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Abstract
Let S

2 be a two-dimensional sphere. We consider two types of its foliations with one
singularity and maps f : S

2 → S
2 preserving these foliations, more and less regular.

We prove that in both cases f has at least | deg( f )| fixed points, where deg( f ) is a
topological degree of f . In particular, the lower growth rate of the number of fixed
points of the iterations of f is at least log | deg( f )|. This confirms the Shub’s conjecture
in these classes of maps.
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1 Introduction

Estimating the growth rate of the number of fixed points of the nth iterate of a smooth
map of the n-dimensional sphere to itself is a challenging problem. It was conjectured
by Michael Shub in 1974 that it must be (asymptotically) exponential (cf. [17,18]):
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lim sup
n→∞

log # Fix( f n)

n
≥ log | deg( f )|, (1.1)

where deg( f ) denotes the degree of f .
On the other hand, (1.1) does not hold for every continues map f (cf. an example

of a map with only two periodic points and deg( f ) = 2 in [19]), while it is known that
the smoothness implies that the growth of number of periodic orbits with the periods
not greater than n is at least linear with respect to n [1] and indeed could be linear up
to any fixed period [5] (in particular, cf. [6] for self-maps of S

3). Proving or disproving
the Shub’s conjecture would substantially extend our knowledge about the role of the
differentiability assumption in periodic point theory.

Even in the simplest case of two-dimensional sphere S
2 the conjecture still remains

unsolved, although there has been a lot of progress in some particular cases. During the
last few years the exponential growth was obtained under some topological conditions
for S

2 and annulus [2,9–12]. Let us remark that the Shub’s question is also interesting
if posed in C0 topology under some additional conditions on the considered class of
maps.

Recently the problem for S
2 has been studied in [15,16] (see also [7,8] for higher

dimensional spheres) under the assumption that the map is smooth and preserves
some “geographical” (singular) foliation. In this context a natural question arises, what
happens when we change the “geography” and replace the assumption of smoothness
by another one.

In this paper we consider foliations with one singularity and give the description
of maps preserving such foliations, revealing mechanisms responsible for appear-
ance of periodic points. In geographical terms, one singularity means that our
planet, call it Monopole, has only one pole. After all, if physicists can admit mag-
netic monopoles (see, e.g. [4]), there is no reason for not admitting geographical
monopoles.

The natural coordinates on the surface of Monopole are easy to describe. Suppose
that our sphere S

2 is given by the equation x2 + y2 + (z − 1)2 = 1. The pole P is the
origin. Let us denote the xy-plane by π . A given point Q = (x, y, z) ∈ S

2 belongs to
the half plane πx containing the x-axis and to the half-plane πy containing the y-axis.
We denote by α (β) the angle betweenπx andπ (πy andπ , respectively).We introduce
α and β as new coordinates of Q, both varying from 0◦ to 180◦. We will call them
y-titude and x-titude.

Thus, the lines of constant x-titude (respectively, y-titude), which we callmerallels
(respectively, paridians), are circles that are the intersections of the sphere with the
planes passing through the y-axis (respectively, the x-axis).

Locally, in a neighborhood of the pole, we can easily draw the foliation by the
paridians. For this, we use the stereographic projection from the antipole (0, 0, 2).
The picture will be on the xy-plane, and the projections of the paridians will be
the x-axis and the circles tangent to it at the origin (see Fig. 1). We will consider
paridianal maps of the sphere, that is, maps preserving the foliation by the paridi-
ans.

We also propose a much less regular foliation, with two rabbit-like “ears.” The
corresponding picture in the xy-plane will be the same as for the y-paridianal case in

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Periodic Points for Sphere Maps Preserving Monopole… 535

Fig. 1 Paridianal foliation

Fig. 2 Rabbit foliation

the lower half-plane. In the upper half-plane the leaves will be graphs given by the
polar equation r = c| sin(2θ)|, where θ ∈ (0, π ], and then the smooth deformations
of the circles, being more and more geometrically circle-like as the radius goes to
the infinity (see Fig. 2). We will call this foliation the rabbit foliation, and the maps
preserving this foliation the rabbit maps.

In our approach we consider some type of open subsets of the base of our foliation
with non-zeroBrouwer degree calledpreband andprove a “fixedpoint theorem” stating
the existence of a fixed point of f (or f n for iterations) in every preband. Now in case
of homogeneous foliation (paridianal maps), under the assumption that the pole is a
sink (which is satisfied if the map is smooth), we get that exponential growth of global
degree of iterations implies the same growth of the number of prebands, thus also the
number of fixed points of f n , so the Shub’s conjecture is valid (Theorem 2.19). In
fact, we obtain a more precise estimation # Fix( f n) ≥ | deg( f )|n +1 if | deg( f )| > 1.

If the foliation is not homogeneous, i.e., we consider rabbit maps, the answer is
the same. The Shub’s conjecture holds, but for a completely different reason: all maps
preserving such foliation have degree 0 or ±1 (Theorem 3.5).
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2 Paridianal Maps

Wewill use the general scheme from [15]. However, many elements of this scheme, in
particular the discussion of the behavior of our map close to the pole, will be different.
We use the classical definition of Brouwer degree, cf. [14], where the degree for a C1

map f is defined as a sum of signs of the Jacobian of f at a finite set f −1(y) for y
being a regular value.

We consider the natural system of coordinates on the sphere S
2, defined in the

introduction. We include the pole P , so the y-titude (after the affine rescaling) is an
element of the circle T = R/Z. To denote specific points on this circle we will usually
use the numbers from [0, 1). We will denote the y-titude of a point x ∈ S

2 by �(x).
The function � is well defined and continuous on S

2
�{P}.

Observe that all paridians, except for the pole, are circles, so the pole belongs to
all paridians. However, the singleton of P is also a paridian. We will call paridians
other than {P} proper paridians. Note that if we used the convention that the pole
belongs only to the paridian {P}, our class of maps preserving paridians would be
much smaller.

Definition 2.1 A map f : S
2 → S

2 will be called paridianal if the image of each
paridian is contained in a paridian.

Lemma 2.2 Let f be a paridianal map. If deg( f ) �= 0 then f (P) = P.

Proof If f (P) �= P then by the continuity of f , since every paridian contains P , the
image of the whole sphere would be contained in one paridian. Therefore f would
not be surjective and thus deg( f ) = 0. �	

From now on, we will assume that deg( f ) �= 0.
Fix a paridianal map f . Since f maps paridians to paridians, there exists a map

ϕ : T → T such that for x, f (x) �= P

ϕ ◦ � = � ◦ f . (2.1)

Aswewill consider onlymapswith non-zero degree, byLemma2.2wemay assume
that f (P) = P . Since P belongs to all paridians, ϕ is not defined uniquely. To make
it unique, whenever the whole paridian �−1(y) is mapped by f to P , we set ϕ(y) = 0
and define �(P) = 0. Then we get the following commutative diagram:

S
2 f−−−−→ S

2

⏐
⏐
��

⏐
⏐
��

T
ϕ−−−−→ T

While we cannot claim that ϕ is continuous everywhere, it is continuous where it
is important from the point of view of our considerations (cf. Lemma 2.4 below).

Denote A = ϕ−1(0). Let us take y /∈ A. Then Sy := �−1(y) is a circle. Observe
that we have orientation of the proper paridians consistent throughout the sphere. The
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map f restricted to the circle Sy leads from the circle to the circle. Let us denote the
degree of this map by dSy ( f ). Now consider B, a connected component of the set
T�A.

Lemma 2.3 For y ∈ B, the degree dSy ( f ) depends only on B, not on y.

Proof Let us take a parametrization ηy : S
1 → Sy , which depends smoothly on y.

Then, dSy ( f ) is the degree of the self-map of the circle

fy = η−1
ϕ(y) ◦ f |Sy ◦ ηy . (2.2)

As a consequence by changing y we obtain a homotopy between fy′ and fy′′ for all
y′, y′′ ∈ B and the result follows from homotopical invariance of the degree. �	

We will call the common value of dSy ( f ) for y ∈ B the paridianal degree of B,
and denote it d(B).

Lemma 2.4 If d(B) �= 0 then ϕ is continuous on the closure of B.

Proof Assume that d(B) �= 0 and B = (y−, y+). Continuity of ϕ on B follows from
continuity of f . We will show that for y > y− which tends to y−, ϕ(y) tends to 0, i.e.,
we have right-continuity at y− (the argument for left-continuity at y+ is the same).
Notice that f (Sy) = Sϕ(y) and that f (Sy) covers the whole Sϕ(y) because d(B) �= 0.
By continuity of f , f (Sy)(= Sϕ(y)) tends to f (Sy−) = {P}, which implies that ϕ(y)
tends to 0. �	

Thus, in case of d(B) �= 0, where B = (a, b), we can define the sign of B, which
we will denote 	(B).

	(B) =

⎧

⎪
⎨

⎪
⎩

1 if limt→a+ϕ(t) = 0 and limt→b−ϕ(t) = 1,

−1 if limt→a+ϕ(t) = 1 and limt→b−ϕ(t) = 0,

0 otherwise.

(2.3)

Finally, for an arbitrary B we define the degree of B as deg(B) = 	(B) · d(B) (and
deg(B) = 0 if d(B) = 0 and 	(B) is not defined).

Definition 2.5 A connected component B of T�ϕ−1(0) will be called a preband1 if
deg(B) �= 0. We will denote the set of all prebands of f by B( f ).

Observe that if B is a preband then ϕ(B) = (0, 1) and f (�−1(B)) = S
2
�{P}.

Remark 2.6 If deg(B) = 0, it may happen that the map ϕ is not continuous at the
boundary of B. The simplest example is a map f given by

f (x, y, z) =
(√

1 − (z − 1)2, 0, z
)

,

1 It would be more natural to use the name band, but in several papers this name is used for the sets like
�−1(B).
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538 G. Graff et al.

where the sphere is given by the equation x2+ y2+(z−1)2 = 1, as in the introduction.
Thenϕ−1(0) = 0, so the only component ofT�ϕ−1(0) is (0, 1). However,ϕ(t) = 1/2
for all t ∈ (0, 1), while ϕ(0) = 0. While in this example the degree of f is 0, one can
easily construct similar examples with arbitrary degree of f , based on the same idea.

Lemma 2.7 There are only finitely many prebands.

Proof Suppose that the number of prebands is infinite. Then, there exists a sequence
of prebands (Bi )i which converges to some y0 ∈ A. We choose a point Q ∈ S2 such
that Q �= P . As a consequence of the fact that deg(Bi ) �= 0 we may find a sequence
of points (Qi )i such that

Qi ∈ �−1(Bi ) and f (Qi ) = Q. (2.4)

On the other hand, (Qi )i (or its subsequence) is convergent andwe get: Qi −→
i→∞ Q0

and thus, by (2.4), f (Q0) = Q.
However, �(Q0) = y0, which leads to the following contradiction:

0 = ϕ(y0) = ϕ(�(Q0)) = �( f (Q0)) = �(Q) �= 0,

where in the third equality we use the formula (2.1). �	
Note that outside the pole P a paridianal map f can be written in the following

form:

f (α, β) = (ϕ(α), fα(β)), (2.5)

where α and β are the y- and x-titude, respectively, and fα : S
1 → S

1 is defined in
(2.2). Here we abuse slightly the notation and treat α and β as elements of T rather
than angles from (0, π).

Now we establish the connection between the degree of f and the degrees of
prebands. We do it first under the additional assumption that f is of class C1.

Lemma 2.8 If f : S
2 → S

2 is a C1 paridianal map, then its degree is

deg( f ) =
∑

B∈B( f )

deg(B). (2.6)

Proof As f is a C1 map, we may choose Q �= P , a regular value of f . Then by the
definition

deg( f ) =
∑

xi∈ f −1(Q)

sign det Df (xi ). (2.7)

In the neighborhood of any point xi ∈ f −1(Q) the map f has the form (2.5) for
xi = (αi , βi ) ∈ T × T. On the other hand, f is a paridianal map and thus ϕ is a
function of only one variable α. Thus
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Dfxi =
[

ai 0
· bi

]

, (2.8)

where ai ∈ R is the derivative of ϕ at αi and bi = d fα
dβ

(βi ).

For each fixed αi take the finite set of all βi j such (αi , βi j ) ∈ f −1(Q). Then, by
the formula (2.7) and taking into account that by Lemma 2.3 dSαi

( f ) is the same for
all αi ∈ B and is equal to d(B), we get

deg( f ) =
∑

B

∑

xi∈l−1(B)

sign det Df (xi ) =
∑

B

⎛

⎝

∑

αi∈B
sign(ai ) ·

∑

βi j∈Sαi

sign(bi j )

⎞

⎠

=
∑

B

⎛

⎝

∑

αi∈B
sign(ai )d(B)

⎞

⎠ =
∑

B

	(B) · d(B),

where the summation is taken over a finite number of components B of the set
T�ϕ−1(0) (for some of them perhaps deg(B) = 0). This gives us formula (2.6). �	
Theorem 2.9 If f : S

2 → S
2 is a paridianal map, then formula (2.6) holds.

Proof In order to use Lemma 2.8, we should construct aC1 paridianal map, homotopic
to f , whose prebands have the same degrees as the prebands of f .

The first step is to modify f by homotopy to a map f1 in such a way that f1 differs
from f only on the sets �−1(B) for components B of T�{ϕ−1(0)} which are not
prebands. The map f1 sends each such set �−1(B) to P . To show that f1 is homotopic
to f , it is enough to look at each B separately. If 	(B) = 0, then it is clear that f1
is homotopic to f on the closure of �−1(B), because ϕ is homotopic to a constant on
the closure of B. If d(B) = 0, then to see the homotopy we note that all maps fy ,
defined by (2.2), can be uniformly homotoped to a constant. When moving from one
endpoint of B to the other one, we do not go around the circle, because all maps fy
are “anchored” at P (that is, P belongs to all paridians and f (P) = P).

The second step is to modify f1 by homotopy to a map f2, by making f2 on each
circle �−1(α)with α in a preband B, affinely conjugate to the complex map z �→ zd(B)

of the unit circle. Of course we keep f2(P) = P . This clearly can be done and the
prebands of f2 are the same as for f and have the same degrees.

The third step is to modify f2 by homotopy to a map f3, which is smooth at all
points which are not mapped to P , has the same prebands as f2 and the degrees of
the prebands are the same. We do it by writing f2 in the coordinates α, β like in (2.5),
that is,

f2(α, β) = (ϕ2(α), f2,α(β)).

If we replace in this formula ϕ2 by a continuous map ϕ3, which differs from ϕ2 only
at the prebands, and is affine on each preband, we get a map f3 with the required
properties.
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540 G. Graff et al.

Observe that f3 is already smooth at all points that are not mapped to P . To make
it smooth and preserve the degree, the number of prebands and the degrees of cor-
responding prebands, we replace it with a map f4 = g ◦ f3, where g is a smooth
paridianal map which is close to identity, maps a small neighborhood of P to P , and
maps homeomorphically the rest of the sphere onto S

2
�{P}. We get such a map by

taking a smooth map ψ : [0, 1] → [0, 1] which maps small neighborhoods of 0 and
1 to 0 and 1 respectively, and is strictly increasing on the rest of the interval. Then we
set

g(α, β) = (ψ(α), ψ(β)).

Now Lemma 2.8 applies to f4 and we get the formula (2.6) for our original map
f . �	
When studying the behavior of f near the pole (and the derivative Df (P)) we con-

sider the local planar coordinate system near P given by the stereographic projection
from the antipole (0, 0, 2). In this system 0 is a fixed point representing P and circles
represent paridians (see Fig. 1). The x-axis (with the point at infinity, which we will
not mention later) is also a paridian. To simplify the notation we use the same letter
f for our map in this coordinate system.
Now we want to compare the number of fixed points of a paridianal map f with its

degree if | deg( f )| > 1.
We have to show that in each preband the map ϕ has a fixed point (which must be

different from 0 and 1 which are in the set A).
We will say that the pole is a sink if it is asymptotically stable for f .

Lemma 2.10 Assume that the pole is a sink and 0 is an endpoint of a preband B with
	(B) = 1. Then there is ε > 0 such that if 0 < t < ε then ϕ(t) < t .

Proof Suppose that arbitrarily close to 0 there is t such that ϕ(t) ≥ t . Then either
ϕ(t) > t for all t sufficiently close to 0, or arbitrarily close to 0 there are fixed points
of ϕ.

In the first case, since 0 is an endpoint of a preband, for any t sufficiently close to
0 the map from �−1(t) to �−1(ϕ(t)) is a surjection. Therefore for any t sufficiently
close to 0 there is a sequence of positive numbers tn , convergent to 0, such that
f n(�−1(tn)) = �−1(t). Thismeans that P is even not Lyapunov stable, a contradiction.
In the second case, if t is a fixed point of ϕ, then P is asymptotically stable for f

restricted to the circle �−1(t), which implies that in �−1(t) there is a fixed point of
f other than P . However, if t is sufficiently small, then trajectories of all points of
�−1(t) converge to P , a contradiction. �	
Lemma 2.11 Consider a paridianal map f for which the pole is a sink. Assume that
B �= (0, 1) is a preband, or B = (0, 1) with |d(B)| > 1. Then there is a fixed point of
ϕ in B.

Proof We have to show that the graph of ϕ on B crosses the diagonal. This is clear if
the closure of B does not contain 0 and 1. Suppose now that one endpoint of B is 0
(with 1 the situation is analogous).
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If 	(B) = −1 then clearly ϕ has a fixed point in B. Suppose that 	(B) = 1. By
Lemma 2.10, the point (t, ϕ(t)) lies below the diagonal for small t > 0. Thus, again
the graph of ϕ on B crosses the diagonal. �	
Corollary 2.12 Let B be a preband of a paridianal map f for which the pole is a sink.
Then either there is a fixed point of ϕ in B, or | deg( f )| ≤ 1.

If f is smooth in a neighborhood of P then in important cases P is automatically
a sink.

Theorem 2.13 Assume that a paridianal map f is of class C1 near the pole and one
of the following conditions hold:

(1) there is a preband B �= (0, 1),
(2) B = (0, 1) is a preband and |d(B)| > 1.

Then D f (P) = 0, so the pole is a sink.

Proof We use the planar coordinates, so P becomes 0, and proper paridians become
the x-axis and circles tangent to it at 0 (see Fig. 1).

We will start by proving that Df (0) maps paridians that are circles to paridians.
Let Lr be a paridian of diameter r . Fix ε > 0. By the definition of the derivative, there
exists δ0 such that for every vector (point) v if ‖v‖ ≤ δ0r then

‖ f (v) − Df (0)(v)‖ ≤ ε‖v‖.

For δ ∈ (0, δ0), define the map gδ by gδ(v) = f (δv)/δ. Since f maps paridians to
paridians, the set gδ(Lr ) is contained in a paridian. For v ∈ Lr we have ‖δv‖ ≤ δr ,
and Df (0) is linear, so

‖gδ(v) − Df (0)(v)‖ = 1

δ
‖ f (δv) − Df (0)(δv)‖ ≤ 1

δ
ε‖δv‖ ≤ εr .

Since ε > 0 was arbitrary, this means that Df (0) is the uniform limit of maps gδ

as δ → 0. Therefore, Df (0)(Lr ) is contained in a paridian.
In case (1) there is always a proper paridian that is mapped by f to P , but then the

derivative Df (0) in x-direction is 0. This direction is an eigendirection of D f (0), so the
only possibility for paridians to be mapped by Df (0) to paridians is that Df (0) = 0.

Let us now consider case (2). Then sufficiently small proper paridians cannot be
mapped to the x-axis, unless they are mapped to 0. Therefore, for sufficiently small δ,
the set gδ(Lr ) is either a proper paridian other than the x-axis, or {0}. Hence, the same
is true for Df (0) instead of gδ . This means that either det(Df (0)) �= 0 or Df (0) = 0.

If det(Df (0)) �= 0, then f is one-to-one in a small neighborhood of 0. However,
since |d(B)| > 1, in such neighborhood there are paridians, which are mapped by f
not in the one-to-one manner. This is a contradiction, so we must have Df (0) = 0. �	
Definition 2.14 We will call a paridianal map f sinking if the pole is a sink for f .

From Theorems 2.9 and 2.13, we get the following corollary.
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542 G. Graff et al.

Corollary 2.15 Assume that a paridianal map f is of class C1 near the pole and
| deg( f )| > 1. Then f is sinking.

Remark 2.16 In the class of paridianal maps that are not sinking, we can find simple
examples of maps of degree d, with |d| > 1, that have no periodic points except
one fixed point and the maps are not differentiable only at that point. Although such
examples are already known in literature (cf. [3], Example 2.7), but in our approach
they could be produced very easily. Namely, taking the map that is conjugated to zd on
each paridian and such that the graph of ϕ is over (or under) the diagonal (for example
ϕ(t) = 1

2 t(t + 1)), we get a desired map.

A fixed point of ϕ in a preband gives us a proper paridian that is mapped by f to
itself. The next step is to estimate the number of fixed points in this paridian, other
than P , compared to the degree of f restricted to this paridian.

Lemma 2.17 Let f be a paridianal map. Let B be a preband with d(B) ≤ 0, and let
y ∈ B be a fixed point of ϕ. Then there are at least |d(B)| fixed points of f , other than
P, in �−1(y).

Proof Any continuous map of a circle to itself of degree d has at least |d − 1| fixed
points (cf. [13]). Thus, if d ≤ 0, this number is at least |d| + 1. Taking into account
that in our case one of those points is P , we get at least |d(B)| other fixed points in
�−1(y). �	

This leaves us with the case when d(B) > 0, when we have to take into account
the local behavior of the map at P .

Lemma 2.18 Let f be a sinking paridianal map. Assume that B �= (0, 1) is a preband
with d(B) > 0 or B = (0, 1) with d(B) > 1; and y ∈ B is a fixed point of ϕ. Then
there are at least d(B) fixed points of f , other than P, in �−1(y).

Proof As in the Proof of Lemma 2.10, P is asymptotically stable for f restricted to
the circle �−1(y), and thus, 0 is an attracting fixed point of fy [see (2.2)].

Now consider f̃ y : [0, 1] → R, the lift of fy . The graph of f̃ y intersects d(B)

straight lines of the form y = x + k, k = 0, . . . , d(B) − 1, and thus there must be at
least d(B) fixed points of fy other than 0. This completes the proof. �	

Now we can get an estimate of the number of fixed points of a sinking paridianal
map f with | deg( f )| > 1.

Theorem 2.19 Let f be a sinking paridianal map with | deg( f )| > 1. Then

# Fix( f ) ≥ | deg( f )| + 1. (2.9)

Proof Since | deg( f )| > 1 and by Theorem 2.9, either each preband is different from
(0, 1), or B = (0, 1) is the only preband and |d(B)| > 1. Thus, by Lemma 2.11, there
is a fixed point of ϕ in every preband. By Lemmas 2.17 and 2.18, we see that there are
at least |d(B)| = | deg(B)| fixed points of f , other than P , in every preband B. Using
Theorem 2.9, and remembering that P is also a fixed point, we get (2.9). �	
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Taking into account Lemma 2.2 in case | deg( f )| ≤ 1, we get for an arbitrary degree
the following corollary.

Corollary 2.20 If f is a sinking paridianal map, then it has at least | deg( f )| fixed
points.

If f is a sinking paridianal map then f n is also a sinking paridianal map. Moreover,
deg( f n) = deg( f )n . As a consequence, we obtain the conclusion, in which we obtain
(1.1) in a stronger version with the upper limit replaced by the lower limit.

Corollary 2.21 If f is a sinking paridianal map, then f n has a at least | deg( f )|n fixed
points.

Remark 2.22 Let us notice that Theorem 2.19 and Corollaries 2.20 and 2.21 may
be presented in more general form, for a larger class of foliations. Namely, let us
denote our paridianal foliation by F and consider a foliation h(F), where h is a
homeomorphism of S

2. Then, the mentioned theorem and corollaries hold for a map
f preserving this foliation, for which h(P) is a sink. This follows from the fact that
h−1 ◦ f ◦ h is a sinking paridianal map.

Remark 2.23 In view of Corollary 2.15, in Theorem 2.19 and Corollaries 2.20 and 2.21
we can replace “sinking paridianal maps” by “paridianal maps that are of class C1 in
a neighborhood of the pole”.

3 Rabbit Maps

Here we use the rabbit foliation, defined in the introduction, and consider smooth (of
class C1) sphere maps preserving this foliation, the rabbit maps. We denote the family
of all rabbit maps by R.

Let us be more precise. The pole is still P and there are two ears, which are the
sets given (in the plane, after the stereographic projection, see Fig. 2) in the polar
coordinates by {(r , θ) : r = c sin(2θ), c ∈ [0, 1]} in the first quadrant and {(r , θ) :
r = −c sin(2θ), c ∈ [0, 1]} in the second quadrant. We denote them by E1 and E2,
and their union by E . Each ear is foliated by the appropriate curves r = ±c sin(2θ);
P is a singular point and belongs to all leaves. We divide the rest of the sphere,
G = (S2

�E)∪{P} into two areas G1 which is the part of G in the first and the second
quadrant and G2 which is the part in the third and fourth quadrant and define the
foliation in the following way. In G1 its leaves are given by r = 2 sin θ

√
cos2 θ + c,

where c ≥ 0. In G2 the leaves are circles r = c sin θ . Additionally, the x-axis (with
the point at infinity) is also a leaf.

Two leaves are very special. They are boundaries of the ears, ∂E1 and ∂E2. The
leaves other than ∂E1, ∂E2 and {P} will be called regular.

Fix a rabbit map f .

Lemma 3.1 If deg( f ) �= 0 then f (P) = P.

Proof If f (P) �= P then, since every leaf contains P , the image of the whole sphere
is contained in one leaf. Therefore deg( f ) = 0. �	
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In the rest of the paper we assume that deg( f ) �= 0. In particular, f (P) = P . We
will call the leaves of the rabbit foliation simply leaves.

As in the preceding section, we want to define the map �. However, now we need it
only in a one-sided (from the side ofG1) neighborhoodU of ∂E . Therewe parametrize
the set of leaves by an interval [0, α), for a small α > 0, where 0 corresponds to the
union of two leaves ∂E1 and ∂E2. Thus, we have a projection � : U → [0, α).Wewant
to show that there exists ε ∈ (0, α) and ϕ : [0, ε) → [0, α) such that ϕ ◦ � = � ◦ f .

We have the orientation of proper paridians consistent throughout the sphere. There-
fore if L, K are leaves other than {P}, and f (L) ⊂ K , the degree dL( f ) of the map
f |L : L → K is well defined.
We start with three lemmas.

Lemma 3.2 Let (Ln) and (Kn) be sequences of leaves other than {P}, such that
f (Ln) ⊂ Kn, dLn ( f ) �= 0, and the sequence (Kn) converges to ∂E from the side
of G1. Then the sequence (Ln) also converges to ∂E from the side of G1.

Proof Observe that since dLn ( f ) �= 0, we have f (Ln) = Kn . If there is a subsequence
of (Ln) convergent to a leaf L , then f (L) = ∂E , but ∂E is not contained in any leaf,
a contradiction. However, the only possibility that there is no subsequence of (Ln)

convergent to a leaf is that (Ln) converges to ∂E from the side of G1. �	
Lemma 3.3 We have f (∂E) = ∂E. Moreover, either f (∂E1) = ∂E1 and f (∂E2) =
∂E2, or f (∂E1) = ∂E2 and f (∂E2) = ∂E1. If a leaf L ⊂ G1 is sufficiently close to
∂E, then |dL( f )| = 1.

Proof Choose a point x ∈ ∂E and a sequence (xn) convergent to x from the side
of G1, which are regular values of f . Since deg( f ) �= 0, for each n there is a point
yn ∈ f −1(xn) such that if Ln is the leaf containing yn , then dLn ( f ) �= 0 (if dLn ( f ) = 0
then the sum of the signs of the Jacobian of f over all elements of Ln ∩ f −1(xn) is
zero). The leaf Kn = f (Ln) contains xn , so the sequence (Kn) also converges to ∂E
from the side of G1. Then, by Lemma 3.2, the sequence (Ln) converges to ∂E from
the side of G1. Therefore, f (∂E) = ∂E .

The second statement of the lemma follows from the fact that f maps leaves to
leaves. The third statement follows from the second one. �	
Lemma 3.4 There exists a one-sided (from the side of G1) neighborhood U of ∂E, an
interval [0, α), a projection � : U → [0, α), and a map ϕ : [0, ε) → [0, α) for some
ε ∈ (0, α), such that:

(a) �−1(0) = ∂E,
(b) �−1(t) is a leaf for t > 0,
(c) ϕ ◦ � = � ◦ f ,
(d) ϕ(0) = 0,
(e) ϕ is continuous on [0, ε),
(f) d�−1(t)( f ) is independent of t ∈ (0, ε) and its modulus is 1.

Proof Existence ofU , α and � satisfying (a) and (b) is obvious. Since f maps leaves to
leaves, it is clear how to define ϕ so that it satisfies (c). By Lemma 3.3, for a sufficiently
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small ε > 0, if a leaf L is contained in �−1((0, ε)), then f (L) ⊂ U . Therefore ϕ is well
defined in some [0, ε). Property (d) follows from Lemma 3.3. Properties (e) and (f)
follow from Lemma 3.3 and continuity of f . �	

Now we can prove the main theorem of this section.

Theorem 3.5 If f is a rabbit map, then | deg( f )| ≤ 1. Moreover, it has at least one
fixed point.

Proof Assume that deg( f ) �= 0. Choose a point x ∈ G1, which is a regular value
of f , and lies sufficiently close to ∂E (but far from P). By Lemma 3.2, all elements
of f −1(x) which belong to leaves L such that dL( f ) �= 0, lie in �−1((0, ε)). By
Lemma 3.4 (f) and the same arguments as in the Proof of Lemma 2.8, deg( f ) is equal
to the common value of d�−1(t)( f ) (which has modulus 1) multiplied by the sum of
the signs of ϕ′ at the points of ϕ−1(�(x)). This sum has modulus not larger than 1, so
| deg( f )| ≤ 1.

If deg( f ) �= 0, then by Lemma 3.1 P is a fixed point of f . If deg( f ) = 0 then
considering L( f ), the Lefschetz number of f , we get L( f ) = 1 + deg( f ) = 1 �= 0.
Therefore, by Lefschetz fixed point theorem, f also has a fixed point. �	
Remark 3.6 Let us note that by using arguments similar to those from the Proof of
Theorem 2.9, one can prove Theorem 3.5 for continuous maps preserving the rabbit
foliation.

From Theorem 3.5 we get an obvious corollary.

Corollary 3.7 If f is a rabbit map and deg( f ) �= 0, then the lower growth rate of the
number of fixed points of f n is at least log | deg( f )|.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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2. Boroński, J.P.: A fixed point theorem for the pseudo-circle. Topol. Appl. 158, 775–778 (2011)
3. Blokh, A., Oversteegen, L.: A fixed point theorem for branched covering maps of the plane. Fund.

Math. 206, 77–111 (2009)
4. Brumfiel,G.: ‘Overwhelming’ evidence formonopoles.Nature 3 (2009). https://doi.org/10.1038/news.

2009.881
5. Graff, G., Jezierski, J.: On the growth of the number of periodic points for smooth self-maps of a

compact manifold. Proc. Am. Math. Soc. 135(10), 3249–3254 (2007)
6. Graff, G., Jezierski, J.: Minimal number of periodic points for smooth self-maps of S3. Fund. Math.

204, 127–144 (2009)
7. Graff, G., Misiurewicz, M., Nowak-Przygodzki, P.: Periodic points of latitudinal maps of the m-

dimensional sphere. Discrete Cont. Dyn. Syst. A 36, 6187–6199 (2016)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/news.2009.881
https://doi.org/10.1038/news.2009.881
http://mostwiedzy.pl


546 G. Graff et al.

8. Graff, G., Misiurewicz, M., Nowak-Przygodzki, P.: Shub’s conjecture for smooth longitudinal maps
of Sm . J. Differ. Equ. Appl. 24, 1044–1054 (2018)

9. Hernández-Corbato, L., Ruiz del Portal, F.R.: Fixed point indices of planar continuous maps. Discrete
Contin. Dyn. Syst. 35, 2979–2995 (2015)

10. Honorato, G., Iglesias, J., Portela, A., Rovella, A., Valenzuela, F., Xavier, J.: On the growth rate
inequality for periodic points in the two sphere (2017). preprint arXiv:1707.06144v1

11. Iglesias, J., Portela, A., Rovella, A., Xavier, J.: Dynamics of annulus maps II: periodic points for
coverings. Fund. Math. 235(3), 257–276 (2016)

12. Iglesias, J., Portela, A., Rovella, A., Xavier, J.: Dynamics of annulus maps III: completeness. Nonlin-
earity 29, 2641–2656 (2016)

13. Jiang, B.J.: Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14. Amer. Math. Soc.,
Providence (1983)

14. Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics, no. 73. Cambridge University Press,
Cambridge (1978)

15. Misiurewicz, M.: Periodic points of latitudinal maps. J. Fixed Point Theory Appl. 16(1–2), 149–158
(2014)

16. Pugh, C., Shub, M.: Periodic points on the 2-sphere. Discrete Contin. Dyn. Syst. 34, 1171–1182 (2014)
17. Shub, M.: Dynamical systems, filtration and entropy. Bull. Am. Math. Soc. 80, 27–41 (1974)
18. Shub, M.: All, most, some differentiable dynamical systems. In: Proceedings of the International

Congress of Mathematicians, Madrid, Spain, pp. 99–120. European Math. Society (2006)
19. Shub,M., Sullivan, P.: A remark on the Lefschetz fixed point formula for differentiablemaps. Topology

13, 189–191 (1974)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://arxiv.org/abs/1707.06144v1
http://mostwiedzy.pl

	Periodic Points for Sphere Maps Preserving Monopole Foliations
	Abstract
	1 Introduction
	2 Paridianal Maps
	3 Rabbit Maps
	References




