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Różański, R.; Jopek, M.A.; Jassem,

J.; et al. Platelet-Based Liquid Biopsies

through the Lens of Machine

Learning. Cancers 2023, 15, 2336.

https://doi.org/10.3390/

cancers15082336

Academic Editor: David Wong

Received: 9 March 2023

Revised: 11 April 2023

Accepted: 13 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Platelet-Based Liquid Biopsies through the Lens of
Machine Learning
Sebastian Cygert 1,2, Krzysztof Pastuszak 3,4,5 , Franciszek Górski 1, Michał Sieczczyński 1, Piotr Juszczyk 1,
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Simple Summary: Liquid biopsies are a non-invasive way to diagnose and monitor cancer using
blood tests. Machine learning can help understand the genetic data from these tests, but it is challeng-
ing to validate clinical applications. In our study, we first compiled a large-scale dataset for cancer
classification. Then, we extracted relevant features from the data and performed a binary classifi-
cation, with the prediction outcome of either a sample collected from a cancer patient or a sample
collected from an asymptomatic control. We used different convolutional neural networks (CNNs)
and boosting methods to evaluate the classification performance. We have obtained an impressive
result of 0.96 area under the curve. Finally, we tested the robustness of the models using test data from
novel hospitals and performed data inspection to find the most relevant features for the prediction.
Our work proves the great potential of using liquid biopsies for cancer patient classification.

Abstract: Liquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This
biosource is often analyzed using sequencing, which generates highly complex data that can be used
using machine learning tools. Nevertheless, validating the clinical applications of such methods is
challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning
sample collection; and (c) adding interpretability to the model. In this work, we have used RNA
sequencing data of tumor-educated platelets (TEPs) and performed a binary classification (cancer
vs. no-cancer). First, we compiled a large-scale dataset with more than a thousand donors. Further,
we used different convolutional neural networks (CNNs) and boosting methods to evaluate the
classifier performance. We have obtained an impressive result of 0.96 area under the curve. We then
identified different clusters of splice variants using expert knowledge from the Kyoto Encyclopedia
of Genes and Genomes (KEGG). Employing boosting algorithms, we identified the features with the
highest predictive power. Finally, we tested the robustness of the models using test data from novel
hospitals. Notably, we did not observe any decrease in model performance. Our work proves the
great potential of using TEP data for cancer patient classification and opens the avenue for profound
cancer diagnostics.
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1. Introduction

In recent years, medicine has made numerous attempts to involve machine learning
(ML) algorithms to improve patient outcomes and facilitate the work of clinicians. In
addition to improving patients’ quality of life, machine learning can be used to reduce
doctors’ professional burnout [1]. Primary uses of machine learning are related to image
processing [2], but artificial intelligence (AI) in general also allows scientists to keep up with
the multitude of data generated for patients: MRI scans, CT scans, radiotherapy results,
histology slides, sequencing results, and others. Such formats of data can be classified using
versatile methods, including image recognition [3] or, more recently, graph recognition [4].

Precision medicine has long sought to leverage molecular information about the dis-
ease to improve patient outcomes [5]. Widely used tissue biopsy samples and imaging
methods are limited by constraints on geographical availability, sampling frequency, and
incomplete disease representation. Hence, the medical world’s attention has turned to
minimally invasive liquid biopsies, which enable the interrogation of bodily fluid com-
ponents: DNA, RNA, proteins, or even whole cells [6]. The potential of liquid biopsies
is highlighted by studies that show blood-based assays can track even the evolutionary
dynamics and heterogeneity of the disease, detecting the very early emergence of therapy
resistance, residual disease, and recurrence [5]. Offered by liquid biopsies, minimally inva-
sive sample collection enables the detection and characterization of multiple diseases in a
convenient, repeatable, and real-time manner [3,7,8]. The developed modern tests rely on:
(a) tremendous progress in our ability to purify and analyze body fluid components (such
as cells, platelets, DNA, RNA, protein, or metabolite biomarkers) and (b) the introduction
of high throughput techniques that provide unprecedented resolution of the analysis. As
liquid biopsies are bound to transform patient care in the coming years, it is essential
to emphasize that the current challenge is to make them a standard clinical tool [7]. The
generated data complexity enforces the need for more advanced models than assuming a
simple cut-off for the final result interpretation [9].

As liquid biopsies introduce a high level of data complexity, applying machine learn-
ing to data processing becomes a natural direction. The number of studies combining liquid
biopsy analysis and machine learning is continuously expanding. The most recent applica-
tions of machine learning are related to circulating tumor cell (CTC) enumeration and CTC
imaging [10,11] or small RNA profiling with the use of principal component analysis [12].
Machine learning has also been used for classification based on DNA mutational profiles,
combined with data augmentation [12] and protein analysis [13]. Regarding platelet RNA
sequencing data in cancer, so far, this type of data has been analyzed with the use of either
particle swarm optimization-enhanced support vector machines [14,15] or deep neural
networks [3].

Applying machine learning methods in clinical applications is still very challeng-
ing [16]. For example, during deployment, the model performance may drop drastically
due to the effect of the model learning to explore spurious features from the training set,
which may not generalize to novel data (e.g., from external hospitals) [17]. Other challenges
include model stability, performance in the underrepresented classes [18], and robustness,
which constitute essential research topics for machine learning in general [19]. Therefore,
the performance obtained on internal datasets can only be treated as an upper boundary of
the system’s performance in the real world, and using external data is crucial for validation.

Previously, we established that the platelet transcriptome retains remarkable stability
in healthy individuals but changes dramatically under the influence of disease [20]. Since
then, we have created a deep-neural-network-based tool that allows for ovarian cancer
detection. This unique tool uses the biological knowledge deposited in the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and converts RNA sequencing data collected from
patients’ blood to images [3]. We also studied the utility of tumor-educated platelets and
circulating tumor DNA for preoperative endometrial cancer diagnosis, including histology
determination. We provided evidence that liquid biopsy can complement, if not replace,
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standard microscopic traditional biopsy evaluation [21]. The aforementioned studies lay
the groundwork for a novel approach to liquid biopsies.

However, before the full potential of utilizing data from the RNA sequencing of
platelets is explored, we need to thoroughly test the stability and performance of the
proposed methods. In this work, we capitalize on the ability of machine learning to unearth
unapparent signals hidden in liquid biopsy data. Moreover, we take further advantage of
the introduction of biological structures: the representation of various types of biological
data as networks rather than as single features [22]. An overview of our approach is
summarized in Figure 1. In brief, we collected liquid biopsy data from multiple medical
units and investigated the binary, simple classification of cancer versus non-cancer samples
consisting of 720 cancer cases and 422 non-cancer cases. Boosting algorithms were then
used to find the most important features, which allowed us to gain insight into the model
decisions. Finally, held-out data from novel locations (unexposed during training) were
used to test the models’ robustness. In summary, the contributions of this paper are
as follows:

• We present a comparative study of various machine learning algorithms (convolutional
neural networks (CNNs), boosting) on the task of liquid biopsy cancer classification
using a recently introduced novel feature vector extraction.

• We show that using knowledge from the KEGG database works as efficient feature
preselection.

• We study the robustness of the presented algorithms when presented with the samples
collected at hospital locations that were not used in the training process.

• We identify the most important features for classification.
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2. Data
2.1. Datasets

We gathered data from several datasets. However, it is essential to emphasize that
all platelet samples were processed strictly according to the guidelines published by
Best et al. [23]. The dataset GSE156902 [8,24] contained cohorts of asymptomatic con-
trols, multiple sclerosis patients, selected as a group of patients with a non-malignant
disease with a significant inflammatory component, and patients with different forms of
cancer. GSE158508 [3] contained cases of ovarian cancer patients, GSE184904 included en-
dometrial cancer patients [21], and GSE89843 included non-small cell lung cancer (NSCLC)
patients [15]. The dataset of sarcoma was previously published [25]. The authors of the orig-
inal study supplied the raw counts. Several samples were excluded in the process of quality
control based on poor data quality or clinical status with additional confounding factors.

Healthy controls, NSCLC, and sarcoma samples were collected at VU University
Medical Center (Amsterdam, The Netherlands), Netherlands Cancer Institute (Amsterdam,
The Netherlands), and Massachusetts General Hospital (Boston, MA, USA).

Samples of endometrial and ovarian cancer patients were collected at the Department
of Gynecology, Gynecological Oncology, and Gynecological Endocrinology at the Medical
University of Gdansk (MUG). The study was approved by the Independent Ethics Commit-
tee of the Medical University of Gdansk (NKBBN/434/2017). All patients from all included
hospitals signed informed consent forms. Procedures involving human subjects were in
accordance with the Helsinki Declaration, as revised in 1983.

The final dataset contained the data of patients with 6 different cancer types, patients
with brain metastasis from different primary sites, and 422 non-cancer patients (asymp-
tomatic controls and multiple sclerosis patients). An overview of the data is presented
in Table 1. The data were aggregated and normalized together. Each of the constituent
datasets underwent the same preprocessing.

Table 1. Collected data statistics.

- EC OC NSCLC GBM Brain
Metastasis Sarcoma Asymptomatic

Controls
Multiple
Sclerosis

Num patients 39 28 329 234 51 39 338 84

2.2. Data Preparation

The DESeq2 package [26] with a variance stabilizing transform [27] was used for the
normalization of the data. The data was then annotated using the Gencode v19 GRCh37
annotation [28]. The samples were then subjected to quality control, namely, samples with
less than 100,000 total reads were excluded from further analysis. Only splice variants
that could be mapped to a transcript with Gencode status “known” were included. If
two IDs were mapped to the same gene name, expression data for the ID marked in the
Gencode general transfer format (GTF) as Level 1 was used. Normalized and filtered
expression profiles were then the basis for constructing images, where the color of each
pixel corresponded to the expression level of a certain gene [3].

As each RNA-sequenced platelet sample consisted of reads belonging to 39,843 differ-
ent splice variant types, we decided to experiment with CNNs and convert these transcripts
to a two-dimensional array. The value in each position represents the number of transcript
counts detected; hence, the higher the gene expression of each splice variant, the higher
its value. Values in the array were arranged according to their biological significance. As
our primary classifier was developed to recognize the tumor-educated platelets (TEPs) of
cancer patients, we decided to focus especially on pathways that might be deregulated
due to tumor development. Hence, we searched the KEGG database [29] and selected
signaling pathways corresponding to four crucial aspects: cancer, metabolism, signaling
processes, and the immune system. Combining these four groups of pathways resulted
in a higher accuracy than using just pathways marked as directly related to cancer [3]. R
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package GAGE was used to gather the KEGG pathway data [30]. In each pathway, KEGG
IDs that were not linked to the expression level of any particular gene were removed from
the corresponding rows.

The full vector obtained from each platelet sample contained 267 rows corresponding
to the 267 signaling pathways. In general, the rows can be divided into the following groups:
metabolism, genetic information processing, environmental information processing, cellular
processes, immune systems, other organismal systems, cancer, and other human diseases.

2.3. Dataset Split by Location

Machine learning models are known to be vulnerable to various confounding factors.
They exhibit reduced classification performance when presented with data from novel
hospitals [17]. Thus, we repeated the experiments using a new data split to simulate the
truly independent test set with samples from different hospitals. The samples used to train
the model were collected at VU University Medical Center, Amsterdam, The Netherlands
(707), and the Medical University of Gdansk (67). Samples for the new independent test set
were collected at other hospitals: Massachusetts General Hospital, USA (87), Netherlands
Cancer Institute, Amsterdam, The Netherlands (192), Radboud University Medical Center
Nijmegen (4), and Medical University of Vienna (5). Patients with sarcoma were not
included in this particular analysis, as any split based on their location of origin would
result in an even more imbalanced split of the other samples. Furthermore, unlike ovarian
or endometrial cancer cases present only in the training set, sarcomas are of embryological
origin, different from other types of tumors. Details of the data split are presented in
Table 2.

Table 2. Dataset split for the transfer to a new hospital.

- EC OC NSCLC GBM Brain Metastasis Sarcoma Asymptomatic Controls Multiple Sclerosis

Training 39 28 142 215 25 Not included 260 65

Test 0 0 185 4 26 Not included 54 19

Total 39 28 327 219 51 Not included 314 84

3. Models

In this section, three models used for the classification of cancer versus not-cancer
are briefly presented. The code and data will be made available to the public upon paper
acceptance.

3.1. imPlatelet

The first model used for the experiments was the classifier that was previously shown
to obtain very high accuracy in the discrimination between healthy donors and ovarian can-
cer [3]. A deep neural network model was built using the Keras R package with TensorFlow
backend [31]. It consists of 10 layers, including 8 hidden layers: 2 two-dimensional convo-
lutional layers, each with four filters and a kernel size of 3 × 3, 4 densely connected layers
with a gradually reduced number of units, and 2 dropout layers. Binary cross-entropy
was used as a loss function, and gradient optimization was performed using the adadelta
algorithm. Since the dataset was imbalanced, the classes received weights proportionate to
their frequencies, resulting in a measure of “balanced accuracy” used in the experiments
for all the presented models.

3.2. Standard CNN

We also experimented with standard CNN models. We choose ResNet architecture [32]
with 18- and 34-layer variants. As we found no significant difference between the two
models, a smaller variant was used (because of the small dataset size). CNN allowed
us to obtain a much smaller model than imPlatelet (11.2 M of parameters instead of
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145.3 M). Standard ResNet implementation from the PyTorch library was used [33]. Further,
the dropout layer [34] was added before the last layer, with a dropout probability of
0.2. The Stochastic Gradient Descent optimizer was used with a learning rate of 0.1,
decreasing every seven epochs by one order of magnitude and with a weight decay of 0.001.
Binary cross-entropy was used as a loss function, with weight-balanced loss (similar to the
previous model).

3.3. Gradient Boosting

Another algorithm tested on our dataset was the eXtreme (XGBoost) classifier [35]. We
conducted a random hyperparameter search. The optimized hyperparameters included
learning rate, maximal tree depth, number of estimators, and dropout rate (of the input
features). Throughout a few trials, ranges of more promising values were extracted, and
during the final experiments, 150 chosen settings were tested three times. Each training
round that tested 150 settings took approximately 11 h on i7 7700HQ. Additionally, the
early stopping round hyperparameter was set to 15 to reduce overfitting on the training set.

4. Experiments
4.1. Model Comparison

The test set included 30% of the stratified random samples. The remaining 70% of
the samples were used for stratified 5-fold cross-validation. Class balance was preserved
in each subset, including the split of controls into healthy donors used in ovarian cancer
classification. Each model was then tested using the test set. Unless stated otherwise, each
experiment was repeated three times. For data augmentation, we also experimented with
MixUp [36], but no significant improvements over the baseline were found.

Table 3 presents the obtained results. Somewhat surprisingly, all the methods yielded
very similar results. Notably, ResNet-18 obtained the same accuracy, as large as the im-
Platelet classifier, using a significantly smaller number of parameters. An important finding
was that the boosting algorithm achieved competitive accuracy, but its use is all the more
justified as it allows for the interpretability of the model decisions. All the models achieved
impressive, very high results (approximately 0.96 AUC in the test set).

Table 3. Results of evaluated models.

Model Val Bal. Acc. Test Bal. Acc. Val AUC Test AUC

imPlatelet 0.902 0.891 0.970 0.966

ResNet-18 0.898 0.883 0.957 0.950

Boosting 0.907 0.889 0.962 0.960

4.1.1. Use of KEGG Expert Knowledge

Based on our previous experiments, we decided it would be interesting to compare
the accuracy of DNNs and CNNs as CNNs utilize local information. To verify whether
the local information is useful in this task (that is, grouping the related rows and having
each signaling pathway in a different row in the array), we conducted experiments on
random permutations of rows and columns (Table 4). We demonstrated that the local
information had a negligible impact on the performance of CNNs as the balanced accuracy
scores on validation and test sets were only slightly degraded. Consequently, using the
information from the KEGG pathways (and grouping related pathways together) did not
enhance classifier performance by providing a biological background.
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Table 4. Effect of permuting rows and columns of the images on the model performance.

Model Val AUC Test AUC

ResNet-18 0.957 0.950

Permuted rows 0.959 0.951

Permuted columns 0.955 0.945

Hence comes the question of whether using the KEGG database is useful at all for this
task. Using the KEGG pathway database allowed us to remove a number of features, from
over 39,000 variables to roughly 23,000, eliminating noise and focusing on domain knowl-
edge; however, it was not known what the impact of such filtering on classifier performance
would be. As such, we additionally trained a boosting algorithm on all of the features
(39,000 variables) and observed that the balanced accuracy and AUC dropped to 0.819 and
0.922, respectively (compared to 0.889 and 0.96 when using KEGG feature preselection).

4.1.2. Robustness Test

Finally, we performed a robustness test by testing data from samples collected from a
different location than the data used for the training process (as presented in Section 2.3),
without any adaptation of finetuning, to imitate real-world application. The obtained
results are presented in Table 5. The ROC curves are presented in Figure 2. Impressively,
no performance drop is observed when transferring the data obtained at the new hospital.
Although the bias associated with different collection points cannot be entirely excluded,
the possibly introduced confounding factor did not significantly affect the classification.

Table 5. Results of the experiment transfer to a new hospital.

Model Val Bal. Acc Test Bal. Acc Val AUC Test AUC

imPlatelet 0.898 0.854 0.970 0.966

ResNet-18 0.913 0.857 0.965 0.958

Boosting 0.909 0.878 0.967 0.953
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4.2. Feature Importance

In this section, we explore the groups of KEGG-arranged features used by the models.
In the first experiment, we intended to understand the impact of different groups on the
final model accuracy. Hence, we used only one of the groups from the KEGG database
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and verified the final classifier accuracy (Figure 3). No striking differences were found
between the analyzed groups. The lowest accuracy was obtained when using the KEGG
information concerning the genetic information processing group, but the test balanced
accuracy remained relatively high (0.818). Using the information from only some of the
groups performed almost as well as when all the data were used; for example, using the
cancer information group allowed us to achieve 0.87 of balanced accuracy, whereas the
model relying on all the data achieved only slightly higher accuracy of 0.89. Therefore, we
concluded that the information needed by the classifier to make a decision was already
available within each of the groups used in the KEGG database.
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Next, we utilized the explainability of the boosting approach. An XGBoost model was
trained on the entire dataset, and the feature importance was extracted from it. Then, a se-
ries of experiments was conducted to determine the performance of the test set when using
only a limited number of features for the training (from 10 to 500). For each experimental
setting, the models were trained for 100 training rounds, each with a different hyperparam-
eter set. Figure 3 shows the obtained results for a limited number of features. Apparently,
when using only 10 features, the model already reached 90% in the area under the curve
(AUC) metric. The major increase happened up to 100 features, when approximately 0.955
of the AUC was obtained. The ROC curve is depicted in Figure 4.

The top 10 splice variants implicated in class prediction included genes associated
with cell signaling and gene expression regulation (NCOA4, PTPN6), ribosome formation
(RPL7A, RPS25, RPS18, RPL10), immune system (HLADRA, HLA-F, CD27), and cell
energetics (NDUFB11). Platelets are known to play a significant role in inflammation and
immune responses. Thrombocytosis, an increased platelet count, is very common among
cancer patients. Platelet-cancer crosstalk generates a vicious feedback loop: tumor cells
secrete molecules that activate platelets, promoting, in turn, cancer-associated inflammation,
cell proliferation, dissemination, and immune system evasion. Hence, the decrease in RNA
expression in platelets collected from cancer patients stems from the intense translation
of the mentioned genes to proteins in response to different cues associated with disease
progression [37].
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According to a gene expression profiling study published by Gnatenko et al., NCOA4
encodes cDNA for RFG (RETproto-oncogene RET/PTC3) and belongs to the top 50 human
platelet-expressed genes [38]. Its role in platelet functioning has not been studied in detail.
By contrast, PTPN6 encodes a protein belonging to the tyrosine phosphatase (PTP) family.
PTPs are known signaling molecules. They regulate multiple cellular processes, such
as cell growth, differentiation, the mitotic cycle, or oncogenic transformation. PTP-1B, a
member of this family, has been reported to be an essential positive regulator of thrombus
formation [39]. Furthermore, the highly expressed PTPN6 gene in immune cells has
been correlated with a favorable prognosis in gastric cancer. Both PTPN6 and CD27 are
considered subjects for immunotherapy [40,41]. The vast repertoire of RNAs is carried
over into mature platelets, along with the functional spliceosome system and ribosomes,
which explains the transcripts related to ribosome formation [42]. As cancer cells rewire
cell functioning, increasing their biosynthetic and metabolic activities, a complex and
highly energy-consuming process occurs [38]. This explains the necessity for the ribosome
biogenesis reflected in platelets.

4.3. Discussion

Contrary to what we have published previously [3] and contrary to the related works
involving machine learning [43], the addition of KEGG pathways [44] did not improve the
accuracy of classification in this study, as shown in the experiment when using random
permutations of rows and columns for a CNN-based classifier. However, the KEGG-based
preselection of features proved to improve boosting classifier accuracy. Moreover, the
experimental data showed that the classifiers were already relatively accurate when using
data from the most important features. The obtained accuracy of the order of approximately
90% could allow for the performance of much cheaper screening tests based on liquid
biopsies [45]. This is imperative in the context of potential future clinical applications of
the classifier. Determining a small subset of features that provide sufficient accuracy would
allow the use of reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)
instead of RNA sequencing in the laboratory. The RT-qPCR technique is faster, cost-effective,
and readily available compared to the latter. We also showed that our model is highly
accurate and robust. Hence, the location of the material collection did not significantly
affect the prediction effectiveness.
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Platelets demonstrate certain benefits over other liquid biopsy sources: convenient
isolation, abundance, high quality of extracted nucleic acids, and the ability to process
RNA information in response to external cellular cues [46]. Hence, combining RNA-
sequenced TEPs with multiple machine learning approaches warrants opportunities for
future biomarker trove discovery, paving the way toward optimal, personalized diagnos-
tic strategies.

5. Conclusions

In this work, we have presented a meaningful, large-scale comparison of different
methods for liquid biopsy classification in the form of RNA-sequenced platelets collected
from a cohort of cancer patients and non-cancer donors.

We have shown that using the information from the KEGG database as a feature
preselection allows us to improve classifier performance. The features belonging to various
KEGG pathways have high predictive power, and even separate groups of pathways could
provide high accuracy for classification on their own.

Further, we have validated that the models work well when using data from novel
hospitals, which is of great importance for clinical trials. We conclude that the boosting
method seems to be the optimal selection; it achieved the same accuracy as the more
computationally expensive CNN-based methods. Furthermore, it allowed us to add a level
of interpretability to the model, extracting the most important features that affected the
final prediction results. Using only the 20 top features was sufficient to obtain 0.924 in
the AUC metric. Further development and implementation of machine learning applied
to platelets in clinical settings will mandate solid interdisciplinary measures. We have
established features (splice variants) that are crucial for robust classification, enabling the
development of a highly sensitive assay that is time- and cost-effective.
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