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1,5*

1 INVICTA Research and Development Center, Sopot, Poland, 2 Department of Biomedical Engineering,

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk,

Poland, 3 Institute of Computer Science, Faculty of Mathematics, Informatics, and Mechanics, University of

Warsaw, Warsaw, Poland, 4 MIM Solutions, Research and Development Center, Warsaw, Poland,

5 Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland

☯ These authors contributed equally to this work.

* anna.kloska@ug.edu.pl (A.K.); joanna.jakobkiewicz-banecka@ug.edu.pl (J.J.-B.)

Abstract

Controlled ovarian stimulation is tailored to the patient based on clinical parameters but esti-

mating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have

developed a model that takes advantage of the patient’s genetic and clinical characteristics

simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-

related genes identified by next-generation sequencing were matched to groups of various

MII oocyte counts using ranking, correspondence analysis, and self-organizing map meth-

ods. The gradient boosting machine technique was used to train models on a clinical dataset

of 8,574 or a clinical-genetic dataset of 516 ovarian stimulations. The clinical-genetic model

predicted the number of MII oocytes better than that based on clinical data. Anti-Müllerian

hormone level and antral follicle count were the two most important predictors while a

genetic feature consisting of sequence variants in the GDF9, LHCGR, FSHB, ESR1, and

ESR2 genes was the third. The combined contribution of genetic features important for the

prediction was over one-third of that revealed for anti-Müllerian hormone. Predictions of our

clinical-genetic model accurately matched individuals’ actual outcomes preventing over- or

underestimation. The genetic data upgrades the personalized prediction of ovarian stimula-

tion outcomes, thus improving the in vitro fertilization procedure.

Author summary

Infertility is a condition that leads to the failure of natural conception. It affects more than

186 million people worldwide. Because in vitro fertilization (IVF) is an effective infertility

treatment, optimizing the steps in the process is essential to best assist those trying to
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conceive. The IVF process begins with ovarian stimulation during which the woman takes

ovary-stimulating hormones, i.e., gonadotropins, to produce a certain number of viable,

fertilization-ready egg cells, but predicting the number of egg cells collected after such

stimulation is difficult. These predictions are usually based on the patient’s clinical param-

eters and depend on the physician’s experience, making them highly subjective. Here, we

used machine learning to identify features that physicians could adopt to predict the num-

ber of egg cells obtained after ovarian stimulation. We found that clinical parameters

(anti-Müllerian hormone level and antral follicle count), as well as genetic characteristics

(variants in reproduction-related genes—GDF9, LHCGR, FSHB, ESR1, and ESR2), are

important features that increase the accuracy of such predictions. Our predictive model

has been designed to help physicians tailor the protocols used for ovarian stimulation on a

case-by-case basis, thereby improving the safety and efficiency of the IVF process.

Introduction

Infertility affects over 186 million people worldwide and results from a combination of genetic,

environmental, and endocrine factors [1]. Clinical parameters used to evaluate the cause of

female infertility include endocrine indicators such as follicle-stimulating hormone (FSH),

estradiol (E2), inhibin-B, and anti-Müllerian hormone (AMH), as well as ovarian parameters

such as ovarian volume, ovarian vascularity indices, or ovarian reserve, and genetic factors,

such as karyotype abnormalities or primary ciliary dyskinesia [2–5].

One of the most effective infertility treatments is in vitro fertilization (IVF) and optimiza-

tion of this technology is essential to support people who cannot conceive naturally. Many

male and female factors, including genetic factors, may affect the success of IVF, so reliably

predicting its outcome is a challenge. Predictions often depend on the experience of a clinician

which makes them highly subjective. Therefore, clinical parameters such as the woman’s age,

body mass index (BMI), cause and duration of infertility, and markers of the ovarian reserve

such as AMH, FSH, and antral follicle count (AFC) are taken into account in decision-making

about IVF treatment [6]. A comprehensive determination of the relationship between these

interacting features and the outcome of ovarian stimulation is necessary. Artificial intelligence,

machine learning, and deep learning were implemented to develop models used to classify

ovarian response [7], select embryos [8], and predict the outcome of embryo implantation or

the chances of pregnancy [9]. Fed with patient parameters and IVF cycle-specific variables,

predictive models are proving to offer solutions for patients at various stages of the IVF process

with significant confidence.

The ovarian response to controlled gonadotropin stimulation and the retrieval of multiple,

high-quality oocytes is critical for successful embryo formation, selection, and transfer during

the IVF process [10]. The number of oocytes retrieved can increase the probability of obtaining

a live birth from an embryo transfer [11]. The dose of gonadotropin and the pool of recruitable

follicles are the variables that most affect the number of oocytes collected. A very low dose of

gonadotropin is associated with poor ovarian response; raising the dose boosts the number of

growing follicles and the oocyte yield, however, very high doses of gonadotropin in women

with normal ovarian reserve increase the risk of hyper-response [12]. It seems tempting, there-

fore, to focus on the woman’s clinical and genetic characteristics to adjust the type or dose of

drugs used in ovarian stimulation to obtain an optimal number of oocytes.

The objective of this study was to identify potent predictors of ovarian response to gonado-

tropin stimulation by assessing the effect of clinical characteristics, cycle-specific parameters,

PLOS COMPUTATIONAL BIOLOGY Clinical-genetic model to predict ovarian stimulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011020 April 27, 2023 2 / 18

contact the INVICTA Research and Development

Center (cbr@invicta.pl).

Funding: The research was co-financed by the

European Regional Development Fund under the

Pomorskie Voivodeship Regional Operational

Programme for 2014-2020 as part of the project:

The Development and Implementation of a New

Method for Diagnosing Fertility Disorders of

Genetic Origin Based on Next-generation High-

throughput Sequencing. Co-financing agreement

No. RPPM.01.01.01-22-0060/17. The funders had

no role in study design, data collection or analysis,

the decision to publish, or the preparation of the

manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: KZ, SP, MM, MK,

DD, DD, and JJ-B are employees of INVICTA,

clinics and medical laboratories for infertility

treatment. PW and MZ are employees of MIM

Solutions. The affiliation does not affect the

authors’ impartiality, adherence to journal

standards and policies, or availability of data. AK

declares no conflict of interest.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1371/journal.pcbi.1011020
mailto:cbr@invicta.pl
http://mostwiedzy.pl


and reproduction-related gene sequence variants on the number of metaphase II (MII) oocytes

retrieved. We also aimed to develop and validate a machine-learning model using clinical and

genetic data to predict this measure in a cohort of gonadotropin-stimulated patients and

oocyte donors.

Materials and methods

Ethics statement

The study was conducted according to the guidelines of the Declaration of Helsinki and

approved by the Ethics Committee of the Regional Medical Chamber of Gdańsk (protocol

code KB-23/20, date of approval 27th October 2020). Written informed consent was obtained

from all individuals involved in the study. All individual-level data, including clinical data,

were de-identified.

Study population

Data for the study was collected between November 2014 and February 2021 at INVICTA Fer-

tility Clinics (Bydgoszcz, Gdańsk, Gdynia, Słupsk, Warszawa, Wrocław; Poland). The study

population consisted of 6,043 women (9,090 IVF processes) diagnosed with infertility under-

going controlled ovarian stimulation with menotropin (Menopur; Ferring GmbH, Kiel, Ger-

many), follitropin delta (Rekovelle; Ferring GmbH, Kiel, Germany), or follitropin alfa (Gonal

F; Merck Serono S.p.A., Modugno, Italy). Exclusion criteria were: stimulation protocols with

other gonadotropins, AMH levels above 15 ng/ml, or undetected.

DNA extraction

Genomic DNA was isolated from whole blood or urogenital swabs using the MagNA Pure 96

IVD instrument and the MagNA Pure 96 DNA and Viral NA Small Volume Kit (Roche, Basel,

Switzerland). DNA concentration was quantified with the Qubit 2.0 fluorometer (Life Tech-

nologies, Rockville, MD, USA) and Qubit dsDNA HS Assay Kit (ThermoFisher Scientific,

Waltham, MA, USA). Isolates were stored at −80˚C.

Genotyping

Sequence variants were identified by next-generation sequencing (NGS). Targeted libraries

were prepared from 10 ng of gDNA using the Ion AmpliSeq Library Kit 2.0 (ThermoFisher

Scientific, Waltham, MA, USA) and Ion AmpliSeq Made-to-Order panel (primer set version

7.05 based on the hg38 reference genome including 325 amplicons in three primer pools, cov-

ering approximately 73,000 bases in 121 exons with 100-bp exon padding of 14 genes of inter-

est). Sequencing was conducted using the Ion Personal Genome Machine (PGM) (Life

Technologies, Carlsbad, CA, USA) and Ion PGM Hi-Q View Sequencing Kit (ThermoFisher

Scientific, Waltham, MA, USA). Data were analyzed with Ion Torrent Suite Server software

version 5.12.2 (ThermoFisher Scientific, Waltham, MA, USA). Technical details are provided

in S1 Appendix.

Machine learning for a predictive model

A machine learning model was based on the gradient boosting machine (GBM) technique [13]

implemented by the LightGBM framework [14]. The GBM has a built-in ability to handle

missing data and in this study, data from the previous stimulation were not available for the

first-time-stimulated patients. To keep all observations in the modeling, we decided to use

GBM. As GBM parameters, 100 decision trees with five leaves and a maximum depth of 16
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were selected. The training was performed with l2 loss function and gradient-boosted decision

trees (GBDT) using the k-fold cross-validation method with five folds.

Error metrics used to validate model performance included the root mean square error

(RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE)

(defined in S2 Appendix). The SHapley Additive exPlanations (SHAP) library [15] was used

to explain model predictions.

Statistical tests

The Kolmogorov–Smirnov and the Mann–Whitney U tests were used to determine differences

in the distribution of the number of MII oocytes among patients carrying the reference or

alternative allele of sequence variants (hypotheses defined in S2 Appendix). The Pearson cor-

relation coefficient (r), along with the two-sided p-value, was determined to investigate the lin-

ear association between clinical variables and the number of MII oocytes. The significance

level was set to α = 0.05.

Ranking methods

Boruta [16] with the random forests (RF) algorithm [17] and Boruta-SHAP [18] with the GBM

algorithm were used to rank sequence variants. Each sequence variant was considered a sepa-

rate feature with the alternative allele denoted as 1; the number of MII oocytes was considered

a target feature. A rating was assigned to variants according to their importance in predicting

the number of MII oocytes.

Correspondence analysis

Correspondence analysis (CA) [19] was used to find sequence variants characteristic of patient

groups. Inertia covered I 2 [0,1] was used to assess the goodness of the model’s representation

of the dataset, where 1 is a perfect representation. The identified genetic feature was defined as:

IV � CA ¼
X

variant2selected variants

1 if variant is alternative

0 if variant is reference
ð1Þ

(

Generation of a self-organizing map

A self-organizing map (SOM) [20] was applied to detect the most frequent sequence variants

in patient groups. The model was trained with the following parameters: size 6×6 neurons,

hexagonal topology, Gaussian neighboring function, sigma = 1.5, lr = 0.7, 100,000 train itera-

tions, and Manhattan distance metric. The best matching unit (BMU), defined as a neuron

with the lowest distance to observation was assigned for each IVF process. The quantization

error (QE) metric (defined in S2 Appendix) was used to validate SOM performance. The iden-

tified genetic feature was defined as:

SOMv ¼
X

variant2selected variants

1 if variant is alternative

0 if variant is reference
ð2Þ

(

A standardized version of the feature was used for training:

IV8 � 6 ¼
SOMv � EðSOMvÞ

sðSOMvÞ
ð3Þ
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Haplotype construction

Each chromosome was analyzed separately using Haploview software [21] with confidence

intervals, the four gamete rule, and solid spine of linkage disequilibrium (LD) as block genera-

tion algorithms. Uniform Manifold Approximation and Projection (UMAP) [22] was used to

reduce the number of variants in haplotypes. The K-means algorithm was used to cluster the

observations and separate groups of similar patients. Observations were classified based on the

genetic data using a decision tree [23]. Variants in the decision nodes between the root node

and leaves created reduced haplotype defined as:

reduced haplotype ¼
1 if all variants correspond to baseline haplotype

0
ð4Þ

(

Results

A preliminary predictive model based on clinical data

The study population was divided into two groups according to the availability of genetic data:

Group 1, without genetic data, included 5,779 patients and 8,574 IVF processes; Group 2, with

genetic data, included 264 patients and 516 IVF processes. All women were between 18 and 46

years old, had regular 26–32-day menstrual cycles, were undergoing their first or second IVF

cycle, and exhibited no signs of androgenicity, endometriosis, or any chronic diseases. Baseline

clinical characteristics are presented in Table 1. Clinical data, hormonal test results, data on

previous IVF processes and basic characteristics of women in Group 1 (S1 Table) were used to

construct the preliminary model to determine the most important features for predicting the

number of MII oocytes retrieved after ovarian stimulation. The RMSE metric calculated for

the trivial model, defined as the expected number of MII oocytes equal to the population aver-

age, was 4.75 oocytes (the model predicts the number of MII oocytes ± 2.375 oocytes); it was

considered a benchmark value. Features were then added to the dataset in the iterative process

Table 1. Baseline clinical characteristics of study groups. AMH—anti-Müllerian hormone, BMI—body mass index, E2—estradiol, FSH—follicle-stimulating hormone,

IU—international unit, IVF—in vitro fertilization, LH—luteinizing hormone.

Characteristic Group 1 without genetic data Mean ± SD Group 2 with genetic data Mean ± SD

No. of women 5,779 264

No. of IVF processes 8,574 516

Woman’s age (years) 34.51 ± 4.54 34.55 ± 4.20

BMI (kg/m2) 23.42 ± 4.62 23.15 ± 4.11

Stimulation days 8.79 ± 4.36 9.77 ± 3.10

FSH (mIU/mL) 6.46 ± 2.83 7.25 ± 3.53

LH (mIU/mL) 6.23 ± 4.63 6.10 ± 4.63

E2 (pg/mL) 18.62 ± 18.50 16.62 ± 16.73

AMH (ng/mL)a 2.98 ± 2.42 3.38 ± 3.67

No. of follicles (� 10 mm) on the first day of stimulation 14.63 ± 8.99 13.41 ± 10.24

No. of cumulus-denuded oocytes retrieved in previous stimulation 8.26 ± 5.26 7.55 ± 6.15

No. of MII oocytes retrieved in previous stimulation 6.17 ± 4.10 5.85 ± 4.59

No. of cumulus-denuded oocytes retrieved 9.14 ± 5.82 7.67 ± 6.08

No. of MII oocytes retrieved 6.96 ± 4.64 5.92 ± 4.75

Cumulative gonadotropin dose (IU) 2,109.76 ± 826.62 2,347.36 ± 795.42

a) observations with an AMH level above 15ng/mL were removed from the database.

https://doi.org/10.1371/journal.pcbi.1011020.t001
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and a model was trained in each iteration. If the model’s RMSE was reduced by adding a new

feature, the feature was considered important for the prediction (Fig 1A). The final set of clini-

cal features selected using this approach consisted of AMH, AFC on the first day of stimulation

(follicles�10 mm), age, number of MII oocytes in the previous pick-up, number of cumulus-

denuded oocytes in the previous pick-up, and polycystic ovary syndrome (PCOS).

Based on these features, two versions of a machine learning model predicting the number

of MII oocytes were trained. The first model was trained on the Group 1 dataset and achieved

the precision metrics RMSE = 3.80, MAE = 2.85, and MAPE = 0.65. The second model was

trained on Group 2 dataset using only selected clinical features (the model is referred to as the

clinical model). To assess the impact of genetic data, we compared error metrics for models

Fig 1. Clinical model for prediction of the number of MII oocytes. (A) Feature selection of clinical features. (B) The

importance ranking of the top six features according to the mean absolute SHapley Additive exPlanations (SHAP)

value (|SHAP value|). (C) The effect of features on the outcome of the model. The higher the SHAP value of a feature,

the higher the number of MII oocytes. A feature takes values from low (blue) to high (red). The feature ranking (y-axis)

indicates their importance in the predictive model. The SHAP value (x-axis) is a unified index that responds to the

influence of a certain feature in the model. For each feature, the attributions of all patients to the outcome are drawn

with dots, where red represents the high-risk value and blue represents the low-risk value. AFC—antral follicle count;

AMH—anti-Müllerian hormone; PCOS—polycystic ovary syndrome; RMSE—root mean squared error.

https://doi.org/10.1371/journal.pcbi.1011020.g001
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trained on the same group of patients (Group 2 without genetic data vs. Group 2 with genetic

data).

The clinical model achieved better precision metrics (RMSE = 3.53, MAE = 2.58, and

MAPE = 0.71) compared to the benchmark value. Feature importance ranking and the effect

on prediction for the clinical model are presented in Fig 1B and 1C. The AMH is the most

important feature for the prediction and its higher levels result in a higher number of MII

oocytes, although the variance is still high. The second most important predictor is the AFC

on the first day of stimulation. The third, although much less important feature, is the number

of MII oocytes retrieved in the previous stimulation. Although the patient’s age is a less impor-

tant feature, we observed that the AMH level decreases with age (r = −0.17, p< 0.01) but the

rate differs between patients. The number of MII oocytes correlates with AMH (r = 0.64,

p< 0.01) better than with age (r = −0.18, p< 0.01), and therefore the model prefers to follow

correlations with AMH.

Sequence variants important for predicting the number of MII oocytes

To improve the prediction, we decided to include data on sequence variants in reproduction-

related genes in our analysis. Fourteen genes were selected such as AMH, AMHR2, AR,

BMP15, ESR1, ESR2, FSHB, FSHR, GDF9, LHB, LHCGR, PRL, PRLR, and SOX3, annotating to

the Gene Ontology (GO) categories such as reproductive structure development, hormone-

mediated signaling pathway, ovulation cycle process, signaling receptor binding or signaling

receptor regulator activity (S2 Table).

A total of 544 sequence variants were identified in Group 2 by genotyping (S3 Table). Our

approach to finding variants important for predicting the number of MII oocytes consisted of

pre-selection with statistical tests or ranking methods, and identification of haplotypes or vari-

ant combinations important for the prediction followed by checking the performance of a

model trained with clinical and genetic data (Fig 2A).

Kolmogorov–Smirnov and Mann–Whitney U tests revealed eight sequence variants that

result in a statistically higher number of MII oocytes and 18 sequence variants that result in a

statistically lower number of MII oocytes (S4 and S5 Tables). However, when individually

included in the modeling dataset, these variants showed little or no improvement in the mod-

el’s error metrics. Next, the pre-selection of variants important for the prediction was per-

formed with Boruta and Boruta-SHAP ranking methods on a dataset of all variants; the

number of MII oocytes was a target feature. The Boruta was also applied to a dataset of variants

and AMH levels. Variants were ranked according to their importance for the prediction with

the final ranking created by re-sorting the combined score. The top 20 variants were selected

for further analysis (S6 Table).

Combinations of sequence variants important for predicting the number of

MII oocytes

The sequence variants selected by ranking methods were used to search for combinations of

variants associated with high numbers of MII oocytes. According to the number of MII

oocytes, IVF processes were categorized as MII<2, (2,4], (4,7], (7,11], and 11< (groups con-

tained 144, 101, 122, 85, and 64 IVF processes, respectively). Correspondence analysis and

self-organizing map algorithms were used to determine the combinations characteristic of

patients with the lowest and highest oocyte numbers (<2 and>11 MII groups).

In correspondence analysis, the more the sequence variant is characteristic of a given MII

group, the closer to the group it is located in the graph (S1 Fig). Based on this analysis, we

defined a new genetic feature, referred to as IV-CA, consisting of three alternative variants in
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LHCGR rs11887058, PRLR rs112461, and ESR1 rs2207396, located closest to the group with

above 11 MII oocytes retrieved (Table 2).

The SOM algorithm detected the most frequent sequence variants in neurons, where the

given MII group was over-represented (S2 Fig). The 10 most characteristic variants, with the

Fig 2. Clinical-genetic model for prediction of the number of MII oocytes. The model was trained using clinical and

genetic features (IV8-6, IV41-8, and IV22-2) identified as important for the prediction. (A) The overall flowchart for

the approach used to generate sequence variant combinations for implementation in the predictive model. (B) The

importance ranking of features according to the mean SHapley Additive exPlanations (SHAP) value (|SHAP value|).

(C) Interpretation and stability of important features using the optimal model. The higher the SHAP value of a feature,

the higher the number of MII oocytes. The red part of the feature value represents a higher value. The feature ranking

(y-axis) indicates the importance of the predictive model. The SHAP value (x-axis) is a unified index that responds to

the influence of a specific feature in the model. In each row, the attributions of all patients to the outcome are drawn

with dots of different colors, where the red dots represent the high-risk value and the blue dots represent the low-risk

value. AFC—antral follicle count; AMH—anti-Müllerian hormone; LD—linkage disequilibrium; PCOS—polycystic

ovary syndrome; SHAP—SHapley Additive exPlanations; UMAP—Uniform Manifold Approximation and Projection.

https://doi.org/10.1371/journal.pcbi.1011020.g002
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biggest percentage difference between the frequency of alternative variants in a node and the

percentage share in the entire population, were found for GDF9 rs11739194, ESR2 rs928554,

ESR1 rs2077647, GDF9 rs17166294, FSHB rs676349, ESR1 rs2207396, LHCGR rs62137532,

ESR1 rs2273206, LHCGR rs11887058, and ESR1 rs2273207. Of all variant combinations tested

in terms of the effect on the predictive model, a set of six variants reduced the model’s RMSE

metric and comprised one genetic feature important for predicting the number of MII oocytes,

further referred to as IV8-6 (Table 2).

The IV-CA and IV8-6 features are non-binary: feature values for modeling are determined

from the number of alternative alleles among the variants comprising the feature.

Haplotypes important for predicting the number of MII oocytes

We decided to test whether the sequence variants identified by genotyping could be arranged

into haplotypes relevant for predicting the number of MII oocytes. Each of the 311 potential

haplotypes generated in Haploview software was analyzed for the effect on the RMSE metric of

the predictive model. Three haplotypes, generated by the 4 Gamete Rule and consisting of vari-

ants in the FSHR, PRLR, and GDF9 genes (S7 Table) showed the greatest impact on the predic-

tion. Identified haplotypes increase the number of MII oocytes retrieved.

Table 2. Genetic features identified as important for the prediction of the number of MII oocytes after ovarian stimulation.

Genetic feature Methoda Gene dbSNP IDb Sequence variant Allele frequencyc

IV-CA CA LHCGR rs11887058 NC_000002.12:g.48729336C>T T = 0.428

PRLR rs112461 NC_000005.10:g.35063190A>T T = 0.242

ESR1 rs2207396 NC_000006.12:g.152061247G>A A = 0.356

IV8-6 SOM GDF9 rs11739194 NC_000005.10:g.132865538T>C C = 0.515

rs17166294 NC_000005.10:g.132866205T>C C = 0.288

LHCGR rs11887058 NC_000002.12:g.48729336C>T T = 0.428

FSHB rs676349 NC_000011.10:g.30234435A>G G = 0.523

ESR1 rs2273207 NC_000006.12:g.152061190A>G G = 0.117

ESR2 rs928554 NC_000014.9:g.64227477C>T T = 0.731

IV22-2 Haplotype FSHR rs80111020 NC_000002.12:g.48962060 = A = 0.909

rs6166 NC_000002.12:g.48962782C>T T = 0.701

IV41-8 Haplotype PRLR rs387032 NC_000005.10:g.35061629 = T = 0.845

rs401694 NC_000005.10:g.35062516 = C = 0.765

rs112461 NC_000005.10:g.35063190 = A = 0.758

rs1057828 NC_000005.10:g.35064413 = C = 0.939

rs56251626 NC_000005.10:g.35064922 = C = 0.936

rs62355478 NC_000005.10:g.35065548 = C = 0.992

rs78373811 NC_000005.10:g.35068146 = G = 0.913

rs186609463 NC_000005.10:g.35069864 = G = 0.985

IV16-3 Haplotype GDF9 rs75061517 NC_000005.10:g.132866082 = T = 0.689

rs17166294 NC_000005.10:g.132866205 = T = 0.712

rs30177 NC_000005.10:g.132866719C>G G = 0.924

a—features were determined using correspondence analysis (CA), self-organizing map (SOM) algorithm, and haplotype analysis followed by a reduction of the number

of variants

b—dbSNP Reference SNP number according to the National Center for Biotechnology Information (NCBI) dbSNP database (https://www.ncbi.nlm.nih.gov/snp/,

accessed: 2022-04-05)

c—allele frequencies were calculated for Group 2 consisting of 264 women.

https://doi.org/10.1371/journal.pcbi.1011020.t002
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Haplotypes were composed of a relatively large number of variants, thus, we used the

UMAP grouping algorithm and a decision tree to identify a subset of variants in each haplo-

type, which is sufficient to distinguish patient groups (S3 Fig). Reduced haplotypes, referred to

as genetic features IV22-2, IV41-8, and IV16-3 (Table 2) occurred in the study population

with a frequency of 0.58, 0.65, and 0.17, respectively. Haplotypes are considered binary fea-

tures: if any detected variant is different from the variants comprising the haplotype, the fea-

ture value for modeling is set to 0.

A predictive model based on clinical data and genetic features

To validate the contribution of genetic features in predicting the number of MII oocytes, a

total of 127 combinations of genetic features IV-CA, IV8-6, IV22-2, IV41-8, and IV16-3 were

used in addition to clinical data in an iterative process. The addition of any genetic feature

decreased the model’s RMSE metrics compared to the clinical model (S8 Table). The best

combination of genetic features included the SOM-identified IV8-6 feature and haplotypes

IV41-8 and IV22-2, for which the RMSE metric was reduced by 0.18 oocytes, which corre-

sponds to 5% of the error metric.

The final clinical-genetic predictive model, trained on the dataset of selected clinical and

genetic features, achieved lower error metrics (RMSE = 3.35, MAE = 2.48, and MAPE = 0.68)

compared to the clinical model. Still, the AMH was the first, and AFC on the first day of stimu-

lation was the second most important feature for the prediction (Fig 2B). The combined con-

tribution of all three genetic features appeared to be over one-third of that revealed for AMH.

The IV8-6 feature ranked third in terms of importance with the impact on prediction close to

that of AFC. The two haplotypes had a lower impact on the prediction (Fig 2B), but each hap-

lotype increased the number of MII oocytes (Fig 2C). Interestingly, we found a correlation

between the genetic feature IV8-6 and the AMH level; with an increased AMH, the effect of

the feature on the number of MII oocytes is more apparent (S4 Fig). The highest values in the

IV8-6 feature decrease the predicted number of MII oocytes while feature values around 0

tend to increase the predictions (especially for patients with high AMH). The lowest IV8-6 val-

ues do not affect the prediction.

Interpretation of personalized predictions

Patient 1 is a 37-year-old woman with AMH = 1.27 ng/ml, AFC (below 10 mm) on the first

day of the stimulation = 9, with no PCOS and no data on previous stimulation results. Haplo-

type IV22-2 was present while haplotype IV41-8 was absent. Four sequence variants had alter-

native alleles for the IV8-6 feature—GDF9 rs11739194 (T>C), LHCGR rs11887058 (C>T),

FSHB rs676349 (A>G), ESR2 rs928554 (C>T). The patient grew three MII oocytes after stim-

ulation while our clinical-genetic model predicted 3.75 MII oocytes (Fig 3A). A relatively low

AMH lowered the prediction by 1.27. The next two most impactful features were IV8-6 and

IV41-8, which lowered the prediction by 0.7 and 0.22, respectively. The AFC and the haplotype

IV22-2 increased the prediction by 0.21 and 0.13, respectively. Age had a very low effect com-

pared to other features. The prediction was higher by 0.75 compared to the actual number of

MII oocytes retrieved. The genetic data had a cumulative impact of −0.79, therefore, the pre-

diction would be twice as inaccurate without this information.

Patient 2 is a 34-year-old woman with AMH = 13.78 ng/ml, with no PCOS, and no data on

AFC (below 10 mm) on the first day of the stimulation nor previous stimulation results. Hap-

lotypes IV22-2 and IV41-8 were present. Two of the sequence variants had alternative alleles

for feature IV8-6—LHCGR rs11887058 (C>T) and ESR2 rs928554 (C>T). The patient grew

13 MII oocytes after stimulation while our clinical-genetic model predicted 13.26 MII oocytes
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(Fig 3B). A relatively high AMH increased the prediction by 5.57. The next two most impactful

features were IV8-6 and IV41-8, which increased the prediction by 1.25 and 0.31, respectively.

Age and haplotype IV22-2 increased the prediction by 0.19 and 0.14, respectively. The predic-

tion was higher by 0.26 than the actual number of MII oocytes retrieved. Genetic data had a

Fig 3. Interpretation of two examples of personalized predictions of the number of MII oocytes. The effect of all features used in the clinical-genetic

predictive model on the predictions of the number of MII oocytes was estimated retrospectively for (A) Patient 1 and (B) Patient 2. The x-axis shows the

number of MII oocytes, and the y-axis shows the included features. The arrows indicate the contribution of each feature to the final prediction f(x) obtained for

a patient; red and blue indicate an increase or decrease in the predicted number of MII oocytes by the factor, respectively. A detailed interpretation of both

cases is provided in the text. AFC—antral follicle count; AMH—anti-Müllerian hormone; nan—not a number; PCOS—polycystic ovary syndrome.

https://doi.org/10.1371/journal.pcbi.1011020.g003
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cumulative impact of 1.7, therefore, the prediction would be an underestimation without this

information.

Discussion

Here, we identified sequence variants with a significant impact on the number of MII oocytes

retrieved after ovarian stimulation and improved the precision of a model for predicting this

measure by including data on genetic variation in reproduction-related genes.

The risk of poor or excessive ovarian response after controlled stimulation remains a seri-

ous problem in reproductive medicine. Although the poor response (< 4 oocytes retrieved)

occurs in 5 to 35% of women [24], higher doses of gonadotropins to retrieve more oocytes can

lead to ovarian hyperstimulation syndrome [25]. Predictors providing a more accurate esti-

mate of a woman’s ovarian response are being sought to optimize individual stimulation pro-

tocol before a given IVF cycle [10]. Since the low number of MII oocytes reduces the rates of

fertilization, embryo development, pregnancy, and live birth [26], we chose this parameter as

an outcome measure of ovarian stimulation.

AFC and AMH are used to predict ovarian response to gonadotropin stimulation most

often [6]. Both correlate strongly with each other and the number of oocytes retrieved [27] but

a discordance between AFC and AMH is observed in one in five patients [28] making the pre-

diction less accurate. The woman’s age, levels of FSH and AMH, AFC, gonadotropin dose, or

type of stimulation protocol increase the accuracy of personalized predictions [29]. According

to our study, the number of MII oocytes in the previous pick-up, and the number of cumulus-

denuded oocytes in the previous pick-up are also strong predictors of the ovarian stimulation

outcome. Combining these features in a single model ensures its high accuracy. Although stud-

ies have suggested that PCOS also affects the number of retrieved oocytes [30], our study did

not identify this condition as relevant for prediction. This discrepancy may be attributed to the

low percentage of patients diagnosed with PCOS in our study population. PCOS also tends to

correlate more strongly with the number of total oocytes than the mature MII oocytes

retrieved [30] and here we chose the latter as the target feature.

Genetic variation makes a noteworthy contribution to ovarian response. Single nucleo-

tide polymorphisms have been identified in genes with key roles in oogenesis, folliculogen-

esis, and female reproduction, such as in estrogen receptor 2 (ESR2), follicle-stimulating

hormone receptor (FSHR), FSH β-chain (FSHB), luteinizing hormone β-chain (LHB), LH/

choriogonadotropin receptor (LHCGR), growth differentiation factor-9 (GDF9), anti-Mül-

lerian hormone (AMH), and AMH type II receptor (AMHR2) genes [31–34]. However, the

usefulness of sequence variants in clinical practice is limited due to inconclusive results

from population-based studies [31,35]. Here, we identified several variants in genes such as

ESR1, ESR2, FSHB, FSHR, GDF9, LHCGR, and PRLR correlating with the number of MII

oocytes retrieved after ovarian stimulation; adding these variants to our model improved its

predictive potential. Important variants were mainly found in genes encoding hormone

receptors, for which the association with response to gonadotropins or oocyte maturation

has already been confirmed in animal models. For example, mutations found in the

LHCGR-encoding gene correlate with the empty follicle syndrome resulting in no oocytes

retrieved during IVF [36]. Estrogen receptors—Erα and Erβ (encoded by ESR1 and ESR2
genes, respectively), are required for controlling oocyte meiotic resumption [37]. Mice lack-

ing either FSHR or LHCGR gonadotropin receptors show impaired ovarian follicle growth

and antrum formation and fail to develop preovulatory follicles (reviewed in [38]). The ben-

efit of prolactin on bovine oocyte developmental capacity was shown to be mediated by

cumulus cells containing prolactin receptors [39].
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Simultaneous analysis of clinical data and sequence variants in a machine learning model

may be weakened by the overlapping contribution of information from genetic and clinical

data since the latter is derived from the former; at the same time, clinical data shows a stronger

correlation with the observed phenotype. Indeed, the sequence variants directly correlating

with the number of MII oocytes did not increase the model’s effectiveness. Rather than creat-

ing a model based on single variants, our approach focused on combinations of variants that

were implemented in the model as genetic features and improved the prediction metrics com-

pared to previous studies [40]. Interestingly, the average effect of genetic features on the pre-

diction is higher than the effect of IVF protocol choice or PCOS presence. Genetic status is

even more advantageous for the IV8-6 genetic feature, in comparison to stimulation data avail-

able from previous IVF cycles. Unlike the singly considered sequence variants, the genetic fea-

tures showed a high occurrence in the population—haplotypes IV22-2 and IV41-8 were found

in 58% and 65% of patients, respectively, and an average of 2.6 variants were found within the

IV8-6 feature. As a result, many patients could benefit from the application of our clinical-

genetic model.

The strength of our study lies in the number of methods used to select sequence variants

associated with the number of MII oocytes and the use of multi-variant genetic features instead

of single variants for modeling which increased the predictive potential of genetic data. In con-

trast to others [10,40], our approach was also strengthened by including data on retrospective

stimulations. However, our study is limited by the lack of data on expression levels or struc-

ture-function predictions for variant proteins. A prospective clinical study on a large group of

participants will also be needed to determine the concordance between our model’s predic-

tions and actual stimulation results and verify the performance of our model in real-life.

In conclusion, genetic features increase the accuracy of predicting the number of MII

oocytes retrieved after ovarian stimulation. The encouragement of a clinical-genetic model uti-

lization will be realized by, firstly, incorporation in existing genetic test packages in flat-rate

treatment plans without increasing prices, and secondly, by propagation to patients of the

information of substantive add-on value enriching the standards of clinical procedures. When

applied to clinical practice, we believe our model will improve personalized counseling and

facilitate decision-making regarding the setting of gonadotropin doses to improve the safety

and efficiency of stimulation protocols for IVF.
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S1 Fig. Identification of sequence variants characteristic of MII groups by correspondence

analysis (CA). The x- and y-axes show vertical and horizontal dimensions, respectively.

Sequence variants on the chart are described with the gene symbol, variant name, and type of

nucleotide change. Correspondence analysis allows the visualization of multidimensional data-

sets. In this study, it was used to present both patient groups and sequence variants on the

same figure. The location of dots denoting the groups and variants shows dependencies in the

dataset. The more the sequence variant is characteristic of a given MII group, the closer it is

located on the visualization. The dependencies between variants and patient groups are stron-

ger with increased distance from the origin of the coordinate system. Inertia covered I 2 [0,1]

shows the goodness of the model’s representation of the dataset, where 1 is the perfect repre-

sentation. Here, the first two dimensions explain 83% of the inertia (x—0.63, y—0.20).

Sequence variants LHCGR rs11887058 (NC_000002.12:g.48729336:C>T), PRLR rs112461

(NC_000005.10:g.35063190:A>T), and ESR1 rs2207396 (NC_000006.12:g.152061247:G>A)

are located closest to the MII group >11.

(PDF)

S2 Fig. Representation of self-organizing map (SOM) trained on sequence variant data.

Each dot represents different nodes of the model. The color of the dots for the subplots shows

the share of observations of a given group in the nodes. The best matching unit (BMU) is

defined as the neuron with the shortest distance to an observation. IVF stimulations are repre-

sented by the sequence variants of a patient, so the network’s neurons represent groups of sim-

ilar observations in terms of genetic data. BMU was assigned for each IVF stimulation. SOM

was trained, and after 100000 iterations achieved quantization error (QE) = 1.6. The neuron

with coordinates (2,1) was the BMU for 53% of observations characterized by the number of

MII oocytes of 0–2. Additionally, 86% of observations were characterized by the number of

MII oocytes lower than seven. The size of a dot corresponds to the number of observations

that has the node as the best matching unit (BMU). The results can be analyzed to find group

structures in data, outlying observations, or features characteristic of a given group of observa-

tions. As each neuron on the map can be interpreted as a different group of observations,

SOM was used to detect the most frequent sequence variants in neurons, where any patient

group is over-represented. Identified sequence variants include GDF9 rs11739194

(NC_000005.10:g.132865538T>C), ESR2 rs928554 (NC_000014.9:g.64227477:C>T), ESR1
rs2077647 (NC_000006.12:g.151807942:T>C), GDF9 rs17166294 (NC_000005.10:
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g.132866205:T>C), FSHB rs676349 (NC_000011.10:g.30234435:A>G), ESR1 rs2207396

(NC_000006.12:g.152061247:G>A), LHCGR rs62137532 (NC_000002.12:g.48687476:C>G),

ESR1 rs2273206 (NC_000006.12:g.152061176:G>T), LHCGR rs11887058 (NC_000002.12:

g.48729336:C>T), and ESR1 rs2273207 (NC_000006.12:g.152061190:A>G).

(PDF)

S3 Fig. Construction of haplotypes for predicting the number of MII oocytes. (A) Details of

the haplotype architecture. The block structures of Haplotypes 1, 2, and 3 constructed in Hap-

loview software using the 4 Gamete Rule are shown. Each haplotype is displayed in a block

with connections from one block to the next with thicker lines corresponding to more frequent

crossings than thinner lines. A value of multiallelic D’ is shown in the crossing areas; this rep-

resents the level of recombination between the two blocks. The values next to the haplotypes

show how often the haplotype occurred in the population. (B) Reduction of the number of var-

iants in haplotypes. For sequence variants, the uniform manifold approximation and projec-

tion (UMAP) algorithm was trained to cluster the observations and extract groups of similar

patients. A separate dataset was created for each haplotype reduction, containing the sequence

variants that comprised the haplotype. UMAP’s visual representation allows for an analysis of

whether the selected subset of variants in Haplotypes 1, 2, and 3 is sufficient to distinguish sep-

arate groups of patients. Each dot on the plot represents a single observation. A K-means algo-

rithm was used to determine groups in the UMAP representation of the study population. A

label that corresponds to its K-means detected group is assigned for each point. For example,

seven separable groups are distinguished in the dataset for Haplotype 2. A label is assigned for

each point, which corresponds to its group. A decision tree was then trained to find a group

label based on the variants. To distinguish all observations from Group 1, which is the most

frequent group (538 occurrences), 8 variants that make a path from the root of the tree to the

first leaf node have to be the Ref variants. In other words, of the 41 variants that constructed

the initial haplotype, 8 variants are responsible for detecting the largest group of the observa-

tions–and each variant has to have a Ref value. The newly created haplotype, called the IV41-8

genetic feature, as opposed to previous genetic features, is binary: If any of the eight selected

variants is Alt, then the value of the feature is set to 0. The reduction process was also run for

Haplotypes 1 and 3, resulting in genetic features IV22-2 and IV16-3.

(PDF)

S4 Fig. Effect of variants in IV8-6 feature on MII oocyte predictions with regards to anti-

Müllerian hormone (AMH) level. Range [−1.6, 2.4] represents the standardized number of

alternative alleles in six variants comprising the genetic feature IV8-6 revealed by SOM analy-

sis.

(PDF)
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