
Practical Evaluation of Internet Systems’
Security Mechanisms

Paweł Lubomski and Henryk Krawczyk | Gdańsk University of Technology

A proposed Internet systems security layer with context-oriented security mechanisms reduces the risk
associated with possible vulnerabilities. A metric of the system trust level is proposed and then evaluated
according to a university Internet system.

I nternet systems are widespread, accessible via web
browsers with the intensive use of Ajax. � ey o� en

have distributed and service-oriented architectures.
Because of their wide and common access by many users,
they’re exposed to many threats and a� acks. � ese sys-
tems are now processing more and more sensitive data—
even that of strategic importance for organizations. � is
means they need high-level security, which is very hard
to achieve. Furthermore, current systems are so compli-
cated that they’re almost impossible to develop without
any mistakes, even when using the best project pa� erns.

In this article, we propose a practical method for
evaluating overall system trust levels based on the
well-known standardized audit tests approach (using
expert judgment). We show how to organize a system
security–hardening process by stepwise improvement
of security mechanisms with a new class of such mecha-
nisms, called context-oriented role-based access control
(CoRBAC). We’ve demonstrated on a real system that
such approaches are promising in comparison to the
standard role-based access control (RBAC) approaches.

Security Policy
At the beginning of designing such a system, a suit-
able information security policy should be assumed.

Two questions should be considered at that time: How
will the system be protected, and what’s the acceptable
risk level? � e aim of such a policy is to protect system
authentication, authorization, con� dentiality, integ-
rity, nonrepudiation, and availability. � e � rst � ve areas
relate to proper access control; the last one relates to
achieving high performance and availability.

� e proposed security policy should also account
for any possible categories of threats. In the case of
Internet systems, the majority of known threats can be
divided into two groups on the basis of their impact on
the system. � e � rst group of threats is located on the
system or so� ware level and is mainly associated with
communication between a user and a service. � ese
threats mostly result from technical implementation
weaknesses or business logic faults. � e other group
mostly covers denial-of-service a� acks and is guarded
mainly on the network control level.

To deal with so many possible threats, a suitable
classi� cation and categorization system is required.
� e best classi� cation in the case of Internet systems’
security � aws is the Open Web Application Security
Project (OWASP) Top Ten (www.owasp.org/index
. p h p / Catego r y : O WA SP _ To p _ Ten _ Pro j ec t) ,
which describes the 10 most common categories of

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating New collective works, for resale or redistribution to servers or lists, or
reuse of any copyrightem component of this work in other works.

This is a post-peer-review, pre-copyedit version of an article published in IEEE Security & Privacy. The final
authenticated version is available online at: https://doi.org/10.1109/MSP.2017.13

https://doi.org/10.1109/MSP.2017.13

weaknesses related to these systems. As of this writing,
these are injection, broken authentication and session
management, cross-site scripting (XSS), insecure direct
object references, security misconfiguration, sensitive
data exposure, missing function level access control,
cross-site request forgery (CSRF), use of components
with known vulnerabilities, and unvalidated redirects
and forwards.

Because of the assumed security policy’s implemen-
tation, various security mechanisms are developed to
protect the system. They’re implemented in the system
because they can’t rely on users’ web browsers, which
aren’t under the system administrators’ control. The
proper design of such complex systems is very burden-
some and costly; an undetected system weakness could
be considered as a potential threat. To avoid that, peri-
odic security audits can detect vulnerabilities. Figure 1
presents a system security–hardening process, consisting
of two cycles. The first cycle represents the improvement
process of security mechanisms installed in the system,
and the second focuses on periodic verification of system
trust. In other words, the system is verified according to
whether the desired risk level corresponds to the required
security level. The two cycles can be repeated until an
acceptable level of system risk is achieved.

The system security–hardening process can consist
of a few independent activities. First, there’s the removal
of the detected vulnerabilities in a specific order (on
the basis of their criticality). Next, there are a few
ways to lower the risk of new potential vulnerabilities.
For example, one step to lowering such risk could
be to add additional security mechanisms such as a
two-factor authentication. Another step might account
for more context parameters. Yet another step might
implement better detection mechanisms for irregular
behavior, including those that use artificial intelligence
algorithms. This process should be done incrementally
with a security audit to check whether the change lowers
the risk or not. Incremental assessment is important,
because adding new security mechanisms can cause a
decrease in system usability. This could lead to extreme
cases in which system security would decrease because
users bypass inconvenient security mechanisms.1,2

System Security Mechanisms
The traditional security approach is static and
insufficient nowadays. The pure RBAC model has
been frequently criticized for its inflexibility in rapidly
changing domains.6 (For more information, see the
“Role-Based Access Control Approaches” sidebar.) The
real-life roles of users in an organization are evaluated
very often, whereas RBAC roles are static, and their
assignment doesn’t depend on other factors, such as
time, localization, or other user attributes that change

dynamically. Figure 2 presents a two-level user access
control to the system with the traditional RBAC security
mechanisms, which is the same for regular users and
external services. First, an authentication process is
performed. Next, permission verification is performed
on the basis of permission configuration according to
users’ connections, their roles, their roles’ permissions,
and permissions guarding the services.

Users interact with the system through an interface
and environment that are described by many parameters
that define the context of their activities.5–8 The context
might be a certain period of time in which the user
action is performed (weekday, Saturday, or Sunday).
It can be a user’s physical (US, Poland, Germany, UK,
or France) or logical localization (internal network,
campus network, or Internet).9 It can correspond to
the general state of the system (regular work, under
high load, or under maintenance) or to the relation
between the user and the available data (a physician
and medical records of his or her patient).10 In addition,
the user’s interaction history (log of previous actions in
the system) or the kind of device being used (standard
PC or mobile device) can be taken into account.11
The context information can be gathered from many
different sources, such as user requests made by a web

Figure 1. System security–hardening process, consisting of two cycles. The first
cycle represents the improvement process of security mechanisms installed in
the system, and the second focuses on periodic verification of system trust.

Design

Start

Decision

Test

Improvement

Possible threats Existing security
policy

Security mechanisms

Secure Internet system

System audit tests

Acceptable Not acceptble

Risk evaluationPeriodic evaluation

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

browser, system information status, and a system clock.
The ability to integrate contextual information makes
the role-based security model flexible, thus minimizing
the risk of potential threat. In this way, we achieve
dynamic security mechanisms that can adapt to the
changing security policies during runtime with minimal
loss of functionality and with little or no manual
assistance. They do a good job of addressing events
such as changes in personnel, changes in the execution
environment, and crisis situations.

Let’s consider the CoRBAC model, which is an
extension of the RBAC model, where widely under-
stood context is taken into account. Each context
parameter comprises a finite, discrete set of possible
values. Some context parameters have a continuous
character (for example, time). During context analysis,
they’re clustered into certain groups, such as days of
the week. The same situation applies to context para-
meters with discrete numerical values, such as a set of
IP addresses. They’re clustered into subsets of a specific
netmask. A vector of the current values of each context
parameter describes the current context accompany-
ing each user interaction with the system. Each context
parameter is gathered separately. This approach lets us
implement specialized mechanisms to gain different
context parameters in parallel.

Figure 3 illustrates the CoRBAC model’s access
control activities. These consists of two authentica-
tion activities: a basic authentication (the same as in
the RBAC model) and a user trust–based access con-
trol that has extra security mechanisms dependent on
the system’s trust in the user. (One possible solution is
described in detail in the 2015 proceedings of the Com-
puter Network Conference.12)

The user trust analysis and access control account
for the user profile (history of contexts accompany-
ing the user with the system interaction) and the cur-
rent context. It lets us detect irregular behavior. Thus,
the system security layer learns users’ behavior. Each

Figure 2. Traditional role-based access control (RBAC) security mechanisms. First,
an authentication process is performed. Next, permission verification is performed
on the basis of permission configuration according to users’ connections, their
roles, their roles’ permissions, and permissions guarding the services.

Access grantedAccess denied

Authentication

Static permission-based
access control

External
servicesUsers

Services

Role-Based Access Control Approaches

T he role-based access control (RBAC) approaches are still
under improvement to satisfy requirements related to mobile

and cloud computing. First, context expansion is considered to
create dynamic and flexible access control mechanisms. To satisfy
large numbers of users with different demands, extra attributes
have been added to the approach. This has led to a new approach,
called attribute-based access control (ABAC).1 The ABAC model is
a generalized version of the RBAC model, where access rights are
granted to users using policies that combine multiple attributes.
It’s important to note that such attributes relate not only to
relationships between users and the available data describing
their profiles but also to other types of entities that represent
users and systems, such as hardware and software configuration,
communication characteristics, and even security policy.2 Proper
assignments of attribute values to different entities are necessary
to protect against unauthorized access. The problem lies in how
to estimate the suitable number of attributes and how to manage
them to achieve the required level of credibility. (Some proposi-
tions have been made for cloud tenants.3)

Our proposed context-oriented role-based access control
(CoRBAC) model is an exact solution to such problems and cor-
responds to the direction of access control development mentioned
earlier. It provides precise and effective security mechanisms, working
on the basis of historical and current contextual information col-
lected from the system and environment. The proposed solution
suits any service-oriented Internet system, regardless of changes in the
environment, because authorization is made on the system side and
only context parameters that are accounted for are changed.

References
1. D.R. Kuhn, E.J. Coyne, and T.R. Weil, “Adding Attributes to

Role-Based Access Control,” Computer, vol. 43, no. 6, 2010, pp.
79–81.

2. Q.M. Rajpoot, C.D. Jensen, and R. Krishnan, “Integrating Attri-
butes into Role-Based Access Control,” Proc. Data and Applica-
tions Security and Privacy XXIX, 2015, pp. 242–249.

3. T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and Privacy:
An Enterprise Perspective on Risks and Compliance, O’Reilly, 2009.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

user profile contains context values clustered into
groups by how often the user is in a particular con-
text. This can be done, for example, using the hierar-
chical agglomerative clustering algorithm, a “bottom
up” approach in which clusters are merged in pairs and
moved up in the hierarchy. This way, we can achieve
dendrogram—an extensive hierarchy of clusters that
merge with each other at certain distances.13 The result-
ing groups are translated into trust levels. On the basis
of the computed trust level, the appropriate security
mechanism is fired. Some examples of such extra secu-
rity mechanisms are reentering a password or other
personal data, inputting a one-time-password sent by
SMS, and selecting a previously chosen image from
a list. If the user satisfies this mechanism, his or her
identity is confirmed.

In dynamic permission-based access control
(see Figure 3), first, the appropriate permissions are
assigned to the user on the basis of the configuration
(connections among users, roles, and permissions).
This is done exactly as in the traditional RBAC model.
Next, the permission set is limited, based on permis-
sions’ association with some context values. This step
applies only to the CoRBAC model. In this way, in
any particular situation, the current context dynami-
cally determines the “active (allowed) permissions”
set, which is a subset of the “all permissions” set speci-
fied in the RBAC model. This process is very impor-
tant in risk analysis—it reduces the scope of impact of
a potential security incident. After that, the permission
verification takes place on the basis of access rules. If
this verification is met, the requested access to services
is granted or denied.

According to the CoRBAC model, these two levels
of access control can be represented by the following
procedures, written in pseudocode:

userTrustBasedAccessControl (user,
service):

1. currentContext =
 getCurrentContext()

2. userProfile =
 getUserProfile(user)

3. trustLevel = computeUser
TrustLevel(userProfile,
currentContext)

4. result = performUserSecurity
 Check(trustLevel)

5. if(result == true)
then call
permissionBasedAccessControl
 (user, service)
else return DENY_ACCESS

permissionBasedAccessControl (user,
service):

1. roles = getRolesOfUser(user)
2. userPermissions =

 getPermissionsOfRoles(roles)
3. currentContext =

 getCurrentContext()
4. contextPermissions = getContext

 Permissions(currentContext)
5. userPermissions =

 userPermissions ∩
 contextPermissions

6. servicePermissions =
 getServicePermissions(service)

7. if(userPermissions ∩
 servicePermissions != Ø)
 then return GRANT_ACCESS
 else return DENY_ACCESS

where ∩ indicates the intersection of the sets. For com-
parison, the RBAC model includes only four of the
above steps (from lines 1, 2, 6, and 7).

Proposed System Risk and Trust
Evaluation Method
It’s difficult to correctly determine a system’s level of
security. The key challenges are to measure the lack of
incidents and choose the proper representative metrics.
Fortunately, many open initiatives address these prob-
lems. For Internet systems on the web application level,

Figure 3. Use of the proposed context-oriented role-based access control
(CoRBAC) security mechanisms. Compared to a traditional RBAC security
mechanisms (see Figure 2), there’s an added user trust-based access control that
has extra security mechanisms dependent on the system’s trust in the user.

Access grantedAccess denied

Authentication

User trust-based
access control

User profiles

Current
context

Dynamic permission-based
access control

External
servicesUsers

Services

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

the best approach currently seems to be OWASP (www
.owasp.org). It gathers data from many specialists and
scientists in the field of web application security to clas-
sify threats, define techniques and guides, and indicate
how to make systems more secure and how to test sys-
tems. The biggest advantage of the results is that they’re
widely available via open licenses (such as Creative
Commons; creativecommons.org) and can be used for
different kinds of systems.

One possible way to measure the level of a system’s
security is using security audits, which are mostly car-
ried out by external auditors who check the system for
known potential security vulnerabilities listed in the
OWASP Top Ten or Common Weakness Enumeration
(CWE; cwe.mitre.org). Moreover, the technical security
audit can be done on the basis of the OWASP Testing
Guide (www.owasp.org/index.php/OWASP_Testing
_Project). Figure 4 presents the key areas of such an
audit. As a result, the detected vulnerabilities are reported
to the system owners and can be submitted to Common
Vulnerabilities Enumeration (CVE; cve.mitre.org).

Each vulnerability detected during the audit should
be the subject of risk analysis to determine the level
of the system risk and, consequently, how the poten-
tial security incident associated with that vulnerability

impacts an organization’s functionality.14 On the basis
of the list of detected vulnerabilities (which should be
updated periodically), prioritization of remedial work
should be done; vulnerabilities with highest criticality
should be carried out first.15

Threats can be categorized into the OWASP Top
Ten categories. Other classifications are available (such
as CWE), but it seems that the OWASP Top Ten covers
most of the threat categories corresponding to Internet
systems. In practice, in complex and advanced systems,
only rarely can we discover vulnerabilities of other cat-
egories. In those cases, after the analysis and accep-
tance, the OWASP Top Ten can either cover it, or some
actualization of the classification can be performed.
Each detected vulnerability should be categorized and
ranked by a suitable risk metric.

There are a few methods and techniques for risk
analysis and metrics evaluation. The most common is
the Common Vulnerability Scoring System (CVSS;
www.first.org/cvss). The CVSS is especially conve-
nient because NIST has published a CVSS special
online calculator (nvd.nist.gov/CVSS/v2-calculator)
for such analysis.

Another approach, STRIDE,16 is associated with the
Microsoft DREAD threat-risk ranking model.17 How-
ever, for Internet systems, it seems that the OWASP
Top Ten/CWE with CVSS is more suitable for such
analysis, as they better address the web systems’ aspects.

At the time of this writing, we’re using version 2 of
the CVSS, which consists of three characteristic groups:

 ■ base, the fundamental characteristics of a vulnerabil-
ity that are constant over time and user environments;

 ■ temporal, the characteristics of a vulnerability that
change over time but not across user environments; and

 ■ environmental, the characteristics of a vulnerabil-
ity that are relevant and unique to a particular user’s
environment.

There are six base characteristics that refer to each
detected vulnerability: access vector, access complexity,
authentication, confidentiality impact, integrity impact,
and availability impact. The first three metrics capture how
the vulnerability is accessed and whether extra conditions
are required to exploit it. The latter three metrics measure
how a vulnerability, if exploited, will directly affect an IT
asset, where impacts are independently defined as the
degree of loss of confidentiality, integrity, and availabil-
ity. For example, vulnerability might cause a partial loss of
integrity and availability but no loss of confidentiality.

Two other characteristic groups, which are optional,
are very specific to the organization where the Internet
system works; these might change over time during the
life of the vulnerability. These two groups are omitted

Figure 4. The scope of the standard audit procedure in accordance with Open
Web Application Security Project Testing Guide. It consists of 10 key areas that
are analyzed during such an audit.

Configuration and
deployment management

Audit procedures

Identity management

Authentication

Authorization

Session management

Input validation

Error handling

Weak cryptography

Business logic

Client side

Security
audit

Audit
results

Vulnerabilities

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

in our considerations because we want our system trust
level assessment for the considered two cases (the sys-
tem with RBAC and CoRBAC security mechanisms) to
be independent of organizational conditions and take
into account the Internet system rather than the specific
organization where it’s in place.

CVSS v2 defines three discrete metric values for
each characteristic. For each of the base characteristics,
the metric values are as follows:

 ■ access vector (AV) can be local (L), adjacent network
(A), or network (N);

 ■ access complexity (AC) can be high (H), medium
(M), or low (L);

 ■ authentication (Au) can be multiple (M), single (S),
or none (N);

 ■ confidentiality impact (C) can be none (N), partial
(P), or complete (C);

 ■ integrity impact (I) can be none (N), partial (P), or
complete (C); and

 ■ availability impact (A) can be none (N), partial (P),
or complete (C).

On the basis of these metrics, it’s possible to deter-
mine a numerical score that reflects the vulnerability’s
criticality (the higher the risk score, the higher the criti-
cality). Then, it’s possible to compare it to the other
detected vulnerabilities. CVSS v2 defines three ranges

Table 1. Correspondence of risk score, risk level, and system trust level (STL).

Risk score Criticality (risk level) STL impact factor

0 Zero 1.0

0–4.0 Low 0.6

4.0–7.0 Medium 0.3

7.0–10.0 High 0.1

Table 2. Detected vulnerabilities in GUT Instinct system and their risk score.*

ID Detected vulnerability

System with role-based access control (RBAC)
System with context-oriented role-based
access control (CoRBAC)

CVSS v2 vector Score** CVSS v2 vector Score**

v1 Cross-site scripting—
vulnerability 1

(AV:N/AC:M/Au:S/C:C/I:C/A:N) 7.9 H (AV:N/AC:M/Au:S/C:P/I:P/A:N) 4.9 M

v2 Cross-site scripting—
vulnerability 2

(AV:N/AC:L/Au:S/C:P/I:P/A:N) 5.5 M (AV:A/AC:L/Au:S/C:P/I:P/A:N) 4.1 M

v3 Cross-site scripting—
vulnerability 3

(AV:N/AC:L/Au:N/C:P/I:P/A:N) 6.4 M (AV:N/AC:L/Au:N/C:N/I:P/A:N) 5.0 M

v4 Cross-site scripting—
vulnerability 4

(AV:N/AC:M/Au:S/C:C/I:C/A:N) 7.9 H (AV:A/AC:M/Au:S/C:P/I:P/A:N) 3.8 L

v5 SQL injection—vulnerability 1 (AV:N/AC:H/Au:S/C:C/I:C/A:C) 7.1 H (AV:A/AC:H/Au:S/C:C/I:C/A:C) 6.5 M

v6 SQL injection—vulnerability 2 (AV:N/AC:H/Au:S/C:C/I:C/A:C) 7.1 H (AV:A/AC:H/Au:S/C:C/I:C/A:C) 6.5 M

v7 SQL injection—vulnerability 3 (AV:N/AC:H/Au:S/C:C/I:C/A:C) 7.1 H (AV:A/AC:H/Au:S/C:C/I:C/A:C) 6.5 M

v8 Cross-site request forgery
(CSRF)—vulnerability 1

(AV:N/AC:M/Au:S/C:N/I:P/A:N) 3.5 L (AV:N/AC:M/Au:S/C:N/I:P/A:N) 3.5 L

v9 CSRF—vulnerability 2 (AV:N/AC:M/Au:S/C:N/I:C/A:N) 6.3 M (AV:A/AC:M/Au:S/C:N/I:P/A:N) 2.3 L

v10 Session ID—vulnerability 1 (AV:N/AC:H/Au:S/C:C/I:C/A:N) 6.6 M (AV:N/AC:H/Au:S/C:P/I:P/A:N) 3.6 L

v11 Session ID—vulnerability 2 (AV:N/AC:H/Au:S/C:C/I:C/A:N) 6.6 M (AV:A/AC:H/Au:S/C:C/I:C/A:N) 5.9 M

v12 Password reset procedure (AV:N/AC:L/Au:N/C:P/I:N/A:N) 5.0 M (AV:N/AC:L/Au:N/C:P/I:N/A:N) 5.0 M

*Access vector (AV) can be local (L), adjacent network (A), or network (N). Access complexity (AC) can be high (H), medium (M), or low (L). Authentication (Au)
can be multiple (M), single (S), or none (N). Confidentiality impact (C) can be none (N), partial (P), or complete (C). Integrity impact (I) can be none (N), partial
(P), or complete (C). Availability impact (A) can be none (N), partial (P), or complete (C).
** The scores are marked using three colors that correspond to low, medium, and high levels of risk—respectively, green, yellow, and red.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

of criticality: low (score of 0–4.0), medium (score of
4.0–7.0), and high (score of 7.0–10.0). For each sys-
tem, we can evaluate the number of vulnerabilities with
zero, low, medium, and high risk level—that is, number
Z, number L, number M, and number H, respectively.
Table 1 presents mapping across the risk score, critical-
ity (according to CVSS v2), and the proposed system
trust level impact factor.

The overall system trust level (STL) is defined as

STL
nZ nL nM nH

nT
0.6 0.3 0.1

=
+ + + + + + ,

where

 ■ nZ represents the number of potential vulnerabilities
that were checked that don’t exist in the system;

 ■ nL, nM, and nH represent the number of vulnerabilities

of criticality L, M, and H detected during the audit,
respectively; and

 ■ nT represents the total number of vulnerabilities
checked during the audit.

The minimum possible value of system trust is 0.1 and
the maximum value is 1.0. In practice, this value should
be almost 1.0.

The Case Study Analysis
GUT Instinct is an Internet system that was imple-
mented and has been used at Gdańsk University of
Technology (GUT). It provides students, teachers, and
other employees, as well as external cooperating indi-
viduals including entrepreneurs (about 40,000 active
users), with many functional services. GUT Instinct
as the central platform of the university systems gath-
ers data and supports processes in the most important
areas of the organization’s activity, such as education,
research, innovation, and cooperation.

This system regularly undergoes security audits,
based on the methods described in the previous sec-
tion, which are performed by an external, certified
auditing company. Each audit consists of penetration
tests and an IT infrastructure check. Experts perform
both automated penetration testing and manual tests of
application and configuration. Each potential vulnera-
bility detected by an automatic scan is verified and ana-
lyzed on a deeper level by an auditor. An infrastructure
overview also occurs. Optionally, there can be a code
review and some social engineering tests carried out on
the basis of the OWASP Top Ten, the OWASP Test-
ing Guide, and the auditors’ experience (see Figure 5).
Each system functionality is checked against all types
of vulnerabilities.

More than 1,000 potential vulnerabilities are
tested during each audit. Table 2 presents only the
detected vulnerabilities during the first security audit
of the GUT Instinct system. For each vulnerability
found in the system, a risk score from the NIST CVSS
v2 calculator was assigned. The scores are marked
using three colors that correspond to low, medium,
and high levels of risk—respectively, green, yellow,
and red. As shown in Figure 5, we compared the sys-
tem’s STL score using the traditional security model
(RBAC), followed by the context-oriented model
(CoRBAC). Table 3 summarizes a comparison of
both solutions, giving the numbers of vulnerabilities
obtained for each criticality (risk level) as well as the
final STL scores.

The overall STL (according to our earlier defini-
tion) is 0.9909 for the system using RBAC and 0.9928
for CoRBAC. (Remember that values of high reli-
ability and dependability system metrics are close to

Figure 5. System trust level (STL) score evaluation for the GUT Instinct system
with RBAC and CoRBAC security mechanisms (one iteration of Figure 1). The
STL for the system with these two variants of security mechanisms is calculated
separately. The upper part depicts the audit process, where the newly detected
vulnerabilities are reported to the Common Vulnerabilities Enumeration
(CVE). The lower part shows the process of vulnerabilities criticality (Common
Vulnerability Scoring System [CVSS] calculator) as well as STL score calculation.

Stop

Internet system
with RBAC

security mechanisms

Internet system
with CoRBAC

security mechanisms

STL score
RBAC

STL score
CoRBAC

Vulnerabilities

OWASP Testing Guide

CVSS v2 calculator

Start

CVE

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

0.99999.) It’s clearly noticeable that the system with the
context-oriented security has a higher level of system trust.

T he weakest point in our approach is that it relies,
to some extent, on an auditor’s subjective evalua-

tion. Thus, it depends on the knowledge and experience
of the expert who performs exhaustive tests, with addi-
tional support of some advanced tools. But it still seems
to be the best way to measure the system security level.

User profiles, built on behaviors when using the
system, seem to be the most promising area of con-
text analysis. Our proposed access control mechanisms
based on user trust needs some improvement in two
areas: an extension of the complexity of the analyzed
context, and an improved detection of false-positive
and false-negative cases.

Although CVSS v2 characteristics correspond to
two types of context (user localization and limitation
of user access to various system data), in practice, some
other previously mentioned context parameters can be
taken into account. Consequently, the set of CVSS v2
metrics was slightly modified in CVSS v3, which con-
siders more dynamic and contextual aspects. So, future
work will be based on this version.

The hardening of system security is an incremental
process (compare Figure 1 and Figure 5). In each itera-
tion, the security layer is improved. Consequently, after
several iterations, we might approach a 0.99999 sys-
tem trust level. However, it’s essential for new security
mechanisms not to decrease the user convenience sig-
nificantly. It works much better when the system secu-
rity layer is almost unnoticeable to the user. We hope to
address this area in future research.

References
1. S.P.S. Pahnila, M.S.M. Siponen, and A.M.A. Mahmood,

“Employees’ Behavior towards IS Security Policy Com-
pliance,” Proc. 40th Ann. Hawaii Int’l Conf. System Sciences
(HICSS 07), 2007; doi:10.1109/HICSS.2007.206.

2. S. Furnell, “Usability versus Complexity—Striking the
Balance in End-User Security,” Network Security, vol.
2010, no. 12, 2010, pp. 13–17.

3. J.M. Stanton et al., “Analysis of End User Security Behaviors,”
Computers and Security, vol. 24, no. 2, 2005, pp. 124–133.

4. M. Strembeck and G. Neumann, “An Integrated Approach
to Engineer and Enforce Context Constraints in RBAC

Environments,” ACM Trans. Information and System Secu-
rity, vol. 7, no. 3, 2004, pp. 392–427.

5. F. Cuppens and N. Cuppens-Boulahia, “Modeling Con-
textual Security Policies,” Int’l J. Information Security, vol.
7, no. 4, 2007, pp. 285–305.

6. X. Jin, R. Krishnan, and R. Sandhu, “A Unified
Attribute-Based Access Control Model Covering DAC,
MAC and RBAC,” LNCS 7371, 2012, pp. 41–55;
doi:10.1007/978-3-642-31540-4_4.

7. Z. Maamar, D. Benslimane, and N.C. Narendra, “What
Can Context Do for Web Services?,” Comm. ACM, vol.
49, no. 12, 2006, pp. 98–103.

8. R. Mayrhofer, H.R. Schmidtke, and S. Sigg, “Security
and Trust in Context-Aware Applications,” Personal
and Ubiquitous Computing, Nov. 2012; doi:10.1007
/s00779-012-0630-2.

9. M.L. Damiani et al., “GEO-RBAC,” ACM Trans. Informa-
tion and System Security, vol. 10, no. 1, 2007, article 2.

10. L. Sliman, F. Biennier, and Y. Badr, “A Security Policy
Framework for Context-Aware and User Preferences
in E-Services,” J. Systems Architecture, vol. 55, 2009,
pp. 275–288.

11. A. Gupta, M.S. Kirkpatrick, and E. Bertino, “A Formal
Proximity Model for RBAC Systems,” Computers and
Security, Sept. 2013; doi:10.1016/j.cose.2013.08.012.

12. H. Krawczyk and P. Lubomski, “User Trust Levels and
Their Impact on System Security and Usability” Comm.
Computer and Information Science, vol. 522, 2015,
pp. 82–91.

13. A. Bouguettaya et al., “Efficient Agglomerative Hierarchi-
cal Clustering,” Expert Systems with Applications, vol. 42,
no. 5, 2015, pp. 2785–2797.

14. N. Dimmock et al., “Using Trust and Risk in Role-Based
Access Control Policies,” Proc. 9th ACM Symp. Access
Control Models and Technologies (SACMAT 04), 2004,
pp. 156–162.

15. P. Damián-Reyes, J. Favela, and J. Contreras-Castillo,
“Uncertainty Management in Context-Aware Applica-
tions: Increasing Usability and User Trust,” Wireless Per-
sonal Comm., vol. 56, no. 1, 2009, pp. 37–53.

16. S. Hernan et al., “Uncover Security Design Flaws Using
the STRIDE Approach,” Microsoft MSDN Magazine,
2006; download.microsoft.com/download/3/a/7
/3a7fa450-1f33-41f7-9e6d-3aa95b5a6aea/MSDN
MagazineNovember2006en-us.chm.

17. J.D. Meier et al., “Improving Web Application Secu-
rity: Threats and Countermeasures,” Microsoft

Table 3. Number of vulnerabilities of each criticality detected in the system using RBAC and CoRBAC security mechanisms.

Criticality (risk level) Zero Low Medium High STL score

No. vulnerabilities—RBAC 993 1 6 5 0.9909

No. vulnerabilities—CoRBAC 993 4 8 0 0.9928

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Patterns and Practices, 2015; msdn.microsoft.com/en-us
/library/aa302419.aspx.

Paweł Lubomski is the director of the IT Services Cen-
tre at the Gdańsk University of Technology. His
research interests include access control, security in
context-aware systems, security of large-scale dis-
tributed e-service systems, and building secure IT
architectures. Lubomski received a PhD in computer
science from the Gdańsk University of Technology.
Contact him at lubomski@pg.gda.pl.

Henryk Krawczyk is a computer science professor in
the Faculty of Electronics, Telecommunication and
Informatics at the Gdańsk University of Technology.

His research interests include distributed process-
ing and Internet systems. Krawczyk received a PhD
and an advanced PhD in computer engineering and
software engineering, respectively, from the Gdańsk
University of Technology. He’s a member of IEEE
and the Polish Academy of Sciences. Contact him at
hkrawk@eti.pg.gda.pl.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

