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Abstract. The paper discusses the problem of stability of a proportional-integral Luenberger observer, designated for the state variables
reconstruction of a linear, time-invariant dynamical system. It is proven, that there exists such a class of observed systems, for which
the observer is always unstable, independently of its gains. Stability can be provided in every possible case after application of proposed
modifications to the structure of the observer. It is proven, that stability of the modified observer depends only on its gains. It is shown,
that an induction motor is the exemplary observed system, for which application of the unmodified observer is impossible due to its lack
of stability, while the modified observer provides proper operation of the control system. Finally, some experimental results are presented,
obtained in the multiscalar control system of the induction motor, equipped with the modified proportional-integral observer.
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1. Introduction

A proportional (P) observer is the most basic of all Luenberg-
er observers. It is applied, among the others, to reconstruction
of induction motor state variables. There are also known other
types of observers, equipped with more complex feedbacks.
These are: an observer with integrators [1, 2], a modified inte-
gral observer [3, 4], a proportional integral (PI) observer [3],
function observers [5], and the others. Until now, the PI ob-
server was not applied in control systems of induction motors.

The PI observer is characterised by stronger attenuation
of reconstruction errors and provides better reconstruction
quality than the P observer. Every of non-proportional ob-
servers mentioned above, in some cases can remain unstable
independently of its gains selection. Therefore, the practical
application of non-proportional observers requires some mod-
ifications to be introduced to their structures.

In this paper, conditions that determine instability of the
PI observer are specified. Proper modification of its mathe-
matical model is also proposed, providing stability in every
possible case.

2. The mathematical model of the PI observer

The mathematical model of the observed system is the basis
for the observer design. It is a linear time-invariant dynamical
system with p inputs included in the vector u, n state variables
included in vector x and q outputs included in vector y, de-
scribed with a matrix differential state equation and a matrix
algebraic output equation, using dimensionless quantities:

{
tbẋ = Ax + Bu

y = Cx
, (1)

where: tb - base time; A, B, C – real constant matrices.

State variables of the system described with (1) can be
reconstructed with use of a PI observer, described with the
following system of equations:

{
tb ˙̂x = Ax̂ + Bu + KP (Cx̂ − y) + w

tbẇ = KI (Cx̂ − y)
, (2)

where w – additional state vector of size n; x̂ - reconstructed
state vector of the observed system; KP and KI – real con-
stant feedback matrices of the proportional and the integral
unit correspondingly. The block diagram of the observed sys-
tem and the PI observer are shown in Fig. 1. Observer gains,
that is, the elements values of matrices KP and KI , should
be chosen so that the observer is stable and exhibits desired
dynamical properties [3, 4].

Fig. 1. The block diagram of a linear system and a PI observer
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3. Error equation

The error equation of the observer is the basis for the analysis
of its stability and dynamical properties. The reconstruction
error vector is defined as:

ε = x̂ − x. (3)

Due to the mathematical model of the observer, consisting of
two differential equations and containing two state vectors x̂

and w, a new generalized state vector ξ̂ must be introduced,
in order to derive one error equation. The state vector of the
observed system has to have the same size as the state vector
of the observer. Therefore, the state vector x of the observed
system is to be correspondingly extended with null vector of
size n. The resulting extended state vector of the observed
system ξ, and the state vector of the observer are given as:

ξ̂ =

[
x̂

w

]
, ξ =

[
x

0n×1

]
. (4)

On introducing new state vectors, equations of the observed
system assume following new form:

{
tbξ̇ = Aξξ + Bξu

y = Cξξ
, (5, 6)

where the matrices are given as follows:

Aξ =

[
A 1n

0n×n 0n×n

]
, Bξ =

[
B

0n×p

]
,

Cξ =
[

C 0 q×n

]
.

(7)

1n denotes identity matrix of n-th order. The identity matrix
included in the matrix Aξ does not result from the mathe-
matical model of the observed system and was introduced
in order to keep consistency with the model of the observer.
Equations (6), (7) and (4) show that the identity matrix 1n cor-
responds with null vector included in the vector ξ, therefore,
it has no impact on properties of the observed system.

On introducing new state vectors, the mathematical model
of the observer is given as follows:

tb
˙̂
ξ = Aξξ̂ + Bξu + Kξ

(
Cξ ξ̂ − y

)
, (8)

where Kξ – a new gain matrix defined as:

Kξ =

[
KP

KI

]
. (9)

On having mathematical models of the observed system and
the observer modified, the error equation of the observer can
be derived from (5), (6) and (8):

tbε̇ξ = Eεξ where E = Aξ + KξCξ. (10)

4. Stability of the PI observer

Basing on the error equation (10), it can be proved that there
exist such observed systems described with (1), for which the
PI observer described with (2) is always unstable, indepen-
dently of its gains selection.

In order to ensure stability, all the eigenvalues of the state
matrix E of the observer have to be placed in the left half of
the complex plane. It is derived from (10), that the rank of E

depends on ranks of matrices Aξ , Cξ and Kξ :

rank(E) ≤ rank(Aξ) + min(rank(Kξ), rank(Cξ)). (11)

Ranks of matrices Aξ, Cξ and Kξ , on the other hand, depend
on their structures. It is derived from (7), that the matrix Aξ

has n linearly independent rows, therefore:

rank(Aξ) = n. (12)

It is derived from (8), that the number of rows of Cξ equals q
and is the lesser of its dimensions; similarly, we derive from
(9) and (10), that the number of columns of Kξ equals q and
is the lesser of its dimensions, therefore:

rank(Cξ) ≤ q, rank(Kξ) ≤ q. (13)

It is derived from equations (11) to (13), that the rank of the
state matrix E satisfies the following inequality:

rank(E) ≤ n+ q. (14)

It is derived from (10), that the number of rows of the square
matrix E equals 2n. Therefore, it can be derived from in-
equality (14), that depending on the values of the elements of
matrices KP and KI , the observer has at least (n−q) eigen-
values equal to zero. Thus, if the number of outputs of the
observed system q is less than the number of its state variables
n, then the observer always has poles placed in the origin of
coordinates on complex plane and does not satisfy the nec-
essary condition of asymptotical stability (theorem 7.1.3 in
[6]).

In order to provide stability of the PI observer in case of
every possible observed system, independently of its number
of outputs and state variables, the modification of the struc-
ture of the observer was proposed. Modification consists in
replacing of integration in the feedback of the observer with a
1-st order inertia. A similar solution was proposed in [7]. The
inertia introduces into the mathematical model of the observer
an additional negative feedback:

{
tb ˙̂x = Ax̂ + Bu + KP (Cx̂ − y) + w

tbẇ = KI (Cx̂ − y) − ωc1nw
, (15)

where ωc – a vector of size n and positive non-zero elements,
containing inverses of inertia time constants in dimensionless
quantities. Introduction of the additional feedback has an im-
pact on the form of the matrix Aξ:

Aξ =

[
A 1n

0n×n −ωc1n

]
. (16)

This change in the form of Aξ has no impact on properties
of the observed system, as it was in case of previously intro-
duced identity matrix 1n. The new form of Aξ has an impact
on its rank, previously determined by (12); after taking into
consideration (16), it is given as:

rank(Aξ) = 2n, (17)

and the rank of the state matrix E:

rank(E) ≤ 2n, (18)

596 Bull. Pol. Ac.: Tech. 61(3) 2013

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


PI observer stability and application in an induction motor control system

assuming that A is non-singular. The assumption of non-
singularity of matrix A is equivalent to an assumption of the
linear independence of the state variables of the observed sys-
tem, and it is always satisfied while its mathematical model
is appropriately formed.

The introduced modification enables in every possible
case such a selection of observer gains that the state matrix
E is non-singular and the observer is stable.

5. The mathematical model of the induction

motor and experimental results

In case of considered mathematical model of the induction
motor, vector sizes have following values: n = 4, q = 2.
Therefore the PI observer, described with (2), is always unsta-
ble and the application of proposed modifications is necessary
for its proper operation.

The basis for the observer design is the mathematical mod-
el of an induction motor assuming sinusoidal flux distribution
in the air gap, the linear and lossless magnetic core and one
rotor circuit [8], described in stationary Cartesian α−β co-
ordinate system using dimensionless quantities. The electrical
angular speed ω is treated as a parameter and it is reconstruct-
ed in the observer by the adaptation mechanism described in
[9, 10]. The following forms of vectors were assumed for the
motor:

x =
[
ψsα ψsβ ψrα ψrβ

]T

,

u =
[
usα usβ

]T

,

y =
[
isα isβ

]T

,

(19)

where ψsα, ψsβ – magnetic fluxes coupled with the stator
winding; ψrα, ψrβ – magnetic fluxes coupled with the rotor
winding; usα, usβ – stator winding supply voltages; isα, isβ

– stator winding currents. Then the matrices, presented in a
simplified block form, are given as:

A =

[
γRsLr1 2 −γRsLm1 2

−γRrLm1 2 γRrLs1 2 + ωJ

]
,

B =

[
1 2

0 2×2

]
, C = γ

[
−Lr1 2 Lm1 2

]
,

(20)

where Rs, Rr, Ls, Lr and Lm – the parameters of the equiv-
alent circuit of the motor [8]. The matrix J and the parameter
γ are defined as:

J =

[
0 −1

1 0

]
, γ =

1

L2
m − LsLr

. (21)

The PI observer with proposed modifications, designed for
an induction motor, was applied in a multiscalar control sys-
tem [11, 12] and investigated during laboratory tests. Figure 2
shows transient waveforms recorded during investigations.

Fig. 2. Exemplary transient waveforms recorded during laboratory
investigations in the multiscalar control system equipped with PI ob-
server; a) braking at 0.5 of nominal speed; b) acceleration from 0.1

to 0.5 of nominal speed; te – motor torque

6. Conclusions

The PI observer provides better reconstruction quality than
the P observer, but its structure is much more complicated.
Without additional modifications the PI observer can be ap-
plied only to the systems with equal numbers of state variables
and outputs. In case of systems with lower number of outputs,
due to stability of the observer, the modification of the integral
unit is necessary.
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