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Abstract

Heart rate variability (hrv) is a physiological phenomenon of the variation in the length of the

time interval between consecutive heartbeats. In many cases it could be an indicator of the

development of pathological states. The classical approach to the analysis of hrv includes

time domain methods and frequency domain methods. However, attempts are still being

made to define new and more effective hrv assessment tools. Persistent homology is a

novel data analysis tool developed in the recent decades that is rooted at algebraic topology.

The Topological Data Analysis (TDA) approach focuses on examining the shape of the data

in terms of connectedness and holes, and has recently proved to be very effective in various

fields of research. In this paper we propose the use of persistent homology to the hrv analy-

sis. We recall selected topological descriptors used in the literature and we introduce some

new topological descriptors that reflect the specificity of hrv, and we discuss their relation to

the standard hrv measures. In particular, we show that this novel approach provides a col-

lection of indices that might be at least as useful as the classical parameters in differentiating

between series of beat-to-beat intervals (RR-intervals) in healthy subjects and patients suf-

fering from a stroke episode.

1 Introduction

Computational Topology [1] is a modern branch of science that combines the century-long

experience in Algebraic Topology with the new capabilities of contemporary computers. It

provides novel methods for extracting succinct yet meaningful information from complex

data. Persistent Homology (see e.g. [2]) is the main concept that allows for multiscale data

analysis, and a fundamental mathematical tool of Topological Data Analysis (TDA). This pow-

erful tool encompasses the concept of topological persistence for sublevel sets of real-valued

functions, developed already in the 1990s [3–5] and considered a fundamental idea that was

further generalized into Persistent Homology. This idea is often used in tutorials and
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introductions to Persistent Homology; see e.g. [6] or [7, Section 5.2]. The topological persis-

tence is especially well-suited for direct time series analysis; see e.g. [8–10] and references

therein.

Persistent homology is an extension of classical homology that describes topological space

by counting connected components, holes, tunnels, voids, and their higher dimensional coun-

terparts [1]. For example, if one considers the existing methods of hrv analysis, the persistent

homology approach in the two-dimensional case may be interpreted as the statistics of the

number of holes is the Poincaré diagram relative to the resolution of the data.

In this paper, we limit our attention to homology in dimension 0. One of the main reasons

for our choice is the fact that the 0-dimensional homology has natural physiological interpreta-

tion in terms of heart rate variability, unlike the higher-dimensional counterparts; see Section

4 for the discussion of this. Moreover, the 0-dimensional approach is already highly non-trivial

and provides considerable amount of information, as it was shown in some studies on biomed-

ical data. For example, 0-dimensional homology method was used to support the obesity treat-

ment [11], analyze brain artery trees [12], or differentiate young patients in research on the

attention-deficit/hyperactivity disorder (ADHD) [13].

While 0- and 1-dimensional analysis is frequently used in signal processing, the application

of higher-dimensional approach is challenging. On the one hand, some important relations in

data might be found that are not revealed in lower dimensions (see, for example, [14]); on the

other hand, in higher dimensions the analysis may be much more difficult from the computa-

tional point of view [15]. Moreover, little is known about the interpretation of higher-dimen-

sional Betti numbers apart from conjecturing some kind of recurrent behavior [16], such as

periodicity [15] or quasi-periodicity [17]. Another problem is finding appropriate embedding

dimension in which the analysis is meaningful; for example, in the case study of ECG data con-

ducted in [18] it was found out that the results strongly depended on the choice of the embed-

ding dimension (the dimensions considered there ranged from 3 to 7).

The 0-dimensional homology considered in the paper describes connected components of

sublevel sets of the graph of a continuous real-valued function of one variable. This function is

the piece-wise linear interpolation of the mapping that assigns consecutive RR intervals to the

time points at which they appear. When the sublevel set grows, new connected components

are created or existing components merge (and then one of them disappears). We assign two

thresholds to each connected component: one that represents its birth (creation) time, and the

other one that represents its death (destruction) time. The persistence diagram consists of all

the (birth, death) pairs, in our considerations also interpreted as intervals; see Section 2.1 for

details.

The study of hrv has a long tradition with the use of various linear and nonlinear methods

[19]. On the other hand, the repertoire of methods used to complement the existing ones is

still growing [20].

In this paper we study the usefulness of persistent homology as a novel tool that has already

been successfully applied in many branches of science.

Although nonlinear and topological methods have already been used in data processing for

several years [21], the application of persistent homology to hrv data is a matter of recent years

only. For example, in [22, 23], persistent homology was applied to solve the problem of auto-

matic sleep stage classification. The method was used also to study some pathological states. It

turned out to be a valuable method for identifying atrial fibrillation [24], and enabled personal-

ized electrocardiographic signal classification toward arrhythmia detection [25]. In [26] the

persistent homology of networks formed by ordinal partitions for ECG were studied, and used

to detect difference between epileptic and healthy patients.
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The character of our work is primarily methodological, with the aim of initiating the sys-

tematic study of the persistent homology as a tool that could be useful in hrv analysis.

In our previous paper [27], published in the proceedings of ESGCO, we summarized a pre-

liminary study that indicated for the first time the potential usefulness of the topological meth-

ods in the analysis of ECG data. However, in that study we only used 4 most generic

topological parameters, and did not conduct systematic study of their interpretation in the

context of hrv analysis. In this study we expand the collection of the parameters substantially,

and describe many topological indices that characterize persistent homology diagrams

obtained from RR series. We do not only include indices available in the literature, but also

define new ones that reflect the specificity of the RR time series data. These are, in particular,

the family of triangular indices and the signal to noise ratio. In fact, there are many possible

indices that could be defined within the TDA framework. Our aim is to indicate a collection of

natural quantities that is small enough to be handled efficiently, and also somehow reflects the

geometry of RR series.

In order to investigate the most important features of the topological methods, we consider

short-time ECG recordings in healthy volunteers and patients with the ischemic stroke epi-

sode, the latter presenting a large variety of heart rate variability alterations. Acute ischemic

stroke is a leading cause of serious disability and the major cause of mortality in adults. Auto-

nomic imbalance represented by decreased heart rate variability has been reported in stroke

patients. The hrv parameters, assessed from continuous short-term recordings in the acute

phase of ischemic stroke, can also differentiate groups with various neurological outcomes

[28]. However, most of standard HRV parameters are sensitive to the mode of signal collection

and edition and, at many times, the interpretation of the results must include the simultaneous

analysis of respiratory rate. In order to draw conclusions about the applicability of topological

methods to hrv, we first investigate the relation of topological and standard hrv indices, and

next we verify how methods based on persistent homology manage to distinguish between the

studied groups. Previous studies have shown the association of ischemic stroke (brain ische-

mia) with an impairment of cardiac autonomic balance showed by reduced heart rate variabil-

ity and impaired baroreceptor sensitivity. Among others, our team have demonstrated that

both standard and non-linear HRV parameters might have prognostic value as it comes to

short- and long-term functional outcome in post-stroke patients [28]. However, there is still

need for future development of good non-invasive predictors of stroke and its complications.

We believe that novel methods of HRV assessment might provide additional insight into post-

stroke heart rate changes not only related to the change of cardiovascular system, but also

from different origins, including respiratory or humoral ones. Indeed, application of topologi-

cal methods to the analysis of biological, medical, or physical models may provide new insights

and valuable results that might compete with the results of analysis conducted by classical

methods; see [29–31] for some examples. As a consequence, in order to claim our research suc-

cessful, we aim at providing experimental evidence that the results obtained using the topologi-

cal parameters are at least as good as the results obtained using the standard hrv parameters.

We consider this one of the essential steps for further development of clinically useful models

for prediction and detection of stroke and its complications.

The paper is organized as follows. In the first section we provide precise definition of the

persistent homology method and introduce the parameters based on persistence diagram in

details. Then we describe the data set that is used to benchmark the topological method, and

we also list step by step all the operations that we apply to the data. The second section is

devoted to the comparison of topological indices and standard hrv measures tested on groups

of healthy subjects and patients with the episode of ischemic stroke. The obtained results are

discussed and concluded in the last sections.
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2 Materials and methods

2.1 Persistent homology

Let f : ½a; b� ! R be a real-valued function defined on a compact interval. This includes the

case of a time series (r0, . . ., rn), which can be extended to a continuous function f : ½0; n� ! R
by linear interpolation between the data points. For each t 2 R, define the corresponding sub-
level set as f−1((−1, t]). This is the part of the graph of f where the values of f do not exceed t.
See Fig 1(a) for an example. Note that whenever t1� t2, there is the inclusion f−1((−1, t1])�

f−1((−1, t2]).

Topological persistence (introduced in [3–5]) focuses on tracking the changes in topology

throughout the family of all the sublevel sets of f. Let us briefly review this concept. When t
increases, new connected components can be born (due to crossing local minima of f), or

existing connected components can join each other (due to crossing local maxima of f); in the

latter case we say that the component that was born later dies, and if both were born at the

same time, we arbitrarily choose one of them. A succinct representation of this process is a list

of pairs: a birth time of each connected component paired with its death time. Observe that if t
<min f([a, b]) then f−1((−1, t]) = ;. Moreover, if t�max f([a, b]) then f−1((−1, t]) comprises

of the entire graph of f and thus has precisely one connected component; we pair the birth

time of this component with the maximum value of f.
The birth-death times of connected components can be depicted as points in the birth-

death plane, called persistence diagram, as shown in Fig 1(b). Note that some points may have

multiplicity greater than 1 if they correspond to different connected components with the

same birth and death times. Points close to the diagonal come from connected components

with short lifetimes, and these correspond to small fluctuations in the value of f; these features

that can only be seen at fine scales, and thus might sometimes be considered noise in the data.

Points farther apart from the diagonal come from connected components with long lifetimes

and thus correspond to large-scale features in the data. It is also convenient to consider the col-

lection of birth-death intervals (with repetitions), called persistence intervals or barcode, as

illustrated in Fig 1(c). We use the Dionysus 2 software by Dmitriy Morozov to compute the

persistence intervals, see [32, 33].

Fig 1. Persistent homology example. (a) Time series data (r0, . . ., r8), the continuous function f obtained by linear interpolation, and the sublevel set f−1((0, 4]); note

the four connected components that are ‘alive’ at this time. (b) The corresponding persistence diagram containing five birth-death points; note the repetition of (3,5):

both occurrences of this point correspond to connected components that are born, respectively, at indices 4 and 8. (c) The persistence intervals for all the birth-death

pairs.

https://doi.org/10.1371/journal.pone.0253851.g001
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We remark that instead of considering connected components of sublevel sets, one might

directly pair the local minima and maxima of f, although such an approach seems more techni-

cal; see e.g. [11].

2.2 Persistent homology indices

In this section we introduce some quantities that characterize persistence diagrams. Later we

will study their relation to some classical indices that describe heart rate variability.

Let (r0, . . ., rn) be a sequence of RRs, and let ((b1, d1), . . ., (bk, dk)) be the computed persis-

tence intervals, where bi are the birth times, and di are the death times of the connected com-

ponents of the sublevel sets, as explained in Section 2.1. For simplicity of further definitions,

let us assume that the sequence of persistence intervals is sorted by the lengths of the persis-

tence intervals, denoted by li≔ di − bi for i = 1, . . ., k. That is, we have li� lj for i� j.
Let us point out the fact that several topological features can be computed from the

sequence of persistence intervals, but a good choice of particular quantities depends on a spe-

cific application; see e.g. [34, 35]. We use both the previously defined topological indices, cf.

[36], and some new ones as well, introduced in this study to characterize the RR data; see Sec-

tions 2.2.5 and 2.2.8 for the latter.

The first and most obvious index is the number of intervals, the number k in the formulas

above. In the subsequent sections we define several more advanced indices.

2.2.1 Length parameters: Longest interval, length mean, length median, length stdev,
length sum. One of the most frequently used parameters is the length of the longest persistent

interval lk = dk − bk (denoted as longest interval for short). Observe that lk equals max ri−min ri,
which indicates the size of the range of the sequence ðriÞ

n
i¼0

. This parameter is a well-known

indicator in hrv analysis, reflecting respiratory sinus arrhythmia. Usually denoted as “HR

Max−HR Min,” it stands for the difference between the highest and lowest lengths of RR inter-

vals [37]. The length of the longest persistent interval may sometimes be used as a normalizing

factor.

The mean (length mean), median (length median) and the standard deviation (length
stdev) of the lengths of persistence intervals {l1, . . ., lk} are other length-type parameters.

These quantities indicate typical lengths of both short-term and long-term increases and

decreases found in the RR sequence, as well as the variability in size of increases and

decreases in this sequence.

We also compute the sum of lengths of all the persistence intervals (length sum), which is

known in the literature as the 1st persistence moment, or degree-1 total persistence of the

function (see [38, pg. 133]). Since this sum grows with the RR sample length, normally one

would have do divide this sum by the number of RR intervals (or apply a similar scaling fac-

tor), and we would thus call it length sum per rr. However, since in our case the number of con-

sidered RRs is essentially the same for each patient, we do not need to make this correction.

2.2.2 Proportion between the longest intervals: 2/1 ratio, 3/1 ratio. The proportion

between the length of the second longest persistence interval to the length of the longest one:

lk−1/lk, indicates how much of the global minimum–maximum span can be achieved using

another minimum or another maximum (or both). We denote it as 2/1 ratio.

Let us point out the fact that some topological indices are sensitive to the existence of outli-

ers, the very high values of episodic RR intervals. This obviously applies to the longest interval.

That is why the 2/1 ratio parameter is introduced. Its role is to provide information on the

increase in length achieved in two maximal values.

In some applications, analogous quantity is considered regarding the proportion between

the 3rd longest and the 1st longest persistence intervals (we denote it as 3/1 ratio). Considering
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the 2nd and 3rd longest intervals in addition to the longest one is not an unusual practice; see,

for example [34, Table 1].

2.2.3 Persistent entropy, normed persistent entropy: Pers entropy, normed entropy.

Entropy is one of the most common measures of irregularity or complexity. Many of its ver-

sions were successfully applied in the hrv analysis [39–42]. In our approach, we use topological

persistent entropy (see e.g. [43, Definition 3]), which we call pers entropy for short. It is calcu-

lated according to the formula

hðrÞ ¼
Xn

i¼1

�
li
L
log 2

li
L
;

where li is the length of the i-th persistence interval, and L is the sum of the lengths of all the

persistence intervals. It is an adaptation of classical Shannon entropy in computer science (or

Shannon index in ecology) to the context of persistent homology. It is a measure of complexity

of the set of lengths of persistence intervals. The higher the value, the more random-like the

distribution of these lengths appears. We would like to remark that the persistent entropy is

different from sample entropy and approximate entropy of a time series (see e.g. [40]), and is

not directly related to the complexity of the series of RRs.

We also compute a normed version of the persistent entropy, which we call normed entropy.

It is the persistent entropy divided by log2(L).

2.2.4 Relative numbers of long intervals: Frac5%, frac100, frac200. We set up a thresh-

old that distinguishes very short intervals from those of considerable length; length threshold
is the 5% of the length of the longest interval. Then we take the index p such that li� 0.05 lk for

i< p, and li> 0.05 lk for i� p. Limiting one’s attention to intervals whose persistence exceeds

some nonnegative threshold is a common practice, and is used, for example, in the definition

of the p-th persistence moment in [38, pg. 133].

We define frac5% as the number of intervals longer than 5% of the longest one, relative to

the number of all the intervals: (k − p + 1)/k. This quotient corresponds to the number of con-

siderable increases or decreases in RRs in comparison to all the increases and decreases,

including both long-term changes and small fluctuations. We also use the length threshold in

the computation of some other parameters in order to limit our attention to large-scale fluctu-

ations in RRs as opposed to “noise”; see Sections 2.2.5–2.2.7.

At this point we remark that changing the threshold of 5% to another value, for example,

10%, results in a change in the individual values of the computed parameters; this change is in

Table 1. Correlations between selected topological and standard hrv parameters in healthy individuals.

Topological and standard HRV parameters in healthy individuals (CON group)-correlation coefficients R (ns: non-significant

correlation; strong and very strong correlations written in bold)

mean nni sdnn pnni 50 rmssd lfnu hfnu lf hf ratio total power

number of intervals 0,37 0,02 ns ns -0,31 0,31 -0,31 ns

length median 0,41 0,68 0,91 0,92 -0,50 0,50 -0,50 0,74

length stdev 0,31 0,88 0,80 0,80 ns ns ns 0,98

length sum 0,50 0,72 0,98 0,98 -0,46 0,46 -0,46 0,79

frac5% ns 0,68 0,84 0,82 -0,37 0,37 -0,37 0,80

triangle width ns 0,59 ns ns ns ns ns ns

triangle height 0,32 0,74 0,86 0,86 ns ns ns 0,92

triangle location 0,98 0,32 0,47 0,50 ns ns ns ns

triangle misalignment 0,40 0,95 0,74 0,74 ns ns ns 0,90

signal to noise ns 0,74 0,77 0,75 ns ns ns 0,88

https://doi.org/10.1371/journal.pone.0253851.t001
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some cases considerable. This should be in fact expected, because there is no reason for the dis-

tribution of interval lengths to be uniform. A numerical test shows that two features are espe-

cially affected: frac5% and signal to noise, the latter introduced in Section 2.2.5. However, the

results of machine learning described in Section 2.3 and illustrated in Figs 6–9 change very lit-

tle. This is good news, because it suggests that the important features are indeed captured cor-

rectly independent of the actual threshold value applied.

Similarly, we define frac100 as the fraction of intervals whose length is at least 100 ms, and

frac200 as the fraction of intervals whose length is at least 200 ms. The advantage of these indi-

ces is the independence of the global scale of variability of RRs. Using absolute values of differ-

ences in designing hrv measures is a common practice; for example, the percentage of

successive RR intervals that differ by more than 50ms, denoted in the literature as pnni 50, is

one of typical hrv time-domain measures; see e.g. [19].

2.2.5 Signal to noise ratio (signal to noise). Small persistence intervals correspond to

small fluctuations in the sequence of RRs, and therefore may be regarded as “noise”. We intro-

duce a quantity that measures the amount of changes in RRs encompassed by long intervals in

comparison to the cumulative changes in RRs resulting from these small fluctuations. For that

purpose, we compute the total length of all the intervals longer than the threshold defined

above (that is, 5% of the length of the longest interval) relative to the total length of all the

intervals whose length does not exceed the threshold:

ð
Xk

i¼p

liÞ=ð
Xp� 1

i¼0

liÞ

This definition is inspired by the notion of signal-to-noise ratio that compares the level of

the desired signal to the level of the undesired noise affecting the signal, and is well known in

engineering. The “power” of a persistence interval is measured as its length in our approach.

Although its interpretation is different in our case (as discussed in Section 4), this analogy jus-

tifies the name signal to noise that we use for this quotient.

2.2.6 Middle point indices: Middle mean, middle stdev. Middle point indices are defined

as the mean and the standard deviation of the middle point values of all the persistence inter-

vals that are longer than 5% of the longest interval: ððdi þ biÞ=2Þ
k
i¼p. This sequence consists of

central values around which considerable increases or decreases occur in the RR sequence,

and the mean and the standard deviation characterize their location and dispersion.

2.2.7 Birth-death pair indices: Birth mean, birth stdev, death mean, death stdev. We

consider the mean and the standard deviation of the birth times and of the death times in the

birth-death pairs, corresponding to the left-hand-side and the right-hand-side endpoints of

the persistence intervals longer than 5% of the longest interval: ððbi; diÞÞ
k
i¼p. These quantities

characterize the locations and dispersion at those local minima and local maxima, respectively,

that are not part of small fluctuations in the RR sequence. These indices are among the sim-

plest features suggested to be extracted from persistence barcodes; see e.g. [36, Section 4.1.1].

2.2.8 Topological triangle indices: Triangle width, triangle height, triangle location, tri-
angle proportion, triangle misalignment. Classical methods commonly used in hrv analysis

include some geometric methods. This is in particular the triangular index (a triangular inter-

polation of the RR interval histogram) and the Poincaré plot [19]. Geometric patterns that are

revealed during such analysis turn out to carry important information about the structure of

the heart rhythm. We follow this line of research and introduce a new geometric index for per-

sistent diagrams that we call the topological triangle and denote as T(D). It provides a simple

yet meaningful visual description of the location and shape of the set of points D in the
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persistence diagram. The idea is that the triangle T(D) should enclose the set of points D as

tight as possible, with a few points left outside. Indeed, the set D often seems to form a filled tri-

angle, which justifies the choice of the shape of the triangle in our approach, as opposed to an

ellipse or a rectangle. The procedure for the construction of the topological triangle is as fol-

lows; see Fig 2.

Given an angle φ 2 [−π/2, 0), consider a line k that intersects the diagonal line d≔ {x = y}

at the angle φ and that 10% of the points in the persistence diagram D are located at the left-

hand side of the line, and 90%—at the right-hand side. See line AC in Fig 2, with the 10%

points labeled as outliers. Symmetrically, given an angle ψ 2 (0, π/2], consider a line l that

intersects the diagonal line d≔ {x = y} at the angle ψ and that 10% of the points in the persis-

tence diagram D are located at the right-hand side of the line, and 90%—at the left-hand side

(see line BC in Fig 2). Assume k is not parallel to l, and denote the intersection points of the

lines as follows: A≔ k \ d, B≔ l \ d, and C≔ k \ l.
Let c denote the centroid of D, and let p(c) denote its projection onto the diagonal line d. In

order to choose an “optimal” triangle ABC, we selecting the lines k and l, described above, in

such a way that we minimize the sum of the following quantities: (1) the sum of squares of the

distances of the points in D from the two lines, k and l, but we only consider 75% of the points

each time: all the outer points and those inner points that are closest to the line; see the “10–

75% zone” indicated in Fig 2 for the line k, (2) squared distance between A and p(c), and

Fig 2. The topological triangle T(D) that reflects the shape of the set of pointsD in the persistence diagram. See

explanations in text.

https://doi.org/10.1371/journal.pone.0253851.g002
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squared distance between B and p(c), and (3) squared height h of the triangle ABC; see the

height h shown in Fig 2.

In the actual computations, we consider 50 equidistant candidates for the angle φ and 50

equidistant candidates for the angle ψ, and we make the lines k and l run through the points

located at the 10th percentile in the direction perpendicular to the respective lines.

The topological triangle is a convenient visualization tool; however, for the purpose of sta-

tistical analysis, we need specific numbers, not a geometric figure. Therefore, we propose the

following five descriptors of the topological triangle: (1) the length of the base AB of the trian-

gle (triangle width) (2) the height h of the triangle (triangle height), (3) the location of the trian-

gle represented by the X coordinate of the middle of the base of the triangle (triangle location),

(4) the quotient of the lengths of the edges of the triangle: |AC|/|BC| (triangle proportion), and

(5) the misalignment of the triangle equal the sum that is minimized while choosing the opti-

mal angles φ and ψ, described above (triangle misalignment). The intuition behind these fea-

tures of the persistence diagrams is described in details in Section 4.

In the classical topological data analysis, points located far away from the diagonal (which

correspond to longer persistence intervals) are perceived as more significant, while points

closer to the diagonal are considered noise. However, in the hrv analysis, the points that are

near the diagonal may also play an important role, which we discuss in Section 4. Because of

that, we let also these points contribute to the topological triangle that we construct.

2.3 Data sets and the method of processing and analyzing the data

ECG records of two groups of patients were analyzed:

• CON—a group consisting of 46 healthy individuals (28 men), aged 51 ± 12 years, (the data

are available from [44–46]).

• STR—a group consisting of 41 patients (30 men), aged 55 ± 9 years, hospitalized due to the

episode of acute ischemic stroke (the data are available from [47–49]).

The study complies with the Declaration of Helsinki; the study protocol was approved by

the Ethics Committee of the Medical University of Gdańsk (NKEBN/422/2011 and NKEBN/

190/2011). All the participants were informed about the study merits and signed a written

consent.

The groups did not significantly differ according to age and sex. For each subject, ECG was

recorded during rest in the supine position, and sequences of 512 intervals between successive

heartbeats (RR intervals) were used for the analyses. All recordings were carefully inspected

and edited by the cardiologist and RR series with the number of artifacts or ectopic beats

exceeding 10% of all RR intervals were not included in the study. The ectopic beats constituted

0.2% of all the data and were present in the recordings of 11 individuals only.

The topological data analysis that we conducted can be summarized in the following six

steps that are schematically depicted in Fig 3. It is a special case of a generic approach to data

modeling based on persistent homology and machine learning, see e.g. [36, Fig 1].

1. We extract sequences of RR intervals (see Fig 3, part 1) from the ECG records in which

arrhythmia artefacts were previously marked based on visual inspection of the ECG graphs.

There is no universal method for editing the RR intervals; cf. [50]. Therefore, taking into

account the specificity of persistent homology, we apply the following procedure. For the

purpose of computing classical frequency-domain parameters, we use linear interpolation

to smoothen the RRs that were not classified as normal, whenever possible. For the purpose

of computing all the other indices, we only use normal RRs. Additionally, since it is known

PLOS ONE Persistent homology as a new method of the assessment of heart rate variability
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that topological methods are vulnerable to outliers (see e.g. [51]), we remove those RRs that

are apart from the 25-75 percentile range by more than a quarter of the median of the RRs

in the sample, provided their number does not exceed 4. If there are more than 4 outliers,

all of them are considered part of the pattern and participate in the data analysis.

2. For each subject, the RR tachogram in terms of a piecewise linear function is obtained by

joining consecutive values of RRs by affine segments. We remark that if we use a smooth

function instead, such as the one obtained by cubic spline interpolation, the persistence of

the sublevel sets would be essentially the same, so our choice of the simplest interpolation

method does not cause any loss of generality.

3. We compute the persistence diagram for each function using the Dionysus 2 software [32,

33] applied to a filtration created from the RR points and segments in the function graph.

4. We compute topological indices for each persistence diagram, as defined in Section 2.2.

5. We construct machine learning models to assess the usefulness of the topological indices in

relation to the most often used standard hrv parameters; see [19]. We consider the follow-

ing four classical frequency domain parameters:

• total power—the variance of RR intervals over the considered period [ms2],

• lfnu—relative power of the low-frequency band (0.04–0.15 Hz) in normal units,

• hfnu—relative power of the high-frequency band (0.15–0.4 Hz) in normal units,

Fig 3. The steps 1–6 of data analysis described in Section 2.3.

https://doi.org/10.1371/journal.pone.0253851.g003
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• lf/hf ratio—the ratio of the low-frequency power to the high-frequency power [ms2].

We also compute the following four classical time domain parameters:

• mean nni—mean value of normal-to-normal RR interval,

• sdnn—standard deviation of normal-to-normal RR intervals,

• pnni 50—percentage of successive RR intervals that differ by more than 50 ms,

• rmssd—root mean square of successive RR interval differences.

Specifically, we compare models built on the above quadruples of parameters with some of

the best performing models out of the 420 tested models based on all the possible quadru-

ples of the following 7 parameters extracted from persistence diagrams: the total number

of persistence intervals (see Section 2.2), length median, length stdev, length sum (see Sec-

tion 2.2.1), frac5% (see Section 2.2.4), signal to noise (see Section 2.2.5), and pers entropy
(see Section 2.2.3), combined with up to 2 out of the 5 parameters derived from the topo-

logical triangle (see Section 2.2.8). We use the Support Vector Machine (SVM) classifier

(see [52], §9.3) with the linear kernel. We conduct a 3-fold cross validation (see [52],

§8.5.3) to compute receiver operating characteristic (ROC) curves (see [52], §8.3.6). In par-

ticular, we divide the set of the patients into three equal parts with a pseudo-random strati-

fied k-folds cross-validator, then we use every set of two parts to train the model, and we

use the third part for the evaluation and ROC curve computation. When cross-validating,

each time we standardize the features by removing the mean and scaling to unit variance

on training data, and then applying the same transformation to the test data. We use an

implementation of the cross-validator, the standard scaler, and the SVM available in the

scikit-learn library in Python [53]. We remark that a 5-fold cross validation is commonly

used in the literature, but we prefer to use the 3-fold cross validation due to the relatively

small sample size.

6. We average the three computed ROC curves to obtain the mean ROC curve, and then we

take the area under the curve (AUC) as a single number that quantifies the accuracy of the

model.

3 Results

Machine learning models based on standard time-domain, frequency-domain and topological

indices have been compared for their ability to differentiate the CON and STR groups. The

results for models based on standard hrv parameters are shown in Figs 4 and 5: the area under

the ROC curve (AUC) was 0.75 ± 0.08 for the frequency-domain parameters, and 0.79 ± 0.11

for the time-domain parameters. Examples of best models based on topological indices are

given in Figs 6–9; in these cases the mean AUC was about 0.83–0.84. In general, the higher the

ROC curve is located above the diagonal, the better, because this indicates a higher true posi-

tive rate in comparison to the false positive rate. The overall performance of the classifier is

thus measured by the AUC. A classifier with AUC close to 0.5 would be essentially as good as

random choice. In our case all the SVMs were better than that, and even some yielded the

AUC in some of the tests within the cross-validation procedure close to the optimal value of 1.

The results obtained for the SVMs trained on the selected topological features were somewhat

better than in the case of the standard hrv parameters; the difference in the average AUC was

between 5% and 12% in favor of the topological approach.

Out of the several topological indices, we chose a few that represented distinct features of

persistence diagrams. The relation of the selected topological indices to standard heart rate
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variability parameters was tested in the CON group consisting of 46 healthy individuals by

means of linear correlations. The results of this comparison are shown in Table 1.

The table shows the relationship between the topological indices and the most commonly

used standard hrv parameters, both time-domain (mean nni, sdnn, pnni 50 and rmssd) and fre-

quency-domain (lfnu, hfnu, lf/hf ratio and total power) in healthy individuals (the CON

group). One can notice strong positive linear correlation of time-domain hrv parameters

(sdnn, pnni 50 and rmssd) with topological indices based on the length of persistence intervals

(length median, length stdev and length sum) as well as with frac5%, triangle height, triangle mis-
alignment and signal to noise. Triangle location is strongly related with mean nni (correlation

coefficient R = 0.98), while other considered topological indices show moderate (number of
intervals, length median, length stdev, length sum, triangle height, triangle misalignment) or no

correlation (frac5%, triangle width, signal to noise) with mean nni. In frequency-domain analy-

sis, correlations of total power are similar as those for sdnn, which has a simple mathematical

justification [19]. Other spectral parameters (lfnu, hfnu, lf/hf ratio) showed no correlation with

length stdev, signal to noise and all the indices characterizing the topological triangle. The

parameter characterizing vagal modulation (hfnu) showed moderate positive correlation with

Fig 4. Results for the model trained with four frequency hrv parameters: Lf/hf ratio, lfnu, hfnu, total power.

https://doi.org/10.1371/journal.pone.0253851.g004
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the following indices: number of intervals, length median, length sum and frac 5%. On the other

hand, lfnu showed moderate negative correlation with these topological indices.

An example that shows the advantage of topological indices in detecting altered heart rate

variability is given in Fig 10 and Table 2. One healthy person (man, 55 years old) was com-

pared with a stroke patient (man, 56 years old). In this example, almost all standard hrv param-

eters appeared to be similar, while several topological indices were considerably different.

Unfortunately, this does not seem to be a general trend, because otherwise the ROC curves

shown in Figs 6–9 would have been considerably better than those in Figs 4 and 5, while the

difference is in fact not that profound. Nevertheless, this case study clearly highlights the fact

that the topological features have a different potential for differentiating between the patients

than the standard hrv parameters, and in some cases might be more appropriate.

4 Discussion

We are interested in a new approach to the analysis of heart rate variability. This approach

should not be restricted to interpreting beat-to-beat variations, but should provide an insight

into changes that appear in sequences of RR intervals. Moreover, it should not be limited to

Fig 5. Results for the model trained with four classical hrv time domain parameters:Mean nni, sdnn, pnni 50,

rmssd.

https://doi.org/10.1371/journal.pone.0253851.g005
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the analysis of chunks of predefined length; note that such a restriction appears in some meth-

ods, for example, in permutation pattern analysis [54]. Topological indices based on persis-

tence diagrams seem to respond to these needs. As a result, with these methods we can

evaluate changes in heart rhythm caused by different mechanisms.

The persistent homology method has some similarities with the analysis of the statistics of

so-called U-shape patterns (see [55, 56] and references therein). U-shapes are parts of the

tachogram in the night-time recordings consisting of relatively short periods of smooth accel-

erations followed by decelerations in the heart rhythm, lasting in total approximately 20–40

seconds. So-called short acceleration-deceleration events [56] show some similarities with U-

shape patterns but could not be classified as such due to their shorter duration, symmetric

acceleration, or smaller relative amplitude. Persistent homology methods provide a more gen-

eral approach in which each U-shape or short acceleration-deceleration event is related to a

persisting connected component of the graph built from the RR data (a persistence interval).

However, as a multiscale approach, persistent homology detects all the appearing U-shapes

irrespective of their duration and amplitude, while classifying them by the amplitude and

ignoring the information on their duration.

Fig 6. Results for the model trained with four topological parameters: Triangle height, triangle location, number of
intervals, length sum.

https://doi.org/10.1371/journal.pone.0253851.g006
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There is a great variety of topological indices used in the analysis of time series data; see e.g.

[36]. We have chosen a set of topological indices that seem to be useful for hrv analysis. Many

of these indices provide information similar to time-domain standard hrv parameters and

total power in the frequency analysis (cf. Table 1). These indices especially include those based

on the length of persistence intervals (length median, length stdev and length sum); in these

cases, the value of the index grows with the increase in heart rate variability. At the same time,

these indices exhibit weak or moderate linear correlation with the mean length of the RR inter-

vals. However, if one considers the relation of the mentioned indices to spectral components

of hrv then one encounters a different pattern. While length stdev is not related to them, length
median and length sum show moderate positive linear correlation with hfnu, and moderate

negative linear correlation with lfnu and lf/hf. Taking all this into consideration, we are

inclined to believe that indices based on the length of persistence intervals mostly represent

the parasympathetic influence on the heart rate.

We have introduced new parameters derived from the persistence diagrams. We first

noticed that the points in the persistence diagram in almost all the cases formed the shape of a

triangle of various height, width, location, and slantingness. We made these features into

Fig 7. Results for the model trained with four topological parameters: Triangle location, triangle misalignment,
number of intervals, frac 5%.

https://doi.org/10.1371/journal.pone.0253851.g007
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numeric parameters and tested whether they had some relation to the standard hrv features.

We hope that these new parameters, especially in combinations, might deliver comprehensive

information about heart rate changes.

The intuition behind persistence diagrams implies that the location of the triangle closely

follows the average RR value; indeed, there is a strong correlation between these parameters

(R = 0.98; see Table 1). The width of the triangle reflects the width of the range of RR values

and is correlated with sdnn (R = 0.59). On the other hand, the height of the triangle measures

thequantity of long persistence intervals, and thus corresponds to large variations in RR values

spread over multiple RRs. In standard hrv analysis the information about large changes of the

consecutive RR values is mostly given by pnni 50 and indeed, there is a strong correlation

between the triangle height and pnni 50 values (R = 0.86). If the triangle is slanted rightwards

then this indicates the prevalence of larger oscillations within high range of RR values, while

the triangle slanted leftwards suggests that there are more oscillations within the low range of

RRs. Eventually, the triangle misalignment parameter measures the discrepancy between the

actual shape of the set of points in the persistence diagram and the shape of the approximating

triangle.

Fig 8. Results for the model trained with four topological parameters: Triangle location, number of intervals,
length sum, signal to noise.

https://doi.org/10.1371/journal.pone.0253851.g008
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Another parameter introduced in the paper is the signal to noise ratio. Its definition is

inspired by the notion of signal-to-noise ratio in science and engineering, where it measures

the proportion between the level of desired signal and the level of background noise. Typically,

when considering topological persistence in general, small fluctuations in data are regarded as

noise, and thus one would only focus on long persistence intervals. However, in the analysis of

hrv, small persistence intervals may also carry important information, reflecting very frequent

oscillations of zig-zag type with small amplitude, in particular 2UV class of patterns according

to Porta et al. classification [57]. Therefore, low level of signal-to-noise ratio in our case might

be an indication of the dominance of this kind of short-term oscillations over long-term

changes in RR values.

Out of the other parameters that appeared important in studying RR series, we would like

to emphasize the number of persistence intervals. It seems to mirror some special features of

heart rate variability that are encountered especially in stroke patients. In the STR group, the

number of persistence intervals was significantly higher than in the CON group and had no

relation to any of the standard hrv parameters. This might mean that the number of

Fig 9. Results for the model trained with four topological parameters: Triangle width, number of intervals, length
sum, frac 5%.

https://doi.org/10.1371/journal.pone.0253851.g009
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persistence intervals reflects heart rate changes mediated not only by autonomic nervous sys-

tem but also by other mechanisms (respiratory, humoral, etc.)

One of the aims of the paper is to evaluate the usefulness of the topological indices in practi-

cal hrv analysis. For that end, we conducted an experiment in which we tested multiple models

based on 4 parameters for their ability to differentiate CON and STR groups using a

Fig 10. Comparison of tachograms (left) and persistence diagrams (right) in a patient with an acute ischemic stroke (STR, male, 56 years old, upper

panel) and a healthy person (CON, male, 55 years old, bottom panel). See text for details.

https://doi.org/10.1371/journal.pone.0253851.g010
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Table 2. Comparison of values of all the considered standard and topological hrv parameters in a patient with the

acute ischemic stroke (STR, male, 56 years, left-hand side) and a healthy person (CON, male, 55 years, right-hand

side). Ten features that exhibit the highest relative differences are shown in bold typeface. See text for details.

(a) Frequency domain features

lf 503.865 − 635.472

hf 89.084 − 158.911

lf hf ratio 5.656 − 3.999

lfnu 84.976 − 79.996

hfnu 15.024 − 20.004

total power 897.757 − 1018.908

vlf 304.808 − 224.525

(b) Time domain features

mean nni 763.641 − 889.126

sdnn 36.428 − 36.801

sdsd 22.343 − 22.348

pnni 50 2.539 − 2.930

pnni 20 32.227 − 36.133

rmssd 22.344 − 22.348

median nni 761.758 − 886.675

range nni 248.646 − 249.760

cvsd 0.029 − 0.025

cvnni 0.048 − 0.041

mean hr 78.748 − 67.597

max hr 88.922 − 79.259

min hr 64.978 − 59.597

std hr 3.726 − 2.796

(c) Topological features

number of intervals 154 − 97

longest interval 248.646 − 249.760

2/1 ratio 0.991 − 0.911

3/1 ratio 0.836 − 0.729

length mean 29.653 − 47.873

length median 16.495 − 34.080

length stdev 40.159 − 48.174

length sum 8.919 − 9.070

pers entropy 6.461 − 6.010

normed entropy 0.531 − 0.493

length threshold 46.170 − 50.339

frac5% 0.136 − 0.330

frac100 0.058 − 0.113

frac200 0.019 − 0.021

middle mean 110.236 − 99.307

middle stdev 60.120 − 51.961

signal to noise 1.028 − 2.168

birth mean 711.598 − 843.328

birth stdev 25.522 − 31.586

death mean 821.834 − 942.635

death stdev 44.310 − 33.574

triangle width 257.161 − 89.728

triangle height 53.928 − 113.149

(Continued)
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representative machine learning technique, namely the SVM. The results that we obtained

were encouraging. In the tests conducted with the sets of the standard time-domain and fre-

quency-domain hrv parameters resulted in the AUC mean values not exceeding 0.79 (see Figs

4 and 5). However, many sets of topological indices yielded mean AUC values of 0.83 and

more (see some examples in Figs 6–9). There are a few indices that repeatedly appear in the

best predictive models: number of intervals, length median, length stdev, length sum, triangle
height, triangle width, triangle location, frac5%, and signal to noise. Surprisingly, pers entropy,

which is a well-established measure of complexity, is not included in this list. Persistent

entropy is known to be a very good topological classifier in some other applications, for exam-

ple, in epilepsy detection [35]. However, in our case the considered variant of entropy was not

so useful. Further investigation of this finding is needed.

In order to get some insight into the usefulness of the topological indices, we show a specific

case (see Table 2 and Fig 10) in which the indices based on persistence diagrams turn out to be

a better tool for the differentiation between RR series than the standard hrv parameters. This

example suggests that the topological indices provide another kind of information, especially

in groups that encounter hrv changes caused by various mechanisms.

Finally, let us point out possible further research perspectives in the discussed topic. The

persistent homology techniques may be applied to studying some pathological states that are

difficult to analyze by other tools. In particular, in our preliminary study [27], we applied a

simplified version of the currently introduced method to the problem of characterizing a

group of patients suffering from an episode of transient ischemic attack, with promising

results; however, extended study on a larger group of subjects is needed. Another interesting

direction of research is to confront the topological methods with other approaches. In our

paper we did it for standard hrv measures, but it would be valuable to study the relation of per-

sistent homology approach with methods based on non-linear analysis, chaos theory and

dynamical systems, in particular to compare the topological indices with such quantities as

DFA, Lyapunov Exponent, Correlation Dimension, various kinds of entropy measures, to

mention some examples.

Let us remark that we studied the case of 0-dimensional homology, i.e., we examined con-

nected components of the graph of a map constructed from RR series. A natural next step of

research is to consider higher-dimensional counterparts of this construction that include the

analysis of persistence diagrams in dimensions 2, 3, and above. In this approach we would

study the geometry of data in higher dimensions that might reveal additional information

about its structure. Moreover, it seems that involving more sophisticated methods of Topologi-

cal Data Analysis, such as Persistence Landscapes [58], or Persistence Images [59], might pro-

vide new insights, and might result in the development of more powerful approaches to hrv

analysis.

5 Conclusion

Topological indices based on the analysis of persistence diagrams are able to assess heart rate

variability and can be useful in the detection of pathological states. It seems that topological

indices might capture more features of heart rate changes than standard hrv parameters and

Table 2. (Continued)

triangle location 788.270 − 881.985

triangle proportion 0.607 − 1.170

triangle misalignment 311.368 − 122.318

https://doi.org/10.1371/journal.pone.0253851.t002
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might provide valuable information about mechanisms involved in cardiovascular regulation.

Additional studies are needed to further validate these findings.
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30. Knipl DH, Pilarczyk P, Röst G. Rich bifurcation structure in a two-patch vaccination model. SIAM J Appl

Dyn Syst 2015; 14: 980–1017. https://doi.org/10.1137/140993934

31. Pilarczyk P, Garcı́a L, Carreras BA, Llerena I. A dynamical model for plasma confinement transitions. J

Phys A Math Theor 2012; 45: 125502. https://doi.org/10.1088/1751-8113/45/12/125502

PLOS ONE Persistent homology as a new method of the assessment of heart rate variability

PLOS ONE | https://doi.org/10.1371/journal.pone.0253851 July 22, 2021 22 / 24

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://arxiv.org/abs/1809.10745v2
https://arxiv.org/abs/1809.10745v2
https://doi.org/10.1371/journal.pone.0177696
https://doi.org/10.1214/15-AOAS886
https://doi.org/10.1523/ENEURO.0543-19.2020
https://arxiv.org/abs/1711.09158v1
https://arxiv.org/abs/1711.09158v1
https://doi.org/10.1007/s10208-014-9206-z
https://doi.org/10.1063/1.4949472
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1093/europace/euv015
http://www.ncbi.nlm.nih.gov/pubmed/26177817
https://doi.org/10.3389/fphys.2021.637684
https://doi.org/10.3389/fphys.2021.637684
https://arxiv.org/abs/2002.07810v1
https://arxiv.org/abs/2002.07810v1
https://doi.org/10.1016/j.bspc.2019.101563
https://doi.org/10.1016/j.bspc.2019.101563
https://doi.org/10.20944/preprints201908.0320.v1
https://doi.org/10.20944/preprints201908.0320.v1
https://doi.org/10.1103/PhysRevE.100.022314
https://dio.org/10.1109/ESGCO49734.2020.9158054
https://dio.org/10.1109/ESGCO49734.2020.9158054
https://doi.org/10.1097/HJH.0b013e328361e48b
https://doi.org/10.1016/j.jtbi.2011.12.012
https://doi.org/10.1137/140993934
https://doi.org/10.1088/1751-8113/45/12/125502
https://doi.org/10.1371/journal.pone.0253851
http://mostwiedzy.pl


32. Edelsbrunner H, Morozov D. Persistent Homology: Theory and Practice. In: Latała R, Ruciński A, Strze-

lecki P, Świątkowski J, Wrzosek D, Zakrzewski P, editors. Proceedings of the European Congress of
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