued IMs 

in the 3-Story-Reference, 6-Story-Reference, and 9-

Story-Reference steel MRFs without and with 

implementing linear VDs, respectively. It can be seen that 

(Sa(T1), SaRatioM-D) had the lowest σlnSaRD|IM2 values in 

this group of structures and can be selected as optimal 

vector-valued IM regarding the efficiency. Table II 

illustrates Fractional Reduction (FR) in the mean 

dispersion, (σlnSaRD|IM2)avg, determined in the vector-

valued IMs with and without linear VDs for four selected 

IMs with lower σlnSaRD|IM2 values. It can be seen that 

(Sa(T1), SaRatioM-D) and (Sa(T1), IM-D) had higher FR 

compared to other IMs. 

TABLE II.  FRACTİONAL REDUCTİON (FR) İN (ΣLNSARD|IM2)AVG 

DETERMİNED İN THE VECTOR-VALUED IMS WİTH AND WİTHOUT LİNEAR 

VDS. 
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RD=0.2% 0.27 16.25 0.27 16.22 0.29 9.89 0.28 15.89 

RD=0.5% 0.38 13.80 0.39 11.17 0.38 12.74 0.33 23.31 

RD=1% 0.38 15.18 0.40 11.28 0.36 18.56 0.32 29.04 

RD=2% 0.31 21.05 0.32 17.19 0.29 24.51 0.26 32.48 

W
it

h
 V

D
 

RD=0.2% 0.30 14.46 0.31 10.34 0.30 13.06 0.27 21.72 

RD=0.5% 0.38 12.78 0.40 6.95 0.36 17.05 0.32 26.64 

RD=1% 0.40 11.73 0.42 7.27 0.38 15.83 0.34 25.74 

RD=2% 0.37 14.03 0.39 9.70 0.32 25.75 0.28 34.57 
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V. INVESTIGATING THE SUFFICIENCY OF THE IMS 

This section investigates the sufficiency of the vector-

valued IMs. The sufficiency of an IM describes as the 

ability of the IM to predict the R-IDR of steel MRFs with 

lower independency to ground motion properties such as 

source to site distance, known as R, ground motion 

magnitude, known as M, and the average shear wave 

velocity, known as Vs30. The lower independency to 

ground motion properties can cause that the IM be 

sufficient for seismic R-IDR assessment without biased 

results. To compare the sufficiency of the vector-valued 

IMs, the p-value of the considered IMs was calculated, 

which the p-value should be higher than 0.05 to imply the 

sufficiency of the IM. Fig. 5 presents the comparison of 

the p-value for four vector-valued IMs for predicting R-

IDR of assumed steel MRFs without and with 

implementing linear VDs in the seismic features of M, R, 

and Vs30, respectively. It is obvious that two vector-

valued IMs of (Sa(T1), SaRatioM-D) and (Sa(T1), IM-D) had 

higher p-values in the predicting the R-IDR of the all 

considered steel MRFs with and without VDs regarding 

seismic features of, M, R, and Vs30. 

 

Figure 5.  Comparison of the p-value for four vector-valued IMs for 
predicting R-IDR of assumed steel MRFs with seismic features of, a) M, 

b) R, and c) Vs30. 

Therefore, two vector-valued IMs of (Sa(T1), 

SaRatioM-D) and (Sa(T1), IM-D), which had the efficiency 

and sufficiency factors are proposed as optimal vector-

valued IMs for predicting R-IDR of steel MRFs with and 

without VDs. Table III illustrates the percent of structures 

with p-values ≥ 0.05 obtained for vector-valued IMs with 

respect to the seismic features of M, R, and Vs30. The 

results showed that two vector-valued IMs of (Sa(T1), 

SaRatioM-D) and (Sa(T1), IM-D) had higher percent of 

structures with p-values ≥ 0.05. 

 

TABLE III.  PERCENT OF STRUCTURES WITH P-VALUES ≥ 0.05 

OBTAINED FOR VECTOR-VALUED IMS WITH RESPECT TO THE SEISMIC 

FEATURES OF M, R, AND VS30. 

 
% of structures with p-
values ≥ 0.05 

 IM M R Vs30 

Without 

VDs 

(Sa(T1), Sa(T1)/PGV) 25 100 87.5 

(Sa(T1), Sa(T1)/SI) 91.67 91.67 91.67 

(Sa(T1), IM-D) 87.5 100 95.83 

(Sa(T1), SaRatioM-D) 95.83 100 91.67 

With 

VDs 

(Sa(T1), Sa(T1)/PGV) 54.17 100 81.5 

(Sa(T1), Sa(T1)/SI) 91.67 100 81.5 

(Sa(T1), IM-D) 95.83 95.83 83.33 

(Sa(T1), SaRatioM-D) 89.17 100 91.67 

VI. CONCLUSION  

In this study, the efficiency and sufficiency of 18 

vector-valued IMs for predicting the R-IDR of two group 

of the 3-Story, 6-Story, and 9-Story-SAC steel MRFs and 

the 3-Story, 6-Story, and 9-Story-Reference steel MRFs 

with and without VDs were investigated. Results of 

analyses showed that two vector-valued IMs of (Sa(T1), 

SaRatioM-D) and (Sa(T1), IM-D) had lower σlnSaRD|IM2 

values in the R-IDR of 0.002, 0.005, 0.01, and 0.02, 

which showes the efficiency of these IMs. In addition, 

two vector-valued IMs of (Sa(T1), SaRatioM-D) and 

(Sa(T1), IM-D) achieved higher FR in the mean dispersion, 

(σlnSaRD|IM2)avg, compared to other IMs. The p-value 

of (Sa(T1), SaRatioM-D) and (Sa(T1), IM-D) with respect to 

seismic ground motion features of M, R, and Vs30, were 

higher than 0.05, which shows the sufficiency of assumed 

IMs. In can be concluded that two vector-valued IMs of 

(Sa(T1), SaRatioM-D) and (Sa(T1), IM-D) could be used as 

optimal vector-valued IMs for predicting the R-IDR of 

steel MRFs. 
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