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A B S T R A C T

The rapidly advancing automation of the maritime industry – for instance, through onboard Decision Support 
Systems (DSS) – can facilitate the introduction of advanced solutions supporting the process of collision 
avoidance at sea. Nevertheless, relevant solutions that aim to correctly predict a ship’s behavior in irregular 
waves are only available to a limited extent by omitting the impact of wave stochastics on resulting evasive 
maneuvers. This is mainly due to the complexity of the phenomena, the existing couplings therein, and the time 
inefficacy in resolving the problem through real-time simulations.

Therefore, this paper attempts to fill this knowledge gap by presenting a probabilistic, data-driven meta-model 
trained using an extensive set of 6DOF numerical simulations of vessel motions in irregular waves. For this 
purpose, machine learning adopting causal probabilistic modeling with Bayesian Belief Network (BBN) was 
employed. The latter offers two-way reasoning in the presence of uncertainty and provides insight into the meta- 
model’s outcome.

This, in turn, helps estimate a set of safety-critical parameters for a large passenger ship performing an evasive 
maneuver. This set comprises a huge quantity of ship turning circle parameters as well as the hull’s rotational 
motions and resulting lateral accelerations, all simulated multiple times to consider the stochastic realization of 
the waves. The proposed meta-model can be used to assist watchkeeping officers’ decisions or raise their 
awareness concerning the possible consequences of evasive maneuvers performed. The achieved accuracy of the 
meta-model’s prediction lies within a range from 81% to 98%, which makes it suitable for this purpose.

1. Introduction

Due to the increasing automation of the maritime industry and the 
progressive introduction of autonomous systems into service, opera-
tional Decision Support Systems (DSSs) are needed today more than ever 
before. These tools, operating on the basis of mathematical models, are 
able to directly support the Officer of the Watch (OOW) or an autono-
mous agent in terms of leading performance indicators for safety (LPIs) 
[1], in a diverse range of ship operations at sea. Among these, one can 

mention, for example, shipboard DSSs used in collision and grounding 
avoidance [2–5], flooding risk assessment [6–9], weather routing 
[10–12], or fuel and energy optimization [13–15].

The most popular group are DSSs designed for collision avoidance 
and ensuring a ship’s safe operation [16], while DSSs themselves are the 
main application of modern ship collision avoidance solutions [17]. 
However, relatively few tools and models, even those focused on 
stability-related issues, take into account a vessel’s operation in a 
complex marine environment that is prone to external disturbances.
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Even fewer studies consider the nature of irregular waves and their 
stochasticity [18–20]. This can significantly affect the outcome of an 
evasive maneuver, the accompanying hull motions, and their after-
maths, as recently demonstrated in the authors’ earlier works [21,22]. 
The hull motions are as relevant as the successful evasive maneuver it-
self, since excessive rolling and pitching of the ship as well as lateral 
acceleration may directly lead to accidents involving passengers. Such 
an operation could be hardly recognized as safe or even acceptable. 
Consequently, setting aside the complexity of the marine environment, 
the meta-models on which existing systems are based, can only to a 
limited extent predict the short-term response of a ship during her turn 
resulting, for instance, from the execution of an evasive maneuver. 
However, in light of the technological solutions for unmanned and 
autonomous ships [23–25], it seems reasonable to take into account the 
ship’s safety-critical indicators as accurately as possible, to make the 
decisions prompted by a DSS more realistic.

A variety of methods can be used to design and develop a meta- 
model for operational decision-making, in particular for predicting a 
ship’s response in waves. In the literature, one can find solutions based 
on Artificial Intelligence and deep learning models, such as various types 
of Artificial Neural Networks (ANNs) [26–28]. This family of methods 
yields numerous benefits resulting mainly from their efficiency [29] and 
dynamic adaptability [30], especially when the networks are trained 
using reliable and real-world input data [31].

Probabilistic approaches include the Bayesian Belief Network (BBN) 
or Monte Carlo simulations, among others [32–34]. For instance, 
Carchen et al., 2021 assessed passenger comfort on board a ship using 
Motion Sickness Incidence (MSI) as the leading indicator, with a case 
study application based on maritime traffic data [35]. Montewka, et al., 
2022. proposed a simplified model featuring BBN for predicting the 
maximum roll angle for a turning vessel [36]. Zhang et al., 2024, in turn, 
introduced an integrated framework for investigating the risk of intel-
ligent ship collisions on inland waters. They used the Bayesian Network 
learned using accident data for analyzing multiple simulation scenarios, 
including verification of factors related to ship maneuvering [37].

In turn, hybrid data-driven methods combine the advantages of 
various approaches [38,39]. For instance, Zhang et al., 2023 used a 
hybrid method consisting of a dataset delivered through Computational 
Fluid Dynamics (CFD) as well as the application of Long Short-Term 
Memory (LSTM) and Convolutional Neural Network (CNN) to accu-
rately forecast ship rolling amplitudes in rough seas [40]. Similarly, 
Marlantes & Maki, 2024 as well as La Ferlita et al [41] used CFD to 
provide input data for machine learning algorithms [42]. This led to the 
creation of a practical models used for roll, heave and pitch motion 
predictions through limited computational and time resources.

Given all of the above, the literature lacks a comprehensive and 
holistic model for predicting a ship’s response when maneuvering in 
irregular waves. This problem is particularly acute in the case of turning, 
which is the most typically applied solution in collision situations since 
such a maneuver is relatively quick [43]. Consequently, the period when 
the ship is exposed to wave action is limited accordingly. Therefore, a 
wave-induced motion may vary tremendously as the ship reacts to the 
wave realization as encountered at that moment, which in the short term 
may differ from average long-term wave parameters [21,22].

Therefore, this paper presents a data-driven, causal-probabilistic 
model created using Bayesian Belief Networks that can be either used as 
the core of the navigational DSS or as a source of LPIs for future Mari-
time Autonomous Surface Ships (MASS). BBN has been selected as a 
modeling method to adequately reflect the stochastic nature of the 
investigated process, the associated non-linearities, and the resulting 
uncertainties. The proposed model encompasses several substantial as-
pects that contribute directly to the existing literature: 

Predicting ship response in the context of the ship’s maneuverability 
and the resulting turning circle parameters. These are of utmost 

importance in terms of collision avoidance application and triggering 
evasive actions.
Predicting ship response in the context of hull motions in irregular 
waves and accompanying stability-related phenomena. This allows 
for detecting in advance excessive motions leading to a potentially 
dangerous situation. Also, for considering the comfort of the ship’s 
passengers on board by predicting total lateral accelerations in two 
representative locations.
Taking into account the stochastic nature of sea waves by consid-
ering their multiple realizations for the same wave spectrum. This, in 
turn, allows the model to respond in the form of data distribution 
instead of a potentially misleading single value. This illustrates to the 
end-user what probability a specific range of outcomes might be 
expected instead of a deterministic trajectory, roll, pitch, and 
acceleration.

The rest of the paper is structured as follows: in Section 2 the overall 
modeling process along with adopted methods, dataset, and modeling 
tools are presented. The developed probabilistic models are presented in 
Section 3 and further discussed in Section 4. Section 5 concludes the 
paper.

2. Methods, data, and tools

2.1. Overarching modeling framework

The adopted modeling framework aimed to develop a meta-model 
estimating the expected response of a selected passenger ship prior to 
initiating evasive maneuvers, and taking into account the stochastic 
nature of irregular waves. By design, the meta-model should allow for 
two modes of operation, namely predictive and diagnostic, thus 
employing forward and backward reasoning. The predictive application 
could be used to assess the probability of the response variables (e.g. 
ship motions) for given operational or environmental parameters, such 
as rudder angle, ship speed, wave height, etc. The diagnostic mode could 
be, in turn, used to figure out how the ship’s operational parameters 
should be set in the observed environmental conditions to maintain 
response variables in the desired limits.

The adopted process of the model development can be divided into 
three distinctive stages, namely training dataset development, data pro-
cessing & Bayesian Learning, and meta-model validation, which are pre-
sented in Fig. 1.

To be informative enough for operational purposes during collision 
avoidance actions, the model was designed to include the following 
parameters as its outcome: maximum roll and pitch angles, maximum 
total lateral acceleration in two distinctive locations on board the ship, 
as well as accompanying maneuvering characteristics, such as tactical 
diameter, advance, and transfer distances resulting from ship turning 
circle (TC) as defined in [44]. The set of governing input data covers the 
following: the initial ship’s speed, the magnitude of rudder angle, sig-
nificant wave height, and the initial angle of wave attack on the ship’s 
hull. These were selected to reflect as best as possible the parameters 
which have the greatest impact on a ship’s evasive maneuver executed 
in real conditions.

Noteworthy, the first two aforementioned variables, i.e. the ship 
speed and rudder setting, can be fully controlled by the crew unlike the 
environmental parameters describing waves, which should always be 
acknowledged by OOW when considering any collision avoidance ac-
tion. However, the wave system characteristics are a statistical 
description by definition, since the irregular wave spectrum remains the 
nondeterministic description of the process. Simply, the assumed wave 
spectrum with parameters such as the significant wave height and the 
peak period produces a countless number of wave realizations. In the 
long run, they converge to the statistical description provided by that 
spectrum, although from a short-term perspective, the wave realization 
may vary significantly. As the ship turning lasts for a limited time, the 
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corresponding short-time approach is relevant. Therefore, a single 
simulation or prediction of a ship’s response may (with a stroke of luck) 
or may not be representative of a ship’s range of operation, and such an 
approach would be far from scientific rigor. To prevent such an over-
simplified representation of the trajectory and ship motions, hundreds of 
simulation repetitions were conducted for each single operational sce-
nario. From the practical point of view, the stochastic realization of 
irregular waves results in a different ship response for the same initial 
conditions, and therefore a different possible outcome of an evasive 
maneuver performed. The fact this is dealt with in this paper is one of its 
major achievements and contributions.

Therefore, to grasp the impact of wave stochastics for each unique set 
of operational and environmental parameters, the time-domain ship 
motion simulations repeated 500 times were used, which led to a 
massive dataset of 96,000 trajectories of the vessel’s turn. To deliver 
necessary input data, a 6DOF (degrees of freedom) ship motion model 
called LaiDyn was selected and used as an exemplary source of numerical 
data. The foundations of its operation are briefly introduced in Section 
2.2.

Each single numerical simulation contained a record of the vessel’s 
turning trajectory along with corresponding ship motion parameters. 
Based on this input data, parameters related to ship maneuvering as well 
as resulting lateral accelerations were calculated for each stochastic 
wave realization and consequently served as a training dataset for the 
meta-model developed (see Section 2.3 for details). Such a multiple 
representation of the analyzed phenomena more accurately than 
deterministic models reflects ship operating conditions and foremost the 
nature of irregular waves. Therefore, this approach is more suitable for 
the operational decision support that the model is designed for.

Once the training dataset was established, the process of data dis-
cretization began to accurately depict the operational ranges of the 
parameters considered within the future meta-model. Afterward, 
Bayesian Learning was employed to determine the model’s structure 
through the Bayesian Search algorithm as well as its parameters by the 
Expected Maximization method. This stage of model development is 
described in detail in Section 2.4.

2.2. Simulation of ship motions in irregular waves

Numerical simulations of ship motions were performed with the use 
of a 6DOF ship motion model, called LaiDyn, described in detail in [45].

LaiDyn has been developed as a hybrid non-linear model for time 
domain simulations comprising the ship’s response to the external 
excitation by waves as well as the resistance, propulsion, and steering 
forces at the same time. From the planar motion point of view, the so- 
called reference technique [46] was applied consisting of the adoption 
of the hydrodynamic derivatives and their refinements based on a 

comparison to the most similar known ship. However, the propeller 
thrust is directly modeled with the use of Kt curve approximation. The 
lift and drag forces generated on the rudder fin are directly modeled as 
well, accounting for the estimated relative velocity of water flow around 
the rudder [45]. The LaiDyn model does not need any speed control 
option, which is advantageous from the perspective of outcome fidelity. 
Instantaneous velocity is the result of a calculation performed at each 
time interval using Newton’s equations of motion, with thrust and total 
resistance as the input values. As the code is based on a panel approach, 
the wave-added resistance is determined while integrating the forces 
across all the panels distributed over the hull.

Besides the forces related to maneuvering manifested in the outcome 
of simulations as the ship trajectory (spatial-temporal location), a vastly 
important role is played by modeling the forces involved in the ship 
oscillatory motions including all 6DOF i.e. roll, pitch, yaw, heave, surge, 
and sway. The Froude-Krylov forces directly result from water pressure 
integration over the instantaneously submerged hull panels. The 
nonlinear approach to the Froude-Krylov component refers to the 
pressure distribution accounting for both the waveform and the current 
position of every panel due to the ship’s motion in the Earth-fixed co-
ordinate system [47].

Furthermore, the radiation and diffraction forces are considered as 
well and they are calculated by linear approximation using the convo-
lution integral approach. The retardation function implements the 
memory effect on the radiation forces [45].

Bearing in mind the objectives of this research that involve the sto-
chastic realization of sea wave process, and therefore the nondeter-
ministic response of the ship, it is essential to generate a mathematical 
model for the waves. Therefore, the assumed wave spectrum (JONSWAP 
here) is reconstructed by superposing a number of considered compo-
nents of an irregular wave (here 19 components). Those contain two 
random parameters for the sake of repetitive generation avoidance, 
namely the random phase shift and the random frequency increment.

Even though the LaiDyn model takes into account the fairly complex 
phenomena taking place in irregular waves, its output is an approxi-
mation of the real-world behavior of the vessel, as every model. In order 
to confirm a credible reproduction of reality, the code has been involved 
in several benchmark studies worldwide. Seakeeping-related studies 
were of most interest [48–50].

Furthermore, some model tests focused on both the nonlinear phe-
nomena like parametric rolling as well as maneuverability: see, for 
example, [46,51,52]. Therefore, the code has been acknowledged as 
credible and used in numerous studies related to complex ship motion 
phenomena in irregular waves: see, for example, [53].

Fig. 2 depicts the exemplary trajectory of the selected passenger ship, 
along with accompanying motion and turning circle parameters. These 
include, among others, the elevation of waves encountered by the ship, 

Fig. 1. The process of probabilistic data-driven meta-model development.
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roll angle, or tuning factor (Te/Tr) as a ratio of the encountered wave 
period (Te) to the natural roll period (Tr). Once the tuning factor reaches 
a value close to 1, synchronous rolling has been noted to occur. This 
means that LaiDyn not only simulates the irregular seas but also mimics 
the ship’s response with respect to accompanying wave-induced phe-
nomena which can occur at certain (possibly unfavorable) initial di-
rections of wave attack on the hull, such as bow-quartering seas, shown 
as the sample case in Fig. 2.

2.3. Training dataset

The training dataset includes 96,000 simulations of the starboard- 
side turning of the Floodstand-B passenger ship [54], which were pre-
viously used in other studies focusing on the impact of stochastic real-
ization of irregular waves on ship motions [21,22]. Input ship 
trajectories were created using the aforementioned 6DOF LaiDyn motion 
model [45], for an assumed set of operational and environmental pa-
rameters. Their values were selected to suitably reflect a range of con-
ditions that cruise or passenger ships can meet during both routine and 
demanding operations in open waters [55,56], including the execution 
of smooth and firm evasive maneuvers [57,58]. The considered set of 
ship operational parameters consisted of: 

• one Vertical Center of Gravity (VCG): 15.19 m;
• two initial forward ship speed values: 12 and 16 kts (6 and 8 m/s, 

respectively);
• four magnitudes of rudder angles: 10◦, 15◦, 20◦, and 30◦ (starboard 

side);

and the following parameters describing the marine environment, 
particularly irregular waves: 

• deep, unrestricted water;
• JONSWAP wave spectrum with the peakedness γ = 3.3;
• 19 components of irregular waves;
• 500 stochastic wave realizations;
• 3 significant wave heights (HS): 1.5 m, 3.5 m, and 5.5 m;
• 3 accompanying, most likely wave peak periods (Tp) that can occur 

for selected HS based on [59]: 6.99 s, 7.92 s, and 8.80 s;

• 8 initial angles of encountered wave (μ): 0◦, ±45◦, ±90◦, ±135◦, and 
180◦ In this notation 0◦ indicates the following seas, positive values 
indicate starboard while negative ones refer to the port side, and 
180◦ stands for head seas. For instance, +135◦ should be interpreted 
as starboard side bow-quartering seas.

The selected model ship is a mid-size concept passenger vessel. Its 
profile is depicted in Fig. 3 while all details regarding its dimensions are 
given in Table 1.

Once the input data had been prepared, i.e. the ship motion simu-
lations outcome, further processing was applied, so the components and 
total lateral accelerations acting on a passenger located at two selected 
representative locations were calculated for each time step of the ship’s 
motion simulations while turning. For this purpose, the bow-most 
location on the sun deck (#1 in Fig. 3) was selected, as well as the 
restaurant situated in the aft part of the ship’s 5th deck (#2 in Fig. 3). 
The total lateral acceleration consists of the sum of lateral components of 
accelerations acting in relation to the ship’s roll, heave, sway, pitch, and 
yaw, as well as due to gravity. For each trajectory, the final value was 
maximized in order to identify the largest occurring result in each 
simulation scenario.

The ship turning trajectories fluctuate even when the initial condi-
tions in the numerical simulations remain unchanged. Thus, these cause 
a different ship response to encountered irregular waves and conse-
quently, different turning circle parameters and values of lateral accel-
erations. This is due to the representation of wave stochasticity by 
LaiDyn, which was previously verified in the work [22]. This can be also 
noted in Fig. 4 where a single overlaying marker represents on the 
scatterplot matrix [60] a single result from 96,000 simulations used in 
the prepared training dataset.

Therefore, to organize such an extensive input dataset into a mean-
ingful meta-model, it is necessary to employ an appropriate modeling 
technique capable of representing the inherent stochastic nature of the 
analyzed process. To this end, causal-probabilistic modeling using 
Bayesian Belief Networks (BBNs) was used along with associated 
learning algorithms.

Fig. 2. Visualization of a sample turning trajectory and selected ship motion parameters.
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2.4. Bayesian learning

The methodology employed in this study to construct a meta-model 
is referred to as Bayesian Belief Networks and belongs to a family of 
probabilistic models. This approach can capture the inter-relationships 
among the attributes of the input dataset and express them in a proba-
bilistic manner. Furthermore, BBNs facilitate a more comprehensible 
representation of the model’s structure and enable fast modifications, 
such as enhancing predicted accuracy. Furthermore, BBNs can be 
effortlessly refreshed with new data.

These advantages are significant when compared to other predictive 
methods, such as regression or neural networks.

Probabilistic graphical models are mathematical representations of 
random variables and their conditional dependencies, [61]. These 
models are typically represented using a directed acyclic graph (DAG).

A typical BBN consists of a pair N = {G,P}, where G is a DAG with a 
set of variables V = {V1,…,Vi}, and a set of edges E representing the 
connections between the variables. P represents a collection of proba-
bility distributions for the variable V. BBNs are a collection of variables, 
which have two types of dependencies: a quantitative dependency rep-
resented by P, and a qualitative dependency represented by G. There-
fore, a network N = {G, P} serves as a proficient depiction of a joint 
probability distribution P(V) throughout V, based on the structure of 
Goutlined below: 

P(V) =
∏

X∈V
P(X|parents(X)), (1) 

The conditional probability table (CPT) represents the probability 
distribution of a variable given a specific set of parent variables. BBNs 
can calculate the conditional probability of a variable, based on the 
values assigned to the other variables. The process of reasoning, known 
as probability propagation or belief updating, occurs through the 

transmission of information within the network, and this transmission is 
not restricted to the directions of the arcs.

BBNs can be conditioned on any subset of their variables, allowing 
for reasoning in either direction. So, it is possible to perform forward 
(predictive) reasoning by using fresh information about causes 
(explanatory variables) to update ideas about the consequences 
(response variables), in accordance with the network edges. Alterna-
tively, one might engage in backward (diagnostic) reasoning, which 
involves determining the most likely causes based on the observed ef-
fects. This process involves propagating information in the model 
against the direction of the edges. For example, a BBN representing the 
relationships between an expected roll angle (the response variable) and 
operational as well as environmental conditions (the explanatory vari-
ables) can be used to: 

predict the probability for a ship to attain a certain value (or rather 
interval) of roll angle given the values assigned to explanatory 
variables,
diagnose the most probable distribution of explanatory variables for 
the specific value of roll angle, see for example, [36].

In other words, such a BBN can predict the response of the ship given 
the maneuver parameters; additionally, it can diagnose the most likely 
maneuver parameters for the predefined response of the ship. BBN- 
based models can be created either by human construction using 
domain knowledge or by discovering them from data using a set of 
learning algorithms.

In this research, the latter technique by constructing a probabilistic 
meta-model based on a comprehensive training dataset generated on the 
basis of the 6DOF ship motion simulations in the time domain was 
employed. To this end, selected learning algorithms that helped discover 
and present causality were used.

2.4.1. Learning algorithms
In learning BBNs two major tasks can be distinguished: 1) structure 

development (G) and 2) parameter estimation (P).
To discover the network structure, several approaches can be 

adopted, each reflecting a distinctive way of looking at a BBN: 

Fig. 3. Profile of the selected passenger vessel with two chosen locations as given in [22], based on [54].

Table 1 
Main characteristics of the selected Floodstand-B passenger ship.

Length overall 
(LOA) [m]

Beam 
[m]

Draft 
[m]

Displacement 
[t]

Gross tonnage 
(GT)

238.0 32.2 7.2 34,367 63,000
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Scoring-based learning algorithms, where a BBN is seen as a structure 
that encodes the joint probability distribution of the variables, and 
the best-suited BBN is the one that best fits the training data. This 
structures the BBN according to scoring-based learning algorithms, 
where prior ordering of the variables can speed up the learning 
process and ensure proper representation of the dataset and the 
analyzed process it intends to model. An exception here is an algo-
rithm called Naive Bayes, which assumes full independence of the 
explanatory variables, and so no prior ordering is needed.
Constraint-based learning algorithms, where a BBN structure codes a 
group of conditional independence relations among the variables via 
the concept of d-separation [62,63]. BBN learning is based on iden-
tifying the conditional independence relationships, using relevant 
statistical tests. Then, the results of the tests are used as constraints to 
construct a BBN.

To acquire knowledge about the structure and parameters of the 
meta-model, in this paper, GeNIE software was used, as described in 
[64]. In order to achieve this objective, an algorithm known as Bayesian 
Search was employed. It is highly renowned, it was introduced by [65] 
and has been widely adopted since its early inception.

The approach employed is a hill-climbing algorithm, led by a scoring 

heuristic specifically the log-likelihood function, and incorporates 
random restarts. Before learning, the background knowledge of the 
variables’ order is provided, by organizing variables in groups of tem-
poral tiers without specifying any interrelations in order to reflect the 
existing causality of the analyzed process and indicate what variable 
belongs to what group (cause or effect).

Subsequently, the algorithm is initiated, which assumes that a node 
lacks any parents, and thereafter begins to insert the parents that 
maximally enhance the probability of the eventual structure incremen-
tally. Once the inclusion of any individual parent no longer has the 
power to raise the likelihood, the process of adding parents to the node is 
ceased.

The algorithm produces a directed acyclic graph, which attains the 
maximum score. The score is directly proportional to the likelihood of 
the data for the given structure reflecting its learning data, providing 
that we assign equal prior probabilities to all structures. The procedure 
governing the Bayesian Search algorithm is described in detail in [65].

Learning parameters become quite simple once the structure has 
been established for the provided dataset. One way to accomplish this is 
by using the conditional frequencies obtained from the data, as 
demonstrated in the study [62]. Another approach is to employ the 
expected maximization (EM) method, which allows for the estimation of 

Fig. 4. Exemplary parameters from the training dataset considering wave stochastic realizations.
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maximum likelihood or maximum a posteriori (MAP) parameters in the 
models, as explained by [63].

The EM method proceeds by iteratively alternating between an 
expectation (E) step and a maximization (M) step. The former creates a 
function that computes the expected value of the log-likelihood by using 
the current parameter estimate. The latter computes parameters that 
optimize the expected log-likelihood acquired during the E step. After-
ward, these estimated parameters are used to determine the distribution 
of the variables in the following E step.

2.4.2. Input data processing
Since only a few learning algorithms support continuous and mixed 

data, and Bayesian Search is not among those, the input data needs to be 
properly processed before applying the learning algorithms. This process 
covers splitting a continuous variable into several intervals by adopting 
one of the methods such as equal interval; equal quantile; hierarchical; 
and manual, for more information: see, for example, [66].

The importance of this stage of model preparation lies in two key 
factors: firstly, it ensures an accurate representation of the analyzed 
process, and secondly, it enhances the computational efficiency of the 
model and the accessibility of data for model learning.

Increasing the number of intervals can provide a more accurate 
representation of continuous data. Nevertheless, the magnitude of the 
conditional probability table (CPT) for a variable grows exponentially as 
the number of the variable’s parents and the number of intervals for 
each parent rise. In a three-node network, even with just one outcome 
variable and two parents, the number of intervals for each variable 
greatly affects the calculation of conditional probabilities. Specifically, if 
each variable has two intervals, there would be 8 (23) conditional 
probabilities to calculate. However, if each variable has three intervals, 
there would be 27 (33) conditional probabilities to calculate for the 
outcome variable; and in the case of four variables and three established 
intervals, each will result in a CPT of 81 (34) entries.

Therefore, in order to warrant the use of multiple intervals, a sub-
stantial and diverse dataset is necessary and should contain a sufficient 
number of data to accurately calculate significant probability values for 
each combination of variable intervals. Alternatively, certain condi-
tional probabilities may rely on a limited number of data, or perhaps 
lack the necessary observations, resulting in inconclusive entries in the 
CPT. A situation may arise where the model’s granularity increases with 
the number of intervals, but its accuracy remains unchanged, as stated in 
the comparison analysis by [66].

2.5. Meta-model validation

To establish trust in the developed meta-model two distinctive ana-
lyses are carried out namely: cross-validation and strength of influence. 
The former allows determining the meta-model accuracy while the latter 
assesses the model behavior and the relations among variables in the 
model.

2.5.1. Cross-validation
To assess the accuracy of the developed meta-model k-fold Cross- 

Validation (CV) is used, in which a portion of the data is used to build the 
model and a separate portion is used to assess the model’s prediction 
ability. This is how the K-fold algorithm operates: 

1. Randomly divide the data set into K subsets,
2. For each subset S: 

a. train a model on the data but not on the subset S,
b. test model on the subset S,

3. Return the average error over the K subsets.

The CV tests provide accuracy, thus the prediction power of the 
model with respect to each response variable and its instances defined 
by the intervals.

2.5.2. Strength of influence analysis
This analysis aims to determine the most influential variables in the 

model and to indicate the direction of this influence. It helps to deter-
mine the direction of information flow within the model and its extent, 
which in turn enables the specification of the most influential variables 
in the model. In addition, such an analysis combined with the assess-
ment of the uncertainty of the variables can increase the reliability of the 
model and ultimately strengthen confidence in it.

The magnitude of the influence between two variables is determined 
based on the difference between two discrete probability distributions 
that are used in BBNs to describe those variables. By comparing differ-
ences, representing various sets of variables, one may draw valid con-
clusions about which change is more significant than the other in a 
particular model.

To express the difference several distance measures can be used; 
however, the J-divergence measure is the most appropriate for our pur-
poses, [67]. The concept of J-distance uses the cross-entropy notion, 
which measures the variation between two probability distributions. It is 
based on the fundamental concept of entropy, which quantifies a dis-
tribution’s uncertainty or randomness. The distance J between two 
probability distributions P and Q, which represents the magnitude of the 
influence of one variable onto the other, is calculated as follows, see [67,
68]: 

J(P,Q) =
K(P,Q) + K(Q,P)

2
, (2) 

K(P,Q) = −
∑n

i=1
pilog2(qi) +

∑n

i=1
pilog2(pi) = H(P,Q) − H(P), (3) 

where H(P,Q) is the cross-entropy of P and Q, and H(P) is the entropy of 
P.

While the direction of influence is expressed qualitatively, the con-
ditional probability tables of a BBN are used for this purpose. The 
following four types of influence can be distinguished: positive, negative, 
null, or ambiguous marked with the corresponding colors: green, red, 
black, and violet.

The type of influence (positive, negative, null) for a particular arc is 
indicated by a series of equations. If the influence is neither positive, 
negative, or null it is considered ambiguous. The sign of influence can be 
determined in both directions (from the parent to the child and from the 
child to the parent). If these two are not coherent then the sign will also 
be regarded as being ambiguous. For a detailed mathematical descrip-
tion of this concept, the reader is referred to [67].

3. Models and results

3.1. Variables intervals development

The initial aim of the meta-model developed herein is to inform the 
OOW whether the expected parameters, such as roll and pitch angles, 
accelerations as well as expected turning circle dimensions that the ship 
may experience when turning, will remain within the operational limits 
or will exceed those. Therefore, the variables in the model shall reflect 
the realm of the analyzed process.

Therefore, in this paper, the hierarchical and manual discretization 
methods have been adopted to determine the intervals for variables 
employed in the model. For variables featuring rather simple distribu-
tions hierarchical method was enough, for more complex distributions 
only the manual method was able to reflect the operational aspects and 
requirements of the analyzed process.

The resulting intervals of the input data discretization are presented 
in Table 2 where the hierarchical method was applied to the following 
variables: v, r, HS, μ. However, the remaining variables acc, roll, pitch,
diam, adv, trsf required more in-depth analysis to provide justified and 
interpretable outcomes. Please note that the notation of the wave angle 

M. Gil et al.                                                                                                                                                                                                                                      Reliability Engineering and System Safety 256 (2025) 110765 

7 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


of attack has been changed during BBN structure development 
compared to this introduced in Section 2.3. The previously introduced 
positive angles are now labeled 45◦–135◦ (starboard side), while nega-
tive ones (port side) are 225◦–315◦

Lateral accelerations – variables describing this parameter 
measured in specific locations on board the ship were divided into three 
intervals reflecting the normal, moderate, and severe operational con-
ditions correspondingly. A detailed explanation for those conditions is 
given in the international rules as follows, [69–71]: 

normal conditions – acc ≈ 0.15g – an average person will keep balance 
when holding;
moderate conditions – acc ≈ 0.25g – maximum load for the mean 
person keeping balance when holding;
severe conditions – acc ≈ 0.45g – an average person will fall out of the 
seat if not wearing a seat belt.

Roll and pitch angles – these are rotational, side-wise (roll) and 
longitudinal (pitch) motions of the ship, if combined with moderate, and 
severe accelerations may lead to panic and injury to passengers or crew 
on a cruise ship, see [72].

The adopted boundaries for the intervals tend to reflect the normal, 
moderate, and severe operational conditions of this particular ship with 
a focus on passenger comfort and safety. To this end, the following in-
tervals were adopted with the corresponding limits allowing for the 
interpretation of roll motions, as given in [73]: 

normal conditions – roll angle below 3.0◦ corresponding to the limits 
of 2.5◦ for transit passengers and 2.0◦ for cruise liner;
moderate conditions – roll angle between 3.0◦ and 5.0◦, which cor-
responds to the limit of 4.0◦ for heavy manual work and 3.0◦ for 
intellectual work;
severe conditions – roll angle above 5.0◦, which corresponds to the 
limit of 6.0◦ for light manual work.

For pitch angle of 1.8◦ denotes a situation where green water enters 
the bow, which is an unwanted situation from the perspective of pas-
sengers. On the other hand, the operational limit designed for a naval 
ship, and accounting the human performance, is 1.5◦ [74]. Angles less 
than 0.5◦ can be considered normal operations, while those in the range 
of 0.5◦–1.5◦ are considered moderate.

Turning circle parameters – International Maritime Organization 
(IMO) requires that the tactical diameter shall be less than 5 ship LOA 
and the advance shall be less than 4.5 LOA [44].

These are considered a reference point to develop the intervals in the 
meta-model, even though environmental and operational conditions 
differ from those covered by the mentioned guidelines. Therefore, the 
adopted intervals tend to reflect: 

the expected dimension of a turning circle if diam ∈ [4,5]LOA and 
adv ∈ [3.5,4.5]LOA;

smaller than expected: diam < 4and adv < 3.5LOA;
larger than expected: diam > 5 and adv > 4.5LOA.

3.2. BBN-based meta-model

In this section, the developed meta-model is presented with the use 
of the Bayesian Search algorithm, which pertains to a group of 
constraint-based algorithms, based on a dataset and temporal ordering 
of the node performed at the stage of background knowledge incorpo-
ration. The following temporal ordering was applied here: 

tier 1: speed, rudder, significant wave height, wave angle;
tier 2: advance, transfer, tactical diameter, abs max roll, abs max pitch, 
abs max ay1, abs max ay2.

The ordering reflects the physics of the analyzed phenomena, where 
the variables from tier 1 are considered explanatory and tier 2 contains 
predictive variables. The cross-relations among predictive variables that 
are observed in the dataset are expected to be found by the learning 
algorithms.

The temporal ordering and further causal discoveries performed by 
the Bayesian Search algorithm result in the network structure depicted 
in Fig. 5.

3.3. Results of cross-validation

The results of the cross-validity tests (CV) are shown in Table 3. 
Therein, the overall accuracy of the meta-model and the accuracy for 
individual predictive variables are presented. The former yields 91%, 
with the latter ranging from 81% to 97%. The variable intervals are 
numbered according to the convention previously introduced in Table 2.

In Table 4 comprehensive information about CV tests is given in the 
form of a confusion matrix. Therein, the distribution of the model pre-
dictions across the variable intervals is given as well as information on 
whether the model tends to overestimate or underestimate the indi-
vidual intervals of the class variables. For example, a response variable 
abs max ay1 has three intervals Int1–Int3, and the CV test returns a 3 × 3 
confusion matrix showing the distribution of predictions for each in-
terval compared to the actual values recorded in the dataset. It can be 
seen that the model predicts the variable interval Int1 with the highest 
accuracy (91%), while Int2 and Int3 have an accuracy of 62% and 72%, 
respectively.

3.4. Strength of influence

The results of the analysis of the strength of influence, are shown 
graphically in previously introduced Fig. 5 and numerically in Table 5. 
The higher the value of the tabulated J-divergence parameter the stronger 
the influence among variables, which is also reflected by the arc thick-
ness in the figure. From there the set of variables that have the strongest 
influence on the model (the thick arrows) and a set of less influential 

Table 2 
Variables intervals – the result of the conducted discretization process.

Intrv v [m/s] r [◦] Hs [m] μ[◦] diam [LOA] adv [LOA] trsf [LOA] acc [g] roll [◦] pitch [◦]

1 6 10 1.5 0 <4 <3.5 <1.5 <0.2 <3 <0.58
2 8 15 3.5 45 4–5 3.5–4.5 1.5–2.0 0.2–0.3 3–5 0.58–1.47
3 – 20 4.5 90 5–6 >4.5 2.0–2.5 >0.3 >5 >1.47
4 – 30 – 135 >6 – >2.5 – – –
5 – – – 180 – – – – – –
6 – – – 225 – – – – – –
7 – – – 270 – – – – – –
8 – – – 315 – – – – – –

Abbreviations: Intrv – interval number, v- ship speed, r – rudder angle, Hs – significant wave height, μ – wave angle of attack, diam- tactical diameter of TC, adv – advance 
distance of TC, trsf – transfer distance of TC, acc – total lateral acceleration, roll and pitch – rotational motions of the ship.
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variables (the thin arrows) can be found.
It is obvious that the variables describing the dimensions of the ship’s 

turning circle, i.e. the variables advanced, transfer, and tactical diameter, 
are explained to a large extent by the rudder setting represented by the 
variable rudder.

The extent of the angular movement of the vessel abs max pitch, is 
mainly explained by the environmental factor of the significant wave 
height.

The variability of abs max ay 1, abs max ay 2, and abs max roll, on the 
other hand, can only be explained by a combination of more than just 
one variable. For example, the variation of abs max ay 1 can only be 
explained by a set of input variables, such as max abs roll, significant wave 
height, wave angle, speed, and advance.

The signs of influence color-coded in Fig. 5 suggest the expected and 
proper behavior of the meta-model since: 

the increase of the rudder decreases the value of advance and transfer 
(marked red);
the increase of significant wave height increases abs max pitch; 
(marked green)
the increase in ship speed, rudder angle, and wave height lead to an 
increase in the values of variables describing the accelerations and 
angular motions of the ship (marked green).

The ambiguous sign for the strength of influence (marked violet) 
means that the calculations performed are inconclusive. To understand 
the cause of this type of influence, one needs to look at the conditional 
probability tables (CPTs) that describe the relationships between the 

analyzed variables. Often the cause lies in limited data to fill the CPTs, 
and some of the CPT columns contain uniform values for the given 
combinations of input variables, which makes the calculation of the 
influence inconclusive. Apparently, that is the case here.

The results demonstrate the high predictive power of the meta-model 
which makes it suitable for any further analysis, focusing on the esti-
mation of the motion parameters of the large passenger ship for the 
given operational scenarios, as shown in selected case studies in the 
following section.

Fig. 5. Meta-model developed with the use of the Bayesian Search learning algorithm.

Table 3 
Meta-model validation tests for all the predictive variables and their intervals 
(Int).

Variable Accuracy [%]

Int1 Int2 Int3 Int4 Average

abs max ay1 91 62 72 – 81
abs max ay2 89 86 78 – 86
abs max pitch 99 93 92 – 95
abs max roll 92 81 91 – 87
advance 94 97 96 – 96
tactical diameter 98 97 97 99 98
transfer 98 94 91 98 95
Overall 91

Table 4 
Results of confusion matrix concerning the response variables and their intervals 
(Int). The values obtained from the model (model) are shown together with these 
observed ones (actual).

Int1model Int2model Int3model Int4model

abs max ay1
Int1actual 54,339 (91%) 4653 605 –
Int2actual 6067 14,940 (62%) 3228 –
Int3actual 54 3061 7849 (72%) –
abs max ay2
Int1actual 27,390 3146 1 –
Int2actual 3309 42,425 3295 –
Int3actual 1 3398 11,831 –
abs max pitch
Int1actual 31,813 200 0 –
Int2actual 123 33,538 2169 –
Int3actual 0 2130 24,823 –
abs max roll
Int1actual 22,697 2064 0 –
Int2actual 2232 29,392 4739 –
Int3actual 3 3030 30,639 –
advance
Int1actual 25,543 1548 0 –
Int2actual 644 43,178 565 –
Int3actual 0 895 22,423 –
tactical diam
Int1actual 22,477 493 0 0
Int2actual 303 25,447 586 0
Int3actual 0 328 22,178 456
Int4actual 0 0 47 22,482
transfer
Int1actual 24,902 529 0 0
Int2actual 838 23,312 734 13
Int3actual 0 963 19,727 993
Int4actual 0 10 414 22,361
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3.5. Case studies

A set of studies is presented here demonstrating the usefulness of the 
developed meta-model using the inherent features of the BBNs namely 
forward and backward propagation. The summary of all conducted case 
studies is presented in Table 6 while their results are discussed in the 
following subsections of the paper.

3.5.1. Predictive mode of application
First, the model is applied in a forward reasoning mode, where for a 

set of observed operating conditions expressed by the explanatory var-
iables, the probability of the response variables is estimated, as shown in 
Figs. 6, 7, 8, and 9.

In case #1, depicted in Fig. 6, the ship is proceeding at 6 m/s (12 kts) 
in the stern quartering seas (wave approaching at 45◦ from the ship’s 
stern on the starboard side), with a wave height of 1.5 m and a maneuver 
is performed by ordering rudder angle of 10◦ The ship will experience 
accelerations and angular motions that are among the lowest values (the 
safe ones), with large dimensions of a turning circle. This corresponds to 
a smooth and wide turn under these environmental and operating 
conditions.

In case #2, the significant wave height is 5.5 m, while the other 
explanatory variables remain the same as in case #1. However, the re-
sults of the model change significantly. The distributions of lateral 

accelerations show that the probability of experiencing moderate values 
is quite high, while the ship is expected to develop a serious pitching 
motion and moderate rolling. However, the diameter of the turning 
circle remains comparable to that of case #1. The change in wave height 
resulted in a turn of similar size to calm sea conditions, but one should 
expect behavior of the vessel that is uncomfortable for the passengers.

Case #3 is similar to case #1, but the vessel is proceeding at 8 m/s 
(16 kts) and the only difference in her response is the 20% chance of 
developing a moderate rolling motion (in a range of 3–5◦).

In case #4, the significant wave height is 5.5 m and the ship proceeds 
at 8 m/s (16 kts). This leads to serious pitching and rolling motions and 
accelerations that can be uncomfortable or even unsafe for passengers.

3.5.2. Diagnostic mode of application
The second type of reasoning using BBN is a diagnostic mode 

(backward reasoning), in which the desired probability of an instance of 
the response variable is specified along with the other observable vari-
ables, and the most probable instances of the explanatory variables are 
sought. The predictive mode can be used to evaluate the most likely 
maneuvers (speed and rudder angle) given the current environmental 
conditions (wave height and direction) and the desired state of the 
response variable (e.g. acceleration or angular movements).

In this case, the most likely ship speed and rudder angle that can be 
applied under the given observable environmental conditions, so as to 
keep the lateral accelerations at the lowest level that is completely safe 
for the passengers were sought.

Therefore, the most likely speed should be low (12 kts), and small 
rudder angles should be applied (10◦–15◦) to achieve the target values as 
shown in Fig. 10.

4. Discussion

4.1. Findings

Due to the stochastic character of the analyzed process, appropriate 
modeling methods and tools need to be applied. Therefore, employing 
probabilistic models and supervised machine learning algorithms to 
organize the results obtained in the course of massive numerical simu-
lations of ship motions in waves is a sound solution.

The presented meta-model and modeling framework seem sufficient 
for the given purpose, namely for the operational prediction of ship 
response in irregular waves during the ship turning. In the case of the 
decision support tool suitable for daily navigation, extreme accuracy or 
decimal precision is neither required nor expected. Instead, a reliable 
model indicating whether a given maneuver will be safe or not would be 
helpful – especially, when bearing in mind its potential application in 
modern collision-avoidance solutions, where the effect of stochastic 
realizations of the waves on the resulting ship motions has not been 
accounted for so far.

There, the meta-model can serve OOW or an autonomous agent by 
providing a new, holistic perspective on evasive maneuver execution. 
Offering information about the possible scope of ship responses due to 
operational and environmental conditions, as well as the nature of the 
sea waves, seems to be of utmost importance for the sake of navigational 
safety.

Table 5 
Results of the strength of influence test.

Parent node Child node J-divergence weighted

rudder [deg] tactical diameter [LOA] 0.7018
significant wave height [m] abs max pitch [deg] 0.6603
rudder [deg] transfer [LOA] 0.6371
transfer [LOA] tactical diameter [LOA] 0.6119
rudder [deg] advance [LOA] 0.5062
advance [LOA] tactical diameter [LOA] 0.4523
transfer [LOA] advance [LOA] 0.4435
abs max ay 1 [g] abs max ay 2 [g] 0.1924
abs max roll [deg] abs max ay 1 [g] 0.1803
speed [m/s] abs max roll [deg] 0.1087
significant wave height [m] abs max ay 2 [g] 0.1086
significant wave height [m] abs max ay 1 [g] 0.0935
wave angle [deg] abs max roll [deg] 0.0780
significant wave height [m] abs max roll [deg] 0.0712
wave angle [deg] abs max ay 1 [g] 0.0690
speed [m/s] abs max ay 2 [g] 0.0618
wave angle [deg] abs max ay 2 [g] 0.0317
speed [m/s] abs max ay 1 [g] 0.0307
rudder [deg] abs max ay 2 [g] 0.0271
advance [LOA] abs max ay 1 [g] 0.0149
wave angle [deg] abs max pitch [deg] 0.0090
rudder [deg] abs max roll [deg] 0.0055
wave angle [deg] transfer [LOA] 0.0046
wave angle [deg] advance [LOA] 0.0041
wave angle [deg] tactical diameter [LOA] 0.0015
significant wave height [m] tactical diameter [LOA] 0.0011
significant wave height [m] advance [LOA] 0.0011
advance [LOA] abs max pitch [deg] 0.0010
significant wave height [m] transfer [LOA] 0.0001
speed [m/s] advance [LOA] 0.0001
speed [m/s] transfer [LOA] 0.0001
speed [m/s] tactical diameter [LOA] 0.0001

Table 6 
Summary of the set meta-model parameters for the case studies performed.

Case study Reasoning mode Figure number Preset parameters of the meta-model

speed [m/s] rudder [deg] wave height [m] wave angle [deg] abs max ay loc. #2 [g]

#1 Predictive (forward) Fig. 6 6 10 1.5 45 –
#2 Predictive (forward) Fig. 7 6 10 5.5 45 –
#3 Predictive (forward) Fig. 8 8 10 1.5 45 –
#4 Predictive (forward) Fig. 9 8 10 5.5 45 –
#5 Diagnostic (backward) Fig. 10 – – 5.5 45 < 0.2
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The credibility of the results is also supported by the good qualitative 
agreement of the obtained predictions clearly showing that the ship 
turning circle parameters are highly dependent on the rudder setting, as 
shown in Fig. 5. This may appear straightforward and obvious for deck 
officers. However, in-depth analysis of the model’s results also revealed 
some non-trivial observations related to the expected ship motions in 
irregular waves. The sensitivity graph presented in Fig. 5 unambigu-
ously shows that neither the lateral acceleration nor the amplitudes of 
pitch and roll motions can be intuitively predicted, as they are highly 
complex. There are no obvious predictors for such safety-critical re-
sponses of a ship when it comes to passengers’ health or comfort. Thus, 
OOW as well as systems using deterministic models are not able to 
comprehensively estimate motion-related threats. This, in turn, vastly 
justifies the application of the probabilistic models, as the one developed 
within this study.

In general, the accuracy of the developed meta-model is very high 
(91% on average), with the highest value for predicting the parameters 
of a turning circle (95%–98%), pitch angle (95%), roll angle (87%), and 
slightly lower for accelerations in two distinctive locations on board the 

ship (81% and 86%). The meta-model features the lowest prediction 
power with respect to the acceleration in location #1 (the sun deck of 
the ship) since two out of three intervals are predicted with an accuracy 
of 62 and 72%. For other response variables and their instances, the 
prediction power is always above 78% with a geometric mean of 92%.

The variables have been divided into meaningful and interpretative 
intervals, assuring the high predictive power of the meta-model. 
Nevertheless, some other division lines for the variables are feasible, 
especially if the end-users’ needs and preferences significantly differ 
from the views expressed here. This manipulation obviously will affect 
both the granularity and accuracy of the model, which needs to be 
recalculated each time the intervals are modified.

4.2. Limitations

Massive numerical simulations of ship motions are performed with 
the use of a numerical, high-fidelity ship motion model called LaiDyn, 
mimicking the behavior of the ship in 6DOF in irregular waves. For the 
given purpose, namely for the analyzed ship type, hydro-meteorological 

Fig. 6. Case study #1 – a sample application of meta-model in predictive mode – forward reasoning, low speed, small wave, small rudder angle.

Fig. 7. Case study #2 – a sample application of meta-model in predictive mode – forward reasoning, low speed, high wave, small rudder.
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conditions, and operational scenarios the LaiDyn model is deemed suf-
ficiently accurate. However, several limitations are inherently related to 
the use of this code. The results may vary to some degree depending on 
the ship characteristics while a limited number of ships were used for the 
validation and benchmarking. The long-crested wave is considered with 
no directional spread of wave energy supply as well as the engine load 
control is simplified, which introduces some uncertainty to the propeller 
revolutions estimation. Furthermore, only a screw propeller was 
modeled whereas POD-type propulsion has been gradually gaining 
popularity on the market. Even though the approach adopted in this 
study remains the same regardless of the propulsion details, and 
generally regardless of considered ship particulars, the quantitative re-
sults may vary. The ship adopted in this study has never been built, 
therefore no data recorded during real operation are available, which 
involves some unavoidable uncertainties.

Another issue that might have affected the results obtained is the 
conducted data discretization process. Although the established in-
tervals are reasonable and supported by existing literature or industry 
standards as presented in Section 3.1., they may require further 

investigation and adjustment – especially since some of the maneuvering 
standards are provided for near-ideal conditions, i.e. to very limited 
configurations of rudder-speed combinations, which here constitute a 
minority. Furthermore, too few intervals may insufficiently accurately 
represent continuous data. On the other hand, too many intervals 
significantly increase the computational complexity of the established 
network. Therefore, it was necessary to find a compromise between the 
two. An inaccurate selection of values that makes an interval too large 
can, in turn, lead to under-diversification of the results, which may 
insufficiently represent the actual conditions of ship operation or the 
complexity of the marine environment.

It should be also acknowledged that the proposed meta-model is 
tailored for a particular vessel as it is data-driven based on numerical 
simulations of its maneuvers. Therefore, despite being highly predictive 
and applicable, this specific meta-model may serve as a decision- 
supporting aid only for ships that are similar in type and comparable 
in size. Nevertheless, the approach used herein with the example model 
ship demonstrates the practical usefulness of such tools and provides 
room for further work on their development and generalization.

Fig. 8. Case study #3 – a sample application of meta-model in predictive mode – forward reasoning, high speed, small wave, small rudder angle.

Fig. 9. Case study #4 – a sample application of meta-model in predictive mode – forward reasoning, high speed, high wave, small rudder angle.
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4.3. Future work

The training dataset used to develop the unique meta-model pre-
sented here is based on the outcome of 96,000 ship-turning simulations. 
It covers a suitable range of environmental and operational conditions, 
so it would appear to relevantly reflect the actual operational conditions 
of a large passenger ship, especially in some selected areas [56]. This 
helped achieve the wide applicability of the proposed meta-model. 
However, there are still some combinations of operational and envi-
ronmental parameters that are poorly represented in the training data-
set, such as limited values of considered ship speeds that reach also 20 
kts or more [55,75,76]. This may require further simulations with a 
particular focus on the missing combinations to achieve a sufficient 
amount of data. To define those combinations a detailed analysis of CPTs 
is needed.

The presented meta-model operates with the variables represented as 
probability distributions, however, if the end-user would be interested in 
single-tone output variables some other machine learning methods, such 
as ANNs widely used in the marine industry shall be investigated [77]. 
This could be interesting as the developed training dataset is unique, 
rich, and extensive, which allows for various areas of meta-model 
application ranging from operational (collision evasive maneuver 
planning) to tactical (route planning by excluding the environmental 
conditions leading to an undesired level of ship motions) purposes. 
Moreover, the use of physics-guided ANN may help generalize the re-
sults obtained [78,79], which could also be the case here and at least 
partially solve one of the identified limitations of this study.

5. Conclusion

This paper presents a data-driven meta-model estimating a set of 
safety-critical parameters describing the behavior of a passenger ship 
while executing an evasive maneuver. This was achieved via 6DOF 
numerical simulations of ship response in irregular waves with respect 
to their stochastic realizations and consequently by adopting suitable 
machine-learning techniques to develop a probabilistic model using 
Bayesian Belief Networks (BBNs).

The set of response variables comprises the maximum lateral accel-
erations calculated for two distinct locations on board a ship (sun deck 
and restaurant), the maximum roll and pitch angles, as well as the 
maneuvering parameters describing the turning circle of a ship (tactical 
diameter, advance, and transfer). These are estimated for a predefined 

set of explanatory variables pertaining to the environment (significant 
wave height and initial angle of wave attack) and ship operations (initial 
ship speed and magnitude of rudder angle).

Massive numerical simulations of ship motion in irregular waves are 
performed via state-of-the-art code called LaiDyn, serving in this study as 
a sample source of ship motion data. This was conducted by considering 
the stochastic realization of the waves and repeating each simulation 
scenario 500 times which resulted in the training dataset describing a 
total of 96,000 ship turning maneuvers in irregular waves. This dataset, 
after relevant processing, was then used to develop a meta-model 
adopting BBNs and the learning algorithm called Bayesian Search. 
Eventually, all three objectives of the study were addressed.

The case studies have proven the instantaneous predictive and 
diagnostic reasoning ability of the meta-model with high accuracy, 
making it already possible to serve as an onboard navigational decision 
support tool. It is worth noting that the proposed meta-model demon-
strates a holistic approach for operational risk mitigation through 
encompassing ship response predictions with respect to the stochastic 
realization of irregular waves. This was done for both the parameters 
reflecting hull motions of the vessel as well as the resulting maneuvering 
parameters describing the ship’s turning circle. As this phenomenon is 
probabilistic, the outcome obtained using the meta-model is probabi-
listic as well. This draws the watchkeeping officers’ attention to the fact 
that they cannot expect the ship to respond in a deterministically pre-
dictable manner at all times. Such a conclusion, in turn, increases the 
officer’s situational awareness, which then improves the safety of 
navigation.

Future work might also focus on applying various machine learning 
methods and algorithms, such as Artificial Neural Networks (ANNs), 
perhaps to compare and investigate modeling approaches that reflect 
the physics of the analyzed phenomena and may prove to be strongly 
predictive at the same time.
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