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A proposed Internet systems security layer with context-oriented security mechanisms reduces the risk 
associated with possible vulnerabilities. A metric of the system trust level is proposed and then evaluated 
according to a university Internet system.

I nternet systems are widespread, accessible via web
browsers with the intensive use of Ajax. � ey o� en 

have distributed and service-oriented architectures. 
Because of their wide and common access by many users, 
they’re exposed to many threats and a� acks. � ese sys-
tems are now processing more and more sensitive data—
even that of strategic importance for organizations. � is 
means they need high-level security, which is very hard 
to achieve. Furthermore, current systems are so compli-
cated that they’re almost impossible to develop without 
any mistakes, even when using the best project pa� erns. 

In this article, we propose a practical method for 
evaluating overall system trust levels based on the 
well-known standardized audit tests approach (using 
expert judgment). We show how to organize a system 
security–hardening process by stepwise improvement 
of security mechanisms with a new class of such mecha-
nisms, called context-oriented role-based access control 
(CoRBAC). We’ve demonstrated on a real system that 
such approaches are promising in comparison to the 
standard role-based access control (RBAC) approaches. 

Security Policy
At the beginning of designing such a system, a suit-
able information security policy should be assumed. 

Two questions should be considered at that time: How 
will the system be protected, and what’s the acceptable 
risk level? � e aim of such a policy is to protect system 
authentication, authorization, con� dentiality, integ-
rity, nonrepudiation, and availability. � e � rst � ve areas 
relate to proper access control; the last one relates to 
achieving high performance and availability. 

� e proposed security policy should also account
for any possible categories of threats. In the case of 
Internet systems, the majority of known threats can be 
divided into two groups on the basis of their impact on 
the system. � e � rst group of threats is located on the 
system or so� ware level and is mainly associated with 
communication between a user and a service. � ese 
threats mostly result from technical implementation 
weaknesses or business logic faults. � e other group 
mostly covers denial-of-service a� acks and is guarded 
mainly on the network control level. 

To deal with so many possible threats, a suitable 
classi� cation and categorization system is required. 
� e best classi� cation in the case of Internet systems’
security � aws is the Open Web Application Security
Project (OWASP) Top Ten (www.owasp.org/index
. p h p / Catego r y : O WA SP _ To p _ Ten _ Pro j ec t) , 
which describes the 10 most common categories of
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weaknesses related to these systems. As of this writing, 
these are injection, broken authentication and session 
management, cross-site scripting (XSS), insecure direct 
object references, security misconfiguration, sensitive 
data exposure, missing function level access control, 
cross-site request forgery (CSRF), use of components 
with known vulnerabilities, and unvalidated redirects 
and forwards.

Because of the assumed security policy’s implemen-
tation, various security mechanisms are developed to 
protect the system. They’re implemented in the system 
because they can’t rely on users’ web browsers, which 
aren’t under the system administrators’ control. The 
proper design of such complex systems is very burden-
some and costly; an undetected system weakness could 
be considered as a potential threat. To avoid that, peri-
odic security audits can detect vulnerabilities. Figure 1 
presents a system security–hardening process, consisting 
of two cycles. The first cycle represents the improvement 
process of security mechanisms installed in the system, 
and the second focuses on periodic verification of system 
trust. In other words, the system is verified according to 
whether the desired risk level corresponds to the required 
security level. The two cycles can be repeated until an 
acceptable level of system risk is achieved. 

The system security–hardening process can consist 
of a few independent activities. First, there’s the removal 
of the detected vulnerabilities in a specific order (on 
the basis of their criticality). Next, there are a few 
ways to lower the risk of new potential vulnerabilities. 
For example, one step to lowering such risk could 
be to add additional security mechanisms such as a 
two-factor authentication. Another step might account 
for more context parameters. Yet another step might 
implement better detection mechanisms for irregular 
behavior, including those that use artificial intelligence 
algorithms. This process should be done incrementally 
with a security audit to check whether the change lowers 
the risk or not. Incremental assessment is important, 
because adding new security mechanisms can cause a 
decrease in system usability. This could lead to extreme 
cases in which system security would decrease because 
users bypass inconvenient security mechanisms.1,2

System Security Mechanisms
The traditional security approach is static and 
insufficient nowadays. The pure RBAC model has 
been frequently criticized for its inflexibility in rapidly 
changing domains.6 (For more information, see the 
“Role-Based Access Control Approaches” sidebar.) The 
real-life roles of users in an organization are evaluated 
very often, whereas RBAC roles are static, and their 
assignment doesn’t depend on other factors, such as 
time, localization, or other user attributes that change 

dynamically. Figure 2 presents a two-level user access 
control to the system with the traditional RBAC security 
mechanisms, which is the same for regular users and 
external services. First, an authentication process is 
performed. Next, permission verification is performed 
on the basis of permission configuration according to 
users’ connections, their roles, their roles’ permissions, 
and permissions guarding the services. 

Users interact with the system through an interface 
and environment that are described by many parameters 
that define the context of their activities.5–8 The context 
might be a certain period of time in which the user 
action is performed (weekday, Saturday, or Sunday). 
It can be a user’s physical (US, Poland, Germany, UK, 
or France) or logical localization (internal network, 
campus network, or Internet).9 It can correspond to 
the general state of the system (regular work, under 
high load, or under maintenance) or to the relation 
between the user and the available data (a physician 
and medical records of his or her patient).10 In addition, 
the user’s interaction history (log of previous actions in 
the system) or the kind of device being used (standard 
PC or mobile device) can be taken into account.11 
The context information can be gathered from many 
different sources, such as user requests made by a web 

Figure 1. System security–hardening process, consisting of two cycles. The first 
cycle represents the improvement process of security mechanisms installed in 
the system, and the second focuses on periodic verification of system trust.
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browser, system information status, and a system clock. 
The ability to integrate contextual information makes 
the role-based security model flexible, thus minimizing 
the risk of potential threat. In this way, we achieve 
dynamic security mechanisms that can adapt to the 
changing security policies during runtime with minimal 
loss of functionality and with little or no manual 
assistance. They do a good job of addressing events 
such as changes in personnel, changes in the execution 
environment, and crisis situations.

Let’s consider the CoRBAC model, which is an 
extension of the RBAC model, where widely under-
stood context is taken into account. Each context 
parameter comprises a finite, discrete set of possible 
values. Some context parameters have a continuous 
character (for example, time). During context analysis, 
they’re clustered into certain groups, such as days of 
the week. The same situation applies to context para-
meters with discrete numerical values, such as a set of 
IP addresses. They’re clustered into subsets of a specific 
netmask. A vector of the current values of each context 
parameter describes the current context accompany-
ing each user interaction with the system. Each context 
parameter is gathered separately. This approach lets us 
implement specialized mechanisms to gain different 
context parameters in parallel. 

Figure 3 illustrates the CoRBAC model’s access 
control activities. These consists of two authentica-
tion activities: a basic authentication (the same as in 
the RBAC model) and a user trust–based access con-
trol that has extra security mechanisms dependent on 
the system’s trust in the user. (One possible solution is 
described in detail in the 2015 proceedings of the Com-
puter Network Conference.12)

The user trust analysis and access control account 
for the user profile (history of contexts accompany-
ing the user with the system interaction) and the cur-
rent context. It lets us detect irregular behavior. Thus, 
the system security layer learns users’ behavior. Each 

Figure 2. Traditional role-based access control (RBAC) security mechanisms. First, 
an authentication process is performed. Next, permission verification is performed 
on the basis of permission configuration according to users’ connections, their 
roles, their roles’ permissions, and permissions guarding the services.
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Role-Based Access Control Approaches

T he role-based access control (RBAC) approaches are still 
under improvement to satisfy requirements related to mobile 

and cloud computing. First, context expansion is considered to 
create dynamic and flexible access control mechanisms. To satisfy 
large numbers of users with different demands, extra attributes 
have been added to the approach. This has led to a new approach, 
called attribute-based access control (ABAC).1 The ABAC model is 
a generalized version of the RBAC model, where access rights are 
granted to users using policies that combine multiple attributes. 
It’s important to note that such attributes relate not only to 
relationships between users and the available data describing 
their profiles but also to other types of entities that represent 
users and systems, such as hardware and software configuration, 
communication characteristics, and even security policy.2 Proper 
assignments of attribute values to different entities are necessary 
to protect against unauthorized access. The problem lies in how 
to estimate the suitable number of attributes and how to manage 
them to achieve the required level of credibility. (Some proposi-
tions have been made for cloud tenants.3)

Our proposed context-oriented role-based access control 
(CoRBAC) model is an exact solution to such problems and cor-
responds to the direction of access control development mentioned 
earlier. It provides precise and effective security mechanisms, working 
on the basis of historical and current contextual information col-
lected from the system and environment. The proposed solution 
suits any service-oriented Internet system, regardless of changes in the 
environment, because authorization is made on the system side and 
only context parameters that are accounted for are changed.
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user profile contains context values clustered into 
groups by how often the user is in a particular con-
text. This can be done, for example, using the hierar-
chical agglomerative clustering algorithm, a “bottom 
up” approach in which clusters are merged in pairs and 
moved up in the hierarchy. This way, we can achieve 
dendrogram—an extensive hierarchy of clusters that 
merge with each other at certain distances.13 The result-
ing groups are translated into trust levels. On the basis 
of the computed trust level, the appropriate security 
mechanism is fired. Some examples of such extra secu-
rity mechanisms are reentering a password or other 
personal data, inputting a one-time-password sent by 
SMS, and selecting a previously chosen image from 
a list. If the user satisfies this mechanism, his or her 
identity is confirmed. 

In dynamic permission-based access control 
(see Figure 3), first, the appropriate permissions are 
assigned to the user on the basis of the configuration 
(connections among users, roles, and permissions). 
This is done exactly as in the traditional RBAC model. 
Next, the permission set is limited, based on permis-
sions’ association with some context values. This step 
applies only to the CoRBAC model. In this way, in 
any particular situation, the current context dynami-
cally determines the “active (allowed) permissions” 
set, which is a subset of the “all permissions” set speci-
fied in the RBAC model. This process is very impor-
tant in risk analysis—it reduces the scope of impact of 
a potential security incident. After that, the permission 
verification takes place on the basis of access rules. If 
this verification is met, the requested access to services 
is granted or denied. 

According to the CoRBAC model, these two levels 
of access control can be represented by the following 
procedures, written in pseudocode:

userTrustBasedAccessControl (user, 
service):

1. currentContext =  
 getCurrentContext()

2. userProfile =  
 getUserProfile(user)

3. trustLevel = computeUser
TrustLevel(userProfile, 
currentContext)

4. result = performUserSecurity 
 Check(trustLevel)

5. if(result == true) 
then call 
permissionBasedAccessControl 
 (user, service) 
else return DENY_ACCESS

permissionBasedAccessControl (user, 
service):

1. roles = getRolesOfUser(user)
2. userPermissions = 

 getPermissionsOfRoles(roles)
3. currentContext =  

 getCurrentContext()
4. contextPermissions = getContext 

 Permissions(currentContext)
5. userPermissions = 

 userPermissions ∩ 
 contextPermissions

6. servicePermissions = 
 getServicePermissions(service)

7. if(userPermissions ∩ 
 servicePermissions != Ø) 
 then return GRANT_ACCESS 
 else return DENY_ACCESS

where ∩ indicates the intersection of the sets. For com-
parison, the RBAC model includes only four of the 
above steps (from lines 1, 2, 6, and 7).

Proposed System Risk and Trust 
Evaluation Method
It’s difficult to correctly determine a system’s level of 
security. The key challenges are to measure the lack of 
incidents and choose the proper representative metrics. 
Fortunately, many open initiatives address these prob-
lems. For Internet systems on the web application level, 

Figure 3. Use of the proposed context-oriented role-based access control 
(CoRBAC) security mechanisms. Compared to a traditional RBAC security 
mechanisms (see Figure 2), there’s an added user trust-based access control that 
has extra security mechanisms dependent on the system’s trust in the user. 
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the best approach currently seems to be OWASP (www 
.owasp.org). It gathers data from many specialists and 
scientists in the field of web application security to clas-
sify threats, define techniques and guides, and indicate 
how to make systems more secure and how to test sys-
tems. The biggest advantage of the results is that they’re 
widely available via open licenses (such as Creative 
Commons; creativecommons.org) and can be used for 
different kinds of systems.

One possible way to measure the level of a system’s 
security is using security audits, which are mostly car-
ried out by external auditors who check the system for 
known potential security vulnerabilities listed in the 
OWASP Top Ten or Common Weakness Enumeration 
(CWE; cwe.mitre.org). Moreover, the technical security 
audit can be done on the basis of the OWASP Testing 
Guide (www.owasp.org/index.php/OWASP_Testing 
_Project). Figure 4 presents the key areas of such an 
audit. As a result, the detected vulnerabilities are reported 
to the system owners and can be submitted to Common 
Vulnerabilities Enumeration (CVE; cve.mitre.org).

Each vulnerability detected during the audit should 
be the subject of risk analysis to determine the level 
of the system risk and, consequently, how the poten-
tial security incident associated with that vulnerability 

impacts an organization’s functionality.14 On the basis 
of the list of detected vulnerabilities (which should be 
updated periodically), prioritization of remedial work 
should be done; vulnerabilities with highest criticality 
should be carried out first.15

Threats can be categorized into the OWASP Top 
Ten categories. Other classifications are available (such 
as CWE), but it seems that the OWASP Top Ten covers 
most of the threat categories corresponding to Internet 
systems. In practice, in complex and advanced systems, 
only rarely can we discover vulnerabilities of other cat-
egories. In those cases, after the analysis and accep-
tance, the OWASP Top Ten can either cover it, or some 
actualization of the classification can be performed. 
Each detected vulnerability should be categorized and 
ranked by a suitable risk metric.

There are a few methods and techniques for risk 
analysis and metrics evaluation. The most common is 
the Common Vulnerability Scoring System (CVSS; 
www.first.org/cvss). The CVSS is especially conve-
nient because NIST has published a CVSS special 
online calculator (nvd.nist.gov/CVSS/v2-calculator) 
for such analysis. 

Another approach, STRIDE,16 is associated with the 
Microsoft DREAD threat-risk ranking model.17 How-
ever, for Internet systems, it seems that the OWASP 
Top Ten/CWE with CVSS is more suitable for such 
analysis, as they better address the web systems’ aspects. 

At the time of this writing, we’re using version 2 of 
the CVSS, which consists of three characteristic groups: 

 ■ base, the fundamental characteristics of a vulnerabil-
ity that are constant over time and user environments;

 ■ temporal, the characteristics of a vulnerability that 
change over time but not across user environments; and

 ■ environmental, the characteristics of a vulnerabil-
ity that are relevant and unique to a particular user’s 
environment.

There are six base characteristics that refer to each 
detected vulnerability: access vector, access complexity, 
authentication, confidentiality impact, integrity impact, 
and availability impact. The first three metrics capture how 
the vulnerability is accessed and whether extra conditions 
are required to exploit it. The latter three metrics measure 
how a vulnerability, if exploited, will directly affect an IT 
asset, where impacts are independently defined as the 
degree of loss of confidentiality, integrity, and availabil-
ity. For example, vulnerability might cause a partial loss of 
integrity and availability but no loss of confidentiality. 

Two other characteristic groups, which are optional, 
are very specific to the organization where the Internet 
system works; these might change over time during the 
life of the vulnerability. These two groups are omitted 

Figure 4. The scope of the standard audit procedure in accordance with Open 
Web Application Security Project Testing Guide. It consists of 10 key areas that 
are analyzed during such an audit.
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in our considerations because we want our system trust 
level assessment for the considered two cases (the sys-
tem with RBAC and CoRBAC security mechanisms) to 
be independent of organizational conditions and take 
into account the Internet system rather than the specific 
organization where it’s in place.

CVSS v2 defines three discrete metric values for 
each characteristic. For each of the base characteristics, 
the metric values are as follows: 

 ■ access vector (AV) can be local (L), adjacent network 
(A), or network (N);

 ■ access complexity (AC) can be high (H), medium 
(M), or low (L);

 ■ authentication (Au) can be multiple (M), single (S), 
or none (N);

 ■ confidentiality impact (C) can be none (N), partial 
(P), or complete (C);

 ■ integrity impact (I) can be none (N), partial (P), or 
complete (C); and

 ■ availability impact (A) can be none (N), partial (P), 
or complete (C).

On the basis of these metrics, it’s possible to deter-
mine a numerical score that reflects the vulnerability’s 
criticality (the higher the risk score, the higher the criti-
cality). Then, it’s possible to compare it to the other 
detected vulnerabilities. CVSS v2 defines three ranges 

Table 1. Correspondence of risk score, risk level, and system trust level (STL).

Risk score Criticality (risk level) STL impact factor

0 Zero 1.0

0–4.0 Low 0.6

4.0–7.0 Medium 0.3

7.0–10.0 High 0.1

Table 2. Detected vulnerabilities in GUT Instinct system and their risk score.*

ID Detected vulnerability

System with role-based access control (RBAC)
System with context-oriented role-based 
access control (CoRBAC)

CVSS v2 vector Score** CVSS v2 vector Score**

v1 Cross-site scripting—
vulnerability 1

(AV:N/AC:M/Au:S/C:C/I:C/A:N) 7.9 H (AV:N/AC:M/Au:S/C:P/I:P/A:N) 4.9 M

v2 Cross-site scripting—
vulnerability 2

(AV:N/AC:L/Au:S/C:P/I:P/A:N) 5.5 M (AV:A/AC:L/Au:S/C:P/I:P/A:N) 4.1 M

v3 Cross-site scripting—
vulnerability 3

(AV:N/AC:L/Au:N/C:P/I:P/A:N) 6.4 M (AV:N/AC:L/Au:N/C:N/I:P/A:N) 5.0 M

v4 Cross-site scripting—
vulnerability 4

(AV:N/AC:M/Au:S/C:C/I:C/A:N) 7.9 H (AV:A/AC:M/Au:S/C:P/I:P/A:N) 3.8 L

v5 SQL injection—vulnerability 1 (AV:N/AC:H/Au:S/C:C/I:C/A:C) 7.1 H (AV:A/AC:H/Au:S/C:C/I:C/A:C) 6.5 M

v6 SQL injection—vulnerability 2 (AV:N/AC:H/Au:S/C:C/I:C/A:C) 7.1 H (AV:A/AC:H/Au:S/C:C/I:C/A:C) 6.5 M

v7 SQL injection—vulnerability 3 (AV:N/AC:H/Au:S/C:C/I:C/A:C) 7.1 H (AV:A/AC:H/Au:S/C:C/I:C/A:C) 6.5 M

v8 Cross-site request forgery 
(CSRF)—vulnerability 1

(AV:N/AC:M/Au:S/C:N/I:P/A:N) 3.5 L (AV:N/AC:M/Au:S/C:N/I:P/A:N) 3.5 L

v9 CSRF—vulnerability 2 (AV:N/AC:M/Au:S/C:N/I:C/A:N) 6.3 M (AV:A/AC:M/Au:S/C:N/I:P/A:N) 2.3 L

v10 Session ID—vulnerability 1 (AV:N/AC:H/Au:S/C:C/I:C/A:N) 6.6 M (AV:N/AC:H/Au:S/C:P/I:P/A:N) 3.6 L

v11 Session ID—vulnerability 2 (AV:N/AC:H/Au:S/C:C/I:C/A:N) 6.6 M (AV:A/AC:H/Au:S/C:C/I:C/A:N) 5.9 M

v12 Password reset procedure (AV:N/AC:L/Au:N/C:P/I:N/A:N) 5.0 M (AV:N/AC:L/Au:N/C:P/I:N/A:N) 5.0 M

*Access vector (AV) can be local (L), adjacent network (A), or network (N). Access complexity (AC) can be high (H), medium (M), or low (L). Authentication (Au) 
can be multiple (M), single (S), or none (N). Confidentiality impact (C) can be none (N), partial (P), or complete (C). Integrity impact (I) can be none (N), partial 
(P), or complete (C). Availability impact (A) can be none (N), partial (P), or complete (C).
** The scores are marked using three colors that correspond to low, medium, and high levels of risk—respectively, green, yellow, and red.
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of criticality: low (score of 0–4.0), medium (score of 
4.0–7.0), and high (score of 7.0–10.0). For each sys-
tem, we can evaluate the number of vulnerabilities with 
zero, low, medium, and high risk level—that is, number 
Z, number L, number M, and number H, respectively. 
Table 1 presents mapping across the risk score, critical-
ity (according to CVSS v2), and the proposed system 
trust level impact factor.

The overall system trust level (STL) is defined as

STL
nZ nL nM nH

nT
0.6 0.3 0.1

=
+ + + + + + ,

 

where

 ■ nZ represents the number of potential vulnerabilities 
that were checked that don’t exist in the system;

 ■ nL, nM, and nH represent the number of vulnerabilities 

of criticality L, M, and H detected during the audit, 
respectively; and

 ■ nT represents the total number of vulnerabilities 
checked during the audit.

The minimum possible value of system trust is 0.1 and 
the maximum value is 1.0. In practice, this value should 
be almost 1.0. 

The Case Study Analysis
GUT Instinct is an Internet system that was imple-
mented and has been used at Gdańsk University of 
Technology (GUT). It provides students, teachers, and 
other employees, as well as external cooperating indi-
viduals including entrepreneurs (about 40,000 active 
users), with many functional services. GUT Instinct 
as the central platform of the university systems gath-
ers data and supports processes in the most important 
areas of the organization’s activity, such as education, 
research, innovation, and cooperation. 

This system regularly undergoes security audits, 
based on the methods described in the previous sec-
tion, which are performed by an external, certified 
auditing company. Each audit consists of penetration 
tests and an IT infrastructure check. Experts perform 
both automated penetration testing and manual tests of 
application and configuration. Each potential vulnera-
bility detected by an automatic scan is verified and ana-
lyzed on a deeper level by an auditor. An infrastructure 
overview also occurs. Optionally, there can be a code 
review and some social engineering tests carried out on 
the basis of the OWASP Top Ten, the OWASP Test-
ing Guide, and the auditors’ experience (see Figure 5). 
Each system functionality is checked against all types 
of vulnerabilities. 

More than 1,000 potential vulnerabilities are 
tested during each audit. Table 2 presents only the 
detected vulnerabilities during the first security audit 
of the GUT Instinct system. For each vulnerability 
found in the system, a risk score from the NIST CVSS 
v2 calculator was assigned. The scores are marked 
using three colors that correspond to low, medium, 
and high levels of risk—respectively, green, yellow, 
and red. As shown in Figure 5, we compared the sys-
tem’s STL score using the traditional security model 
(RBAC), followed by the context-oriented model 
(CoRBAC). Table 3 summarizes a comparison of 
both solutions, giving the numbers of vulnerabilities 
obtained for each criticality (risk level) as well as the 
final STL scores.

The overall STL (according to our earlier defini-
tion) is 0.9909 for the system using RBAC and 0.9928 
for CoRBAC. (Remember that values of high reli-
ability and dependability system metrics are close to 

Figure 5. System trust level (STL) score evaluation for the GUT Instinct system 
with RBAC and CoRBAC security mechanisms (one iteration of Figure 1). The 
STL for the system with these two variants of security mechanisms is calculated 
separately. The upper part depicts the audit process, where the newly detected 
vulnerabilities are reported to the Common Vulnerabilities Enumeration 
(CVE). The lower part shows the process of vulnerabilities criticality (Common 
Vulnerability Scoring System [CVSS] calculator) as well as STL score calculation. 
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0.99999.) It’s clearly noticeable that the system with the 
context-oriented security has a higher level of system trust. 

T he weakest point in our approach is that it relies, 
to some extent, on an auditor’s subjective evalua-

tion. Thus, it depends on the knowledge and experience 
of the expert who performs exhaustive tests, with addi-
tional support of some advanced tools. But it still seems 
to be the best way to measure the system security level. 

User profiles, built on behaviors when using the 
system, seem to be the most promising area of con-
text analysis. Our proposed access control mechanisms 
based on user trust needs some improvement in two 
areas: an extension of the complexity of the analyzed 
context, and an improved detection of false-positive 
and false-negative cases. 

Although CVSS v2 characteristics correspond to 
two types of context (user localization and limitation 
of user access to various system data), in practice, some 
other previously mentioned context parameters can be 
taken into account. Consequently, the set of CVSS v2 
metrics was slightly modified in CVSS v3, which con-
siders more dynamic and contextual aspects. So, future 
work will be based on this version. 

The hardening of system security is an incremental 
process (compare Figure 1 and Figure 5). In each itera-
tion, the security layer is improved. Consequently, after 
several iterations, we might approach a 0.99999 sys-
tem trust level. However, it’s essential for new security 
mechanisms not to decrease the user convenience sig-
nificantly. It works much better when the system secu-
rity layer is almost unnoticeable to the user. We hope to 
address this area in future research. 
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