
1Scientific Data |          (2023) 10:811  | https://doi.org/10.1038/s41597-023-02682-2

www.nature.com/scientificdata

Photos and rendered images of 
LEGO bricks
tomasz Maria Boiński  

the paper describes a collection of datasets containing both LEGO brick renders and real photos. the 
datasets contain around 155,000 photos and nearly 1,500,000 renders. The renders aim to simulate 
real-life photos of LEGO bricks allowing faster creation of extensive datasets. The datasets are publicly 
available via the Gdansk University of Technology “Most Wiedzy” institutional repository. The source 
files of all tools used during the creation of the dataset were made publicly available via GitHub 
repositories. The images, both photos and the renders were annotated with the unique brick ID and 
category from the official LEGO catalog. The proposed datasets are stored in easy-to-read formats and 
are labeled via directory structure allowing easy manipulation and conversion of metadata to other 
formats.

Background & Summary
LEGO bricks, thanks to the availability of a vast array of shapes and colors can be used to build virtually any, 
both very simple and very complex, constructions. The process, however, to be enjoyable requires that the bricks 
are properly sorted and arranged. Without that, the building process consists mainly of searching for proper 
bricks in a big pile of LEGO, which is highly discouraging. The same can be said concerning other activities 
involving a large number of usually small elements, like construction, collection arrangement, etc.

In the case of LEGO bricks, sorting can be done by both color and shape. Sorting bricks by color only is not 
very efficient as different shapes tend to blend and are difficult to distinguish. On the other hand, the differently 
colored bricks can be easily picked from the pile of similarly shaped ones1. Still, with over 3700 different LEGO 
parts2 (and the number is constantly growing) even disregarding the color makes the problem of LEGO brick 
sorting quite complex and time-consuming, even despite the attempts made to optimize the sorting process (e.g.3).

The proposed datasets started as part of a solution to such a problem. The author’s collections contains over 
50,000 bricks spanning across multiple boxes. Browsing through such an amount of bricks is greatly discourag-
ing. In our research, we aimed at the creation of an AI-powered LEGO sorting machine, as there are no com-
mercially available solutions, and those created by fans are either limited or do not show the building details4,5.

To train neural networks a lot of data is needed. Unfortunately, there is no public LEGO bricks dataset avail-
able. The LEGO collectors sites like Rebrickable6 contain only a limited set of images for each brick, usually 
viewed from a single angle only (usually 45° top-down view). There is, however, a database of 3D models of 
LEGO bricks in the form of the LDraw library7. Using it requires however extensive computing power to render 
life-like images. The gathering of real-life LEGO photos requires manual sorting of bricks and manual labeling 
of gathered images, which, considering the number of brick shapes and colors, would be very time-consuming. 
By publishing our proposed datasets, we aimed to eliminate this step for other researchers who might be inter-
ested in the creation of similar sorting solutions. The images from the datasets could be also used for the publi-
cation of fan web pages or as a use case and benchmark for verifying model qualities against in some cases very 
hard-to-distinguish cases, e.g. for bricks 3001 and 3010 lying on a side as seen in Fig. 1.

Our work was focused on distinguishing bricks by shape. As such the proposed datasets are shape oriented. 
Both the renders and real photos contain bricks in random colors so that the neural network can be trained to 
disregard the color or decals on the bricks.

The series consists of 5 datasets:

•	 LDRAW-based renders of LEGO bricks moving on a conveyor belt with extracted models8,
•	 Tagged images with LEGO bricks9,
•	 Tagged images with LEGO bricks part 210,
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•	 Images of LEGO bricks11,
•	 LEGO bricks for training classification network12.

The purpose of this dataset series is to provide researchers with life-like images of LEGO bricks allowing 
work on multi-class object recognition, e.g. an AI-based sorting machine, without a need to invest the time and 
effort into the creation of required datasets.

Methods
The dataset series consists of renders and real photos. Both types of images were obtained differently.

LEGO bricks renders. All renders were generated based on 3D models from LDraw library7 using Blender 
tool13 and its extension called ImportLDraw14. The renders simulate bricks moving on a conveyor belt as seen by 
a camera facing the belt. As a base, a default Blender scene was used. As a background, a semi-white plane was 
used. The lighting is composed of 2 area lights. The first one generates white light of power equal to 100 W and 
covers a square area of 3.07 m in size. The second one generates white light (H: 0.0, S: 0.0, V: 1.0) of power equal to 
400 W and covers a square area of 3.39 m in size. The camera is of perspective type with a focal length of 10 mm. 
No scale was applied. For detailed parameters of each object please consult the scene file located in LegoSorter 
GitHub repository15 in dataset/scenes/simple.blend path.

For each render the brick is placed at the location X: 1.1479 m, Y: 0.0 m, Z: 4.0 m and is allowed to fall to the 
plain surface. The brick rotation was selected at random thus simulating the brick falling on the conveyor belt 
and thanks to using Blender physics and animation engine eliminated impossible positions, e.g. lying on a thin 
edge diagonally. The colors for the rendered LEGO bricks were selected from the list reflecting the most used 
colors of LEGO bricks (Table 1).

During rendering each brick object was placed in 9 different positions separated by −1.5 m in the Y-axis 
direction (moving the brick down the conveyor belt). At each position, 10 images were created by randomly 
rotating the brick object on the Z-axis and/or flipping it upside down. Each time, to simulate different lighting 
conditions, a random selection of the available light sources was used (either the first, the second, or both afore-
mentioned light sources were enabled). Afterward, empty, with no brick visible, and repeating frames, were 
removed from the set, thus in some cases, especially for larger bricks, a smaller number of images was generated. 
The images were saved in JPEG format in different resolutions to further simulate different quality of images. 
The bricks were then extracted from the original images using OpenCV16 edge detection algorithms.

LEGO bricks photos. The photos available in Tagged images with LEGO bricks dataset9 contain bricks in 
various environmental surroundings found in a typical household, e.g. a box, on a carpet, on a keyboard, etc. and 
were taken using different cameras using their default settings to ensure diversity of the images. At first, randomly 
selected bricks were photographed and manually tagged by the dataset author. Each photo contains from 1 to 32 
bricks in one photo. This set, combined with the renders (as described in the Data records section, Tagged images 
with LEGO bricks dataset9), was used to train a YOLO version 517 neural network in its small variant18. The model, 
combined with our custom mobile app (Lego Sorter App19) and a python server application (Lego Sorter Server20) 
allowed quick creation of the 2nd part of the dataset. The model is publicly available as part of the Lego Sorter 
Server20 application.

In all other cases where photos were taken, the bricks were placed on the white, non-reflecting background, 
illuminated using two top-down facing 1600lm, 4000 K LED lamps, and photographed using a Huawei P20 Pro 
camera. The shutter speed and ISO were set to 1/100 and 50 respectively (to match the frequency of the LED 
lamps). All other settings were left at default values. The bricks photos were taken from random viewing angles 
ranging from 0° to 180° in relation to the photo base surface in all directions by a handheld camera hovering 
over the setup at the height of approximately 10–30 cm (Fig. 2). This allows the simulation of different viewing 
positions available for given brick types. The uniform background is the most versatile in AI-based sorting solu-
tions. It also allows easy, automated background replacement by any texture.

Fig. 1 Difficult to distinguish cases for LEGO bricks 3010 (left) and 3001 (right).
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The use of the aforementioned mobile app required the presorting of LEGO bricks which was done manually. 
During each session, a single class of bricks was automatically photographed while the user hovered the phone 
with the mobile app above the aforementioned photo setup with bricks scattered over a white desk covered with 
white, matte paper to reduce glare. The images were sent to a server where the brick locations in the images 
were detected. The server was responsible for the creation of bounding boxes according to the output from the 
YOLOv5 network. The images were then checked manually for errors and all partial images or wrongly detected 
objects were removed from the dataset. To simplify further processing the individual bricks were extracted from 
photos taken using the OpenCV library using bounding boxes defined by automatically detected coordinates.

Part 2 of the dataset10, thus contained only photos with bricks of one shape (but different, randomly selected 
colors and alignment), that were manually sorted out of the big pile of mixed bricks. This approach allowed 
quicker annotation of photos as the whole set from one photo session could be annotated at once.

In all cases, the brick coordinates were stored in XML files named identically as the image in PASCAL VOC 
format. Each photo can contain any number of bricks.

Color name Hex code

White 0xFFFFFF

Brick Yellow 0xD9BB7B

Nougat 0xD67240

Bright Red 0xFF0000

Bright Blue 0x0000FF

Bright Yellow 0xFFFF00

Black 0x000000

Dark Green 0x009900

Bright Green 0x00CC00

Dark Orange 0xA83D15

Medium Blue 0x478CC6

Bright Orange 0xFF6600

Bright Bluish Green 0x059D9E

Bright Yellowish-Green 0x95B90B

Bright Reddish Violet 0x990066

Sand Blue 0x5E748C

Sand Yellow 0x8D7452

Earth Blue 0x002541

Earth Green 0x003300

Sand Green 0x5F8265

Dark Red 0x80081B

Flame Yellowish Orange 0xF49B00

Reddish Brown 0x5B1C0C

Medium Stone Grey 0x9C9291

Dark Stone Grey 0x4C5156

Light Stone Grey 0xE4E4DA

Light Royal Blue 0x87C0EA

Bright Purple 0xDE378B

Light Purple 0xEE9DC3

Cool Yellow 0xFFFF99

Medium Lilac 0x2C1577

Light Nougat 0xF5C189

Dark Brown 0x300F06

Medium Nougat 0xAA7D55

Dark Azur 0x469BC3

Medium Azur 0x68B3E2

Aqua 0xD3F2EA

Medium Lavender 0xA06EB9

Lavender 0xCDA4DE

White Glow 0xF5F3D7

Spring Yellowish Green 0xE2F99A

Olive Green 0x77774E

Medium-Yellowish Green 0x96B93B

Table 1. The color codes used for rendering, that are representing the most common colors of LEGO bricks.
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Image resolution. All datasets contain images with varying sizes as denoted in the Data records section. This 
was done on purpose to ensure the diversity of the quality of the images. The extracted images done either by edge 
detection algorithms or based on neural network-generated bounding boxes will have sizes dependent on the 
shape and size of the extracted brick. In many cases even for the same shape, the final image size will be different 
depending on how the brick is placed, the viewing angle, etc. (e.g. brick number 10288).

Extracted images similarity. Some LEGO bricks have very simple shapes (e.g. 22484, 2654, 3960, etc.) thus 
depending on the brick layout and camera viewing angle different photos might appear similar or even identical. 
We decided to not delete even very similar images as neural networks for the training process usually require 
as much data as possible and there might be important light or alignment changes between potentially similar 
images that can impact the training process.

Image annotation. The images in Tagged images with LEGO bricks dataset12 were manually annotated using 
the labelImg tool. It is publicly available on the projects code repository at https://github.com/tzutalin/labelImg21.

Data Records
The five datasets described in this paper are hosted using https://mostwiedzy.pl institutional repository and can 
be publicly accessed by their corresponding DOI identifiers. In all cases, all files are compressed into a single 
zip file. The total number of images in each dataset is shown in Table 2. If not stated otherwise all images were 
stored in JPEG file format and the binding boxes defining bricks coordinates are stored in XML files named as 
the associated image file in PASCAL VOC format22. The relation between the datasets is presented in Fig. 3.

Dataset Photos Renders

LDRAW-based renders of LEGO bricks moving on a conveyor belt with extracted models8 0 935,967

Tagged images with LEGO bricks9 2,933 2,908

Tagged images with LEGO bricks part 210 15,608 0

Images of LEGO bricks11 77,535 0

LEGO bricks for training classification network12 52,597 567,481

Table 2. Number of real photos and renders in each dataset.

Fig. 2 Photo stand for taking images of LEGO bricks. Bricks of the same shape were spread on the white surface 
and the photos were taken using a hoovering handheld camera. The bricks’ coordinates were automatically 
detected using a neural network.
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LDRAW-based renders of LEGO bricks moving on a conveyor belt with extracted models dataset8 (https://doi.
org/10.34808/xfgk-6f77) contains the renders created as described in the LEGO bricks renders section. The 
original folder contains the renders themselves and the cropped_opencv directory contains only bricks extracted 
from the renders using OpenCV16 edge detection algorithms. In both cases, the images were placed in a folder 
named after the LEGO brick code taken from the official LEGO catalog. The images have varying resolution 
ranging from 400 × 900 up to 1080 × 1920. The file naming convention is brickID_colour_sequenceNumber_
timestamp.jpeg, where brickID is the official LEGO brick id number, color is the name of the selected brick color, 
sequenceNumber is the integer from 0 to 8 indicating the number of the image in the sequence simulating con-
veyor belt move and timestamp is UNIX time representation in milliseconds of the image creation time.

Fig. 3 Relations between datasets.
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Tagged images with LEGO bricks dataset9 (https://doi.org/10.34808/anq4-rn44) contains two types of images:

•	 2933 photos containing from 1 to 32 LEGO bricks. The photos have varying resolution ranging from 
228 × 220 up to 6000 × 8000. They contain random background and lightning conditions and present LEGO 
bricks from different angles.

•	 2908 renders of LEGO bricks, 1 brick on each image handpicked from LDRAW-based renders of LEGO bricks 
moving on a conveyor belt with extracted models dataset8. The renders contain bricks in multiple shapes and 
colors, on a white background, taken from the camera facing bottom-up. The renders have varying resolution 
ranging from 400 × 400 up to 800 × 1200.

The images are named randomly and were placed in a respective subdirectory (photos and renders) and 
further in a subdirectory denoting the number of bricks visible on the image. The images were manually tagged 
with the coordinates of LEGO bricks bounding boxes created using labelImg software21. This dataset was used to 
train the YOLOv5 deep neural network for detecting LEGO bricks on images.

Tagged images with LEGO bricks part 2 dataset10 (https://doi.org/10.34808/7kk9-tn08) contains only photos 
of LEGO bricks. For each brick shape the bricks in the images have been randomly selected from the author’s 
collection so the brick’s colors couldn’t be previously planned and are thus chosen randomly as the dataset is 
oriented towards the discrepancy of LEGO brick shapes rather than colors. The images have varying resolu-
tion (1080 × 1920, 1539 × 2736, or 2160 × 3840). The images were tagged with the coordinates of LEGO bricks 
bounding boxes. The coordinates were generated automatically using a YOLOv5 neural network trained with 
the Tagged images with LEGO bricks dataset9 as described in LEGO bricks photos section. The images are tagged 
by directory placement. The top-level directory is named after categories as found on the Rebrickable website6 and 
contains sub-directories named after the official LEGO brick number. If given LEGO brick is available under mul-
tiple brick numbers (e.g. 3004 and 3065) due to a slight construction change they are located in a single folder with 
brick number connected with an underscore (e.g. Bricks/3004_3065). Each image can contain any number of LEGO 
bricks (even 0) and only complete bricks are labeled. The dataset serves as an intermediate for the creation of Images 
of LEGO bricks11 and as such was not cleaned up after the automatic processing.

Images of LEGO bricks11 (https://doi.org/10.34808/arsb-4268) contain extracted images of LEGO bricks 
taken from automatically annotated data available in Tagged images with LEGO bricks part 2 dataset10. Each 
image contains a single brick extracted using OpenCV16 library according to bounding boxes generated by the 
YOLOv5 network (as described in LEGO bricks photos section). Incorrectly extracted images, mainly due to 
occasional errors generated by the YOLOv5 network (e.g. only parts of bricks were visible) and photos con-
taining other objects than a single LEGO brick were manually removed from the dataset. For each brick shape 
the bricks in the images have been randomly selected from the author’s personal collection so the brick’s colors 
couldn’t be previously planned and are thus chosen randomly as the dataset is oriented towards the discrepancy 
of LEGO bricks shapes rather than colors. The images are tagged by directory placement. The top-level direc-
tory is named after categories as found on the Rebrickable website6 and contains sub-directories named after 
the official LEGO brick number. If given LEGO brick is available under multiple brick numbers (e.g. 3004 and 
3065) due to a slight construction change they are located in a single folder with brick number connected with 
an underscore (e.g. Bricks/3004_3065).

LEGO bricks for training classification network12 (https://doi.org/10.34808/rcza-jy08) contains both renders 
and photos of LEGO bricks organized into 431 classes. Both the renders and images are hand-picked from 
LDRAW-based renders of LEGO bricks moving on a conveyor belt with extracted models8 and Images of LEGO 
bricks11 datasets. The images are tagged by directory placement. The two top-level directories (photos and ren-
ders) are named after their contents and contain sub-directories named after the official LEGO brick number 
where in turn images of bricks are located accordingly.

Fig. 4 Sample renders for brick number 3003.
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technical Validation
The Images of LEGO bricks11 datasets containing extracted photos were visually verified for wrongly and partially 
detected objects. In all cases, such images were removed from the dataset. The Tagged images with LEGO bricks 
part 2 dataset10 was checked at random for correctness of bounding box placement and general quality of the 
detection performed by the YOLOv5 model. Identified tags of not complete bricks were removed from the XML 
files, however, the empty photos contained more bricks than found by the network or contained parts of the bricks 
were not removed, as the main purpose of this dataset was to create a high volume of extracted LEGO images.

In all cases, renders were verified automatically for the occurrence of empty images. For that purpose, the 
image was compared with a purposely made empty frame. All images were compared with the empty frame 

Fig. 5 Sample real photos of brick number 3003.

Fig. 6 Precision and recall comparison of YOLOv5 small (blue) and medium (red) models trained using 
LDRAW-based renders of LEGO bricks moving on a conveyor belt with extracted models dataset8.

Fig. 7 Sample LEGO brick detection results done by YOLOv5 small model trained using LDRAW-based renders 
of LEGO bricks moving on a conveyor belt with extracted models dataset8.
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using the Structural Similarity Index algorithm23. When the score was 0.99 and higher the image was classified 
as an empty image. The LDRAW-based renders of LEGO bricks moving on a conveyor belt with extracted models 
dataset8 was afterward manually browsed to eliminate remaining empty renders. The quality of the renders was 
also visually checked by comparing them with real photos of LEGO bricks. Sample renders, after being cropped, 
can be seen in Fig. 4 whereas sample real photos of the same brick ID can be seen in Fig. 5.

Fig. 8 Precision of bricks labeling for EfficientNetB0 network trained using LEGO bricks for training 
classification network12 using renders only (blue) and renders with real photos (red).

Fig. 9 Real-time tests for ResNet50 model trained using LEGO bricks for training classification network12.
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The quality of renders was also checked using deep models for object detection and classification. For direct 
verification Tagged images with LEGO bricks9 and LEGO bricks for training classification network12 datasets (as 
the second dataset is composed of images from remaining three datasets).

For object detection, we used the Tagged images with LEGO bricks9 dataset24 by training small and medium 
YOLO (You Only Look Once) version 5 models (YOLOv5s and YOLOv5m respectively17,18). The models were 
used in their default settings and transfer learning was applied. The dataset used to train the networks contained 
a mixture of renders and real photos and the test subset contained real photos only. The test set contained 880 
images (around 30%) randomly selected from the real photos in the dataset. The training set was composed of 
the remaining photos and the renders. The process proved to work very well, both models achieved good values 
of precision and recall (Fig. 6). Despite the datasets used composed of renders and photos of bricks on a white 
background, as can be seen in Fig. 7 the network was able to detect never seen before LEGO bricks even in com-
plicated scenarios proving the generality of the datasets.

To test LEGO bricks for training classification network12 dataset we trained EfficientNetB025 and ResNet5026 
classification networks. The training set is composed of randomly selected 447000 images - 650 renders and 350 
photos for each of the 447 classes available in the dataset. The test set was also randomly selected and composed 
of 50 renders and 50 real photos. EfficientNetB0 network was trained using both the whole training set and only 
the 650 renders selected for each class and ResNet50 was trained using only the whole training set (renders and 
real photos). Similarly, as in the previous test, the models used default parameters, and transfer learning was 
applied. The full training procedure can be found in27.

EfficientNetB0 model achieved very good results, with efficiency reaching 80% when only renders were used 
for training and almost 100% when both renders and photos were used (Fig. 8). The ResNet50 model achieved 
93.81% of Top1 accuracy and 99.10% of Top5 accuracy.

We also combined the aforementioned and trained YOLOv5s and ResNet50 models within a Lego Sorter 
App19 and used it to detect and classify LEGO bricks in never used before setup where photos were taken in 
real-time. In this scenario we were able to detect and classify bricks both on a white background and in signifi-
cantly changed lightning conditions with 100% accuracy (e.g. as seen in Figs. 9, 10).

Fig. 10 Real-time tests for ResNet50 model trained using LEGO bricks for training classification network12–pink 
light.
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code availability
Custom tools used to take photos, generate renders, annotate photos, and extract annotated bricks from the 
complete scene, including the trained neural networks, are publicly available through the Lego Sorter project15 
and its repositories available at https://github.com/LegoSorter.
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