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Accurately predicting the creep failure life of adhesive joints, particularly single-lap adhesive joints 
(SLAJs), remains still a significant challenge, requiring substantial time and resources and the ability 
to predict the duration of creep failure in SLAJs is critical to ensuring structural integrity and reducing 
the failure of creep-prone adhesive joints. In this study, machine learning (ML) was used to identify the 
critical features that ultimately influence the durability of SLAJs due to creep. These key features were 
determined through correlation analysis and sequential feature selection. Multiple ML algorithms were 
employed to analyze complex relationships among key features and predict creep failure life. Finally, 
the results of the analysis highlight the importance of features such as SLAJ creep strain, adhesive 
tensile strength (UTS), SLAJ creep stress, adhesive surface area (A), and Young’s modulus (E). Of the 
ML models tested, the random forest (RF) model was the most effective in predicting creep failure life. 
Moreover, the accuracy of the predictions made by the proposed ML model, using original code written 
in Python, has been verified in experimental tests. All datasets generated and analyzed during the 
current study, along with the code, are available in the repository accompanying the paper.
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In recent decades, structural adhesives have gained prominence in the aerospace, automotive, marine, and civil 
engineering industries due to their numerous advantages. For instance, in metal structures, adhesives can replace 
conventional mechanical fasteners such as bolts and welds. This substitution reduces stress concentrations, 
ensures a uniform distribution of stress across the joint, minimizes corrosion and vibration, and decreases the 
overall weight of the structure1–3. However, structural adhesives also have certain disadvantages. For example, 
due to their viscoelastic behavior, they may exhibit creep deformation when subjected to prolonged loading, 
even at ambient temperatures4–6.

The phenomenon of creep must always be considered to ensure the long-term structural integrity of bonded 
joints, particularly in cases involving thicker adhesive layers. Creep in bonded joints is a complex process 
influenced by various factors, including temperature, humidity, adhesive composition, substrate properties, 
bonding element characteristics, and other contributing variables. Three major creep regions are observed 
following the instantaneous elastic strain that occurs when a load is applied to the material7,8. These regions 
are primary creep, characterized by a nonlinear and initially high rate of creep strain that decreases over time, 
secondary creep, during which the creep strain rate remains steady, and tertiary creep, defined by a rapid 
acceleration in the creep strain rate that ultimately results in material failure9. Creep is undoubtedly a complex, 
time-dependent phenomenon10,11, which makes predicting the durability of finished products particularly 
challenging. Standard laboratory experiments dedicated to studying creep are both time-consuming and costly12. 
Nevertheless, evaluating durability under creep conditions remains essential for design purposes. Consequently, 
designers and contractors continue to seek simple methods for assessing the effects of creep on bonded joints to 
ensure the optimal durability of structures under prolonged loading conditions13.

Various methods have been employed in the past to simplify the estimation of creep in bonded joints. 
However, these methods often fail to accurately represent the creep behavior over the long-term service life 
of bonded joints11. Early approaches included experimental testing methods, such as conducting tests at 
temperatures significantly higher than the operating temperature. While these methods provided useful insights, 
they were effective only for short time periods14. On the other hand, various analytical and numerical models 
have been employed to characterize the behavior of viscoelastic structural adhesives. For instance, power-law 
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models initially perform well but fail to capture long-term behavior. Subsequently, models such as Maxwell, 
Kelvin-Voigt, and Burgers, which are based on combinations of springs and dashpots, offer greater flexibility and 
allow for the fitting of more complex composite creep data. The Kohlrausch-Williams-Watts (KWW) equation, 
which describes the viscoelasticity of polymers using a fractional exponential distribution, is also occasionally 
applied15.

The time-temperature superposition (TTS) method is another widely used approach, particularly for 
evaluating the viscoelastic properties of epoxy adhesives. This method, first introduced by Leaderman16, 
combines data obtained at different temperatures to construct a master curve representing creep behavior over 
time. The fundamental premise of this method is that, for many materials, the relationship between logarithmic 
time and creep compliance remains consistent across various temperatures11. Consequently, the principle of 
time-temperature superposition utilizes the concept of reduced time and has been employed for long-term creep 
predictions. For example, Feng et al.15 applied this method by fitting creep data using a physics-based model and 
the TTS method to generate a master curve for determining long-term creep behavior. Similarly, Marques et al.11 
used this approach to estimate creep failure in aluminum-glass adhesive joints.

Shi et al.17, on the other hand, utilized various models, including the previously mentioned Burgers and 
Kelvin-Voigt models, to predict creep coefficients in timber structures with bonded steel plate joints. Their 
work also aimed to anticipate joint creep slip over the service life of such systems. Over the past century, 
numerous models have been developed to predict the creep life of polymers and alloys. These include the time-
temperature parameter method, Robinson’s linear rule, the damage parameter method based on creep damage 
mechanics, and prediction techniques based on creep curves, such as the θ-projection and the Ω-method18. 
Unfortunately, conventional methods remain limited in practical application due to their reliance on short-term 
data and complex theoretical frameworks. Furthermore, creep experiments, which are crucial for designing 
adhesive joints, are inherently time-consuming. Additionally, factors such as temperature fluctuations, variable 
creep mechanisms, and material differences11 mean that both computational and experimental methods often 
yield only approximate results. As a result, many researchers have shifted away from traditional creep testing 
methodologies, focusing instead on the statistical analysis of material data. Consequently, conventional models 
for predicting creep durability now have somewhat restricted practical applications.

Hence, recent ML methods based on statistical data have shown potential in predicting the service life of 
components19,20, along with the development of material behavior simulation. ML captures complex nonlinear 
relationships between environmental and material data at a large scale, providing a viable alternative to 
traditional prediction methods and overcoming their limitations. Currently, various ML methods, such as Multi-
Layer Perceptron (MLP)21, linear regression22, Random Forest (RF)18,23, Deep Neural Networks (DNN)24, and 
ensemble methods25–27, are being used to accurately capture the complex correlations between a wide range of 
material characterization data, environmental factors, and stress (as inputs), and creep durability (as the output). 
For example, Chai et al.19 highlight significant advances in ML for predicting alloy creep damage. Zhang et 
al.24 introduced DNN to predict complex creep and fatigue damage in stainless steel. Meanwhile, Tan et al.28 
investigated ensemble ML methods, including additional trees and eXtreme Gradient Boosting (XGB), to 
improve the prediction of creep life in Cr martensitic steel. In contrast, Yue Liu et al.26 proposed self-adaptive ML 
methods to accelerate the prediction of creep life in improved nickel-based alloys, providing valuable information 
for future research. Shin et al.29 used the maximum information coefficient (MIC) and Pearson correlation 
coefficient (PCC) to correlate input features, generated by computational methods, with creep durability. Verma 
et al.22 proposed ML methods, such as linear regression and lasso regression, as well as t-distributed stochastic 
neighbor embedding (t-SNE), to relate microstructure to creep properties of chromium steels. Additionally, ML 
has wide applications in materials science, including predicting mechanical properties30–32, evaluating physical 
properties33,34, analyzing material microstructures35,36, and designing advanced materials37,38.

As can be seen, ML has a wide range of applications in materials science, including the prediction of mechanical 
properties30–32, the evaluation of physical properties33,34, the analysis of material microstructures35,36, and the 
design of advanced materials37,38.

This study employs the dataset available in the literature: Queiroz et al.39, Tan et al.40, Zeeuw et al.41, and Duncan 
et al.42, to construct a reliable and accurate ML model that identifies key features through feature screening and 
predicts the creep life of adhesive-bonded single-lap joints. Multiple ML algorithms, including ridge and lasso 
regression, support vector regression, and Gaussian process regression, are employed in conjunction with RF 
and DT in the model’s training to evaluate their impact on prediction accuracy. Additionally, the proposed ML 
model has been validated through experimental studies.

While the algorithms and datasets utilized in this study build upon previous scientific achievements, it is 
important to highlight the innovative approach taken in applying and validating these resources to address 
the specific challenge of predicting the durability of single-lap joint creep damage. Specifically, independent 
feature selection and correlation analyses were performed to identify the most critical predictors, a tailored 
ML framework is developed to enhance predictive accuracy, and the model is validated through experimental 
testing. These efforts successfully demonstrate the feasibility of integrating ML with an understanding of bonded 
joint behavior under creep conditions.

Methodology
The main objective of this study is to develop a reliable ML model for predicting the creep failure life of SLAJs by 
identifying key features from a diverse dataset. Figure 1 illustrates the ML framework used in this study, which 
includes data preprocessing, feature selection, model training, model evaluation, and, finally, prediction along 
with its application.

Our dataset (see Table 1) contains input features from experimental tests that are related to the output feature, 
which is creep durability. We preprocessed the data sequentially to improve the accuracy of the ML model. This 
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process included normalizing the input features to a range of 0 to 1 and applying a logarithmic transformation 
to the output dataset. Feature pre-selection identifies key features that impact the model’s predictive accuracy 
through correlation analysis and sequential selection. Additionally, it streamlines the model by removing 
“unnecessary” features43. After identifying the critical features, several ML models are utilized to train the 
model using k-fold cross-validation. Next, the most reliable model is selected for additional analysis, and key 
evaluation metrics, including the coefficient of determination (R2) and the Root Mean Square Error (RMSE), 
are computed. Ultimately, this model can predict creep failure life based on future data, facilitating comparisons 
with real-world values. The analysis aimed at predicting the durability of creep damage in adhesive joints has 
focused on mechanical properties rather than on chemical composition or environmental factors.

Collection of data
This research emphasizes data related to mechanical properties, as they have a direct impact on the durability 
of joints. Given their critical role in evaluating creep durability, the input variables primarily focus on these 
properties. A total of 285 datasets were collected, comprising 34 for epoxy adhesives, 194 for polyurethane 
adhesives, and 57 for elastomer adhesives. Tables 1 and 2 present the distribution of the collected datasets, which 
include experimental results from four different studies on the creep failure life of adhesively bonded single-
lap joints. At this point, it is important to emphasize that the limitations of the proposed model are primarily 
attributable to the size and quality of the dataset. The data presented in Table 2 were selected to represent a wide 
range of properties of structural adhesives used in various engineering applications. The selection was based 
on the criteria of availability in the scientific literature and suitability for statistical analysis and modeling. Due 
to the limited access to homogeneous experimental data, results from different sources were utilized, which 
may have introduced significant variation in the values of individual parameters. While the dataset does not 
encompass the full spectrum of available adhesives, it captures key mechanical and physical properties relevant 
to creep phenomena. The model proposed in this study, utilizing datasets covering different types of adhesives, 
aims to create a universal tool that is not restricted to any single adhesive type. Accordingly, the model was 
designed to account for variations in creep durability across different adhesives. Figure 2 illustrates example data 
showing the variation in creep life for different adhesives as influenced by the ultimate shear strength of SLAJs.

Obviously, a larger dataset would increase the accuracy of the model. However, gathering such an extensive 
database is not an easy task and requires time. Nevertheless, the datasets used in this study are sufficiently 
adequate for predicting durability in creep failures. In this study, the dataset collected includes eleven input 

Test References Types of adhesives Datasets Adherend

1 Queiroz et al. Epoxy 4 Steel (ASTM A-36)

Polyurethane 6

2 Tan et al. Polyurethane Sikaflex 265 62 Aluminum (6005A)

3 Zeeuw et al. Epoxy Araldite 2015, 30 Steel (S700MC)

4 Duncan et al. Polyurethane DP609 126 Steel

Elastomer Evode M70 57

Table 1.  Creep life dataset obtained in single-lap joint tests.

 

Figure 1.  ML framework for predicting creep failure life.
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features and a single output feature, which is the average creep time in hours [hr]. The input features include 
the following elements: 1) ultimate shear strength of SLAJ (USS), 2) ultimate tensile strength of the adhesive 
(UTS), 3) Young’s modulus of the adhesive (E), 4) shear modulus of the adhesive (G), 5) Poisson’s ratio of the 
adhesive (ν), 6) creep stress in the longitudinal direction, 7) creep strain in the longitudinal direction, 8) testing 
temperature (T), 9) relative humidity (RH), as well as geometrical factors such as 10) adhesive thickness (t) and 
11) adhesive area (A), all of which influence the creep failure life of adhesive-bonded joints. Table 2 provides 
a summary of the statistical analysis performed on the collected input and output features. The target feature 
of this study is the creep failure life, as shown in Table 2 in terms of the output data. In this study, creep life is 
additionally transformed into a logarithmic form, referred to as Log[CreepLife], which is a commonly used 
method for predicting creep properties.

Here, we would like to draw the reader’s attention to two facts. First, the minimum value of the time description 
on the logarithmic scale, which is negative, is not incorrect. This is because this value does not directly represent 

Figure 2.  Logarithmic trend lines based on ultimate shear strength of SLAJs for variation in creep failure life 
for different adhesives39–42.

 

Data Abbreviation Description Min. Max. Mean SD

Inputs USS [MPa] Ultimate shear strength of SLAJ 4.5 20 10.86 5.72

UTS [MPa] Ultimate tensile strength of adhesive 1.61 40 14.79 10.21

E [MPa] Young’s modulus of adhesive 2.7 1600 308.60 488.66

G [MPa] Shear modulus of adhesive 0.7 1960 231.87 314.01

ν [-] Poisson’s ratio of adhesive 0.32 0.39 0.35 0.01

Creep strain [-] Creep strain of SLAJ 0.0028 1.54 0.19 0.28

Creep stress [MPa] Creep stress of SLAJ 0.24 14.1 1.53 2.20

Temperature [◦C] Testing temperature 20 80 35.15 24.40

RH [%] Relative humidity 50 95 62.56 11.55

t [mm] Thickness of adhesive 0.5 1 0.66 0.23

A [mm2] Area of adhesive 312.5 625 414.00 145.72

Outputs Creep failure life [hr] Time from creep to failure 0.0025 2334 57.59 188.35

Log[CreepLife] Creep life in logarithmic form -2.58 3.36 0.69 1.10

Table 2.  Summary of statistical analysis of collected input and output features.
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time itself, but the logarithm of the time value. The logarithm of a number can be negative when the number is 
less than 1 but greater than 0. In the context of time, if time is expressed in hours [hr], as in our case, and is less 
than 1 hour (for example, 100 seconds), then the logarithm of this value will be negative. Second, it is important 
to distinguish between the concept of creep damage life, as shown in Table 2, and the minimum life of adhesive 
joints. As noted by Marques et al.11, the minimum life of adhesive joints is approximately 20 years, while creep 
life refers to the period of time a material can withstand a given load before being damaged by creep.

Data preprocessing
The input and output features exhibit varying degrees of deviation, as illustrated in Table  2, with the creep 
failure life being broadly distributed and having a very high standard deviation. To mitigate the issues caused 
by the notable variation in feature ranges, input variables were standardized to fall between 0 and 1. Data 
standardization, normalization, is a technique used to scale input data values to a common range, typically 
between 0 and 1. The process involves subtracting the minimum value of the variable from each observation and 
then dividing the result by the range of the variable. Mathematically, it can be expressed as:

	
xn = x − min(x)

max(x) − min(x) ,� (1)

where x represents the original value, xn is the normalized value, and min(x) and max(x) are the minimum and 
maximum values of the variable in the dataset. Normalization is particularly useful for algorithms sensitive to 
differences in scale or models that require faster convergence during training. By rescaling the data, all features 
are adjusted to the same scale, ensuring that no single variable disproportionately influences the learning 
process. Nevertheless, this method should be applied with caution in the presence of outliers, as extreme values 
can significantly affect the range and, consequently, the results of the normalization process. Furthermore, the 
output feature underwent a logarithmic transformation. This preprocessing streamlines the data distribution 
analysis and improves modeling accuracy.

Instead of using a single split to evaluate the generalization capacity of various ML models, this study employs 
5-fold cross-validation. K-fold cross-validation splits the data into multiple groups for ML techniques44, where k 
represents the number of data groups. In this study, k = 5 distinct training and testing data groups are created 
from a randomly shuffled dataset to ensure diversity. K-fold cross-validation is an essential method in ML that 
allows for better model assessment, reduces the likelihood of overfitting21,28, and maximizes the use of the 
available data45,46. All ML models in this paper are programmed using scikit-learn in Python with the IPython 
kernel.

Key features identification
The primary objectives of the feature selection process are to reduce the dimensionality of input features, thereby 
accelerating the training process and enabling the development of a more flexible and user-friendly model. 
Additionally, the process aims to identify and analyze the key features that significantly influence the target 
variable47,48. In this study, sequential selection techniques and Pearson correlation analysis are employed for 
feature identification. The Pearson correlation analysis evaluates the strength of linear relationships between 
variables and serves as a primary filter during feature screening. The Pearson correlation coefficient is calculated 
using the following formula (2):

	

r =
∑s

j=1(Xj − X̄)(Yj − Ȳ )√∑s

j=1(Xj − X̄)2
√∑s

j=1(Yj − Ȳ )2
,� (2)

where s denotes the total number of samples in the dataset, Xj  and Yj  represent the values of the features X and 
Y for the j-th sample, and X̄  and Ȳ  denote the mean values of features X and Y, respectively.

Features with an absolute Pearson correlation value |r| less than 0.95 are considered less influential. Conversely, 
features with |r| greater than 0.95 are deemed linearly proportional, indicating similar effects on the output. 
These selected features are subsequently analyzed using the SHapley Additive ExPlanation (SHAP) method49 
to quantify their contributions to the model’s predictions. The study ranks the significance of each feature for 
prediction and evaluates their overall impact.

The SHAP technique assesses the importance of each input feature, which is then incrementally incorporated 
into the regression model. Critical features are identified based on the smallest increase in the coefficient of 
determination (R2) or the greatest reduction in root mean square error RMSE. These essential features are 
subsequently utilized to construct ML models for predicting creep failure life.

Training and evaluation of the model
A variety of ML algorithms have been tested in this study, including ridge and lasso regression, GPR, and SVR, 
in conjunction with RF and DT, for model training. As previously mentioned, the parameters of the regression 
model are optimized to maximize R2 and minimize RMSE. The error metrics are calculated using the following 
formulas (3) and (4):
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R2 = 1 −

∑s

j=1(yj − ŷj)2

∑s

j=1(yj − ȳ)2 , � (3)

	
RMSE =

√∑s

j=1(yj − ŷj)2

s
, � (4)

where s denotes the overall number of data sets, ŷj  denotes the predicted value, yj  denotes the actual value, and 
ȳj  denotes the average of the observed data y.

The most reliable ML method for predicting creep failure life is selected based on error comparison, while the 
reliability of the life prediction outcomes is evaluated using the standard deviation (±2σ).

Results interpretation
Analysis of results in the identification of key features
The results of the key feature identification process are presented in Fig. 3, which displays the Pearson correlation 
coefficients as a grayscale map: positive correlations are shown in black, and negative correlations in white. As 
observed in Fig. 3, most of the computed Pearson coefficients are below 0.95, indicating nonlinear dependencies 
and the independence of the dataset’s features. This emphasizes the importance of accurate durability predictions 
in cases of creep.

Figure 4 presents SHAP values derived using the game theory approach, demonstrating the contributions 
of individual features to the model’s predictions. Specifically, Fig. 4a ranks the features by their absolute mean 
SHAP values, while Fig.  4b illustrates local feature contributions on a logarithmic scale. In Fig.  4b, positive 

Figure 3.  Map of Pearson correlation coefficients.
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SHAP values indicate an increase in predicted creep failure life, whereas negative SHAP values correspond to a 
decrease.

As observed, the creep strain of SLAJ has the most significant positive impact on creep failure life, whereas 
creep stress demonstrates a substantial negative effect. While this finding is somewhat obvious and intuitive, 
it is important as it validates the reliability of the analyses performed. As shown in Fig. 4b, a positive SHAP 
value for the creep strain of SLAJ indicates that an increase in strain may lead to a longer predicted creep life. 
Although this outcome is not always intuitive or universally applicable, it can occur under certain conditions. 
Such behavior may result from material properties, such as strain hardening, or specific stress redistribution 

Figure 4.  SHAP values: (a) significance of input variables, and (b) summary plot of SHAP values.
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mechanisms that enhance creep failure life. UTS was also identified as a key feature. For this parameter, when 
the SHAP value is greater than 0, the UTS values are relatively high, suggesting a longer predicted creep failure 
life. This is because materials and structures with higher tensile and shear strengths can withstand greater stress 
levels before failure, thereby prolonging the period of creep deformation before failure. Similarly, the elastic 
modulus E of the adhesive exhibits a positive trend, akin to UTS, USS, and adhesive area A, in influencing the 
creep failure life of the joint. SHAP values greater than 0 for these features indicate that an increase in E, USS, or 
A contributes to extending creep failure life.

Other features, such as ν and G, along with testing temperature, have a lower impact on creep life, as their 
SHAP values are close to zero. Notably, RH is the only feature that consistently exhibits a negative effect on 
the behavior of the connector, which is expected. Additionally, a slight increase in testing temperature shows a 
minor but positive effect on the creep failure life of SLAJ.

The next Fig. 5 illustrates sequential forward selection using the GPR (Fig. 5a), SVR (Fig. 5b) and RF (Fig. 5c) 
models. Of these three ML models, RF achieves the highest R2 and lowest RMSE with the fewest key features 
(only 4 to 5 features), after which both values plateau, indicating minimal impact on the prediction of durability 
in the event of creep failure life. The summary of results shown in Fig. 5 also demonstrates how the significant 
impact and critical importance of feature selection on performance before training and testing the ML model.

SLAJ creep strain, SLAJ creep stress, UTS, E, A followed by G, ν, and USS, are identified as the most 
important features, highlighting the dominance of mechanical and geometrical properties over other factors, 
such as environmental influences (RH, testing temperature), in determining the load-carrying capacity of SLAJs. 
According to the analysis, the influence of the adhesive layer thickness t is relatively insignificant, which may 
seem counterintuitive. However, it should be noted that the thickness ranges of adhesives (see Table 2) used in 
the model construction are relatively small.

In summary, the five most important input features used in the analysis to train ML models are creep strain 
of SLAJ, creep stress of SLAJ, ultimate tensile strength of adhesive (UTS), Young’s modulus (E) and adhesive 
area (A). The other six features - shear modulus of the adhesive (G), Poisson’s ratio (ν,) ultimate shear strength 
of SLAJ (USS), relative humidity (RH), testing temperature (T), and adhesive thickness (t) - are considered less 
important for model prediction.

Furthermore, it should be noted that our intention is not to diminish the importance of features beyond these 
five key ones but rather to identify trends within the specific scope of our study while considering the correlations 
among all features. Additionally, it is important to emphasize the interdependence of all traits and acknowledge 
that the process under study cannot be simplified into straightforward cause and effect relationships. Instead, it is 
essential to determine which factors have the most significant impact within our experimental framework, while 
recognizing that these findings may not fully capture the broader complexity of the underlying relationships.

Analysis of model prediction results
For the ML algorithms analyzed (lasso and ridge regression, GPR, SVR, DT, and RF), their performance in 
capturing complex nonlinear relationships between multiple variables and SLAJ durability under creep 
conditions was evaluated.

Figure 6 presents performance metrics, including R2 and RMSE, for all these ML techniques. As previously 
mentioned, generalizability, which is critical in ML, is assessed using 5-fold cross-validation metrics for the 
analyses performed.

According to the study, the RF model outperforms other algorithms by achieving the lowest RMSE and the 
highest R2 values (see Fig. 6f). This demonstrates its enhanced ability to capture complex nonlinear relationships 
with creep failure life. As conjectured, the performance of ridge and lasso models is inferior to other ML models 
because they are linear and do not account for nonlinear relationships in creep failure life (see Fig. 6a, b). As 
you can see in Fig. 6c, d, GPR with a Radial Basis Function kernel achieves higher accuracy than SVR with a 
polynomial kernel. Additionally, the DT model tends to overfit resulting in decreased accuracy. In summary, RF, 
as an ensemble technique, outperforms models such as DT, SVR, and GPR, as demonstrated in Fig. 6. Therefore, 
RF appears to be the most effective method for predicting the durability of creep failure life in single-lap adhesive 
joints.

Figures 7 and 8 present parity plots comparing the predicted and actual creep failure life of adhesive-
bonded SLJs on a logarithmic [Log] scale and an actual time scale [hr]. The RF model, utilizing five significant 
input features, is employed for this comparison. Data points aligning with the 45◦ line, as shown in Figs.  7 
and 8, indicate accuracy and are further supported by the low RMSE values observed in both the training and 
testing datasets. The data points, categorized by the ultimate strength of SLAJ, exhibit remarkable consistency 
across different ultimate strength levels. Most of the predicted data falls within the 2-factor standard deviation, 
confirming the accuracy and stability of the RF model, even for long-term creep data exceeding 100 h. These 
findings validate the RF model’s satisfactory predictive accuracy and adaptability for estimating creep failure life.

Validation of ML model using experimental studies
To confirm the validity of the analyses conducted using ML, an experimental study was carried out. The six creep 
tests were conducted using a proprietary creep machine in the laboratory of the Gdańsk University of Technology 
(Figs. 9, 10). Prior to the creep tests, the average ultimate strength of the bonded joints (three samples) was 
examined for the tested adhesive (Zwick Z400). The obtained value of ultimate strength of SLAJ served as a 
reference and was regarded as the maximum load that each joint could withstand. The selected load levels for 
creep tests where of about 80% of ultimate strength of SLAJ. The specimens were constructed from aluminum 
alloy (6060 T6) and adhesively bonded using 3M Scotch-Weld DP490 adhesive. The important features like 
ultimate strength of SLAJ (USS), ultimate tensile strength of adhesive (UTS), E, G (value was determined from 
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the relationship G = E/[2(1 + ν)]), ν, creep strain of SLAJ, creep stress of SLAJ, testing temperature, relative 
humidity, and geometrical parameters were determined experimentally. These values are shown in Table 3.

The experiments conducted enabled the validation of the proposed method for predicting the creep life of 
the tested bonded joint. The results of this comparison are shown in Table 3. As observed for the tested samples, 
the results obtained from the computer program show an excellent agreement of 3.2%, with an absolute error of 
only 0.07 h, which corresponds to a difference of 4.2 min. This gives some grounds for a positive assessment of 

Figure 5.  R2 and RMSE variations in proportion to the quantity of input features: (a) Gaussian process 
regression model, (b) support vector regression model, and (c) random forest model.
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the proposed creep life prediction method. Nevertheless, in the authors’ opinion, the proposed algorithm still 
requires more training data, especially for long-term trials.

Conclusions
In summary, this research establishes a machine learning-based framework to accurately estimate the creep 
failure life of adhesive-bonded single-lap joints. The study primarily focuses on the role of mechanical properties 

Figure 6.  Performance metrics (R2 and RMSE) comparison of six distinct ML: (a) Lasso regression, (b) ridge 
regression, (c) GPR, (d) SVR, (e) DT, and (f) RF algorithms utilizing 5-fold cross-validation.
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in predicting the creep life of such joints. The developed feature screening method effectively identifies important 
attributes and reduces model complexity. This approach facilitates the identification of multiple significant 
factors that influence creep properties without extensive laboratory analysis. Incorporating additional features 
that affect creep life behavior into the dataset could further enhance the predictive performance of the creep 
failure life of adhesive-bonded SLJs. The primary conclusions can be formulate as follows:

•	 The data, gathered from multiple research papers, exhibited a very high standard deviation and a highly 
skewed distribution, attributed to the diversity of materials and test conditions used in compiling these val-

Figure 6.  (continued)
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ues. While this variability enables the representation of a broad spectrum of adhesive behaviors, it also poses 
challenges in developing highly accurate predictive models. Using unprocessed data directly in model con-
struction could compromise prediction accuracy. To address this issue, a data normalization process was 
implemented to enhance modeling accuracy and facilitate data distribution analysis. Specifically, normaliza-
tion was applied, transforming each variable into a range between 0 and 1 to ensure that no single variable 
dominated the model learning process. This approach also reduced the risk of algorithms converging on local 
minima. Comparative analyses of raw and normalized data demonstrated a significant improvement in model 

Figure 7.  RF predictions for (a) training and (b) testing creep failure life on a logarithmic scale [Log].
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accuracy for the normalized dataset, underscoring the importance of data preprocessing in achieving more 
reliable predictions. Nevertheless, the authors acknowledge that the normalization process may have intro-
duced certain limitations, such as potential distortions in the relationships between variables, which could 
affect the interpretability of the results. Additionally, it should be noted that the dataset does not represent 
the full population of available structural adhesives due to constraints in the availability of literature data 
and discrepancies in testing standards, which hinder complete homogenization of the results. The lack of a 
uniform measurement methodology in the literature may also have contributed to minor inaccuracies in the 

Figure 8.  RF predictions for (a) training and (b) testing creep failure life on an actual scale [hr].
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Abbreviation Description Min. Max. Mean SD

USS [MPa] Ultimate shear strength of SLAJ 11.40 11.85 11.65 0.230

UTS [MPa] Ultimate tensile strength of adhesive 32.02 32.12 32.06 0.056

E [MPa] Young’s modulus of adhesive 1700 1743 1715 19.910

G [MPa] Shear modulus of adhesive 625 622.5 621.4 9.850

ν [-] Poisson’s ratio of adhesive 0.36 0.40 0.38 0.010

Creep strain [-] Creep strain of SLAJ 0.00018 0.002 0.0011 0.0006

Creep stress [MPa] Creep stress of SLAJ 10.09 11.45 10.53 0.044

Temperature [◦C] Testing temperature 22 24 23 0.830

RH [%] Relative humidity 45 60 55 5.250

t [mm] Thickness of adhesive 1.19 1.23 1.21 0.020

A [mm2] Area of adhesive 264.50 300.00 288.45 10.55

Actual creep failure life [hr] Time from creep to failure 0.04 15.69 2.17 5.47

Predict creep failure life [hr] Time from creep to failure 0.72 7.40 2.24 2.89

Error Relative error [%] 3.2

Absolute error [hr] 0.07

Table 3.  Experimental values of the selected features.

 

Figure 10.  Creep test stand - the sample is subjected to a load of 3.0 kN (80% of failure load).

 

Figure 9.  Shape and dimensions of the single-lap joints.
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presented data. The authors are aware of these limitations and encourage cautious interpretation of the results, 
particularly when considering practical applications,

•	 Feature selection techniques and correlation analysis were employed to identify important features. Among 
eleven input features, five - including creep strain of SLAJ, creep stress of SLAJ, UTS of adhesive, Young 
modulus, and area of adhesive - were prioritized based on their importance for training the Random Forest 
model. The model trained with these five features achieved accuracy comparable to that of the model trained 
with all eleven input variables, underscoring the value of correlation analysis. The results from the correlation 
coefficient analysis revealed significant correlations between all features,

•	 Furthermore, it was found that the accuracy of the predictions made in this study is not significantly affected 
by characteristics linked to durability effects, such as test temperature and relative humidity. This is because 
the study primarily focuses on how mechanical parameters influence the prediction of creep failure life, in-
dependent of durability factors that might also be relevant. This demonstrates the effectiveness of the feature 
preprocessing used in this investigation,

•	 Among all the models trained using various machine learning techniques - including lasso, ridge regression, 
SVR, GPR, DT, and RF - the RF model, which utilized five essential features, made the most accurate predic-
tions. The prediction accuracy of the RF model, which targets creep failure life, was assessed using 5 k-fold 
cross-validation, a critical method in machine learning. For the six models that exhibited excellent predictive 
ability, the mean R2 value was calculated. Consequently, the RF model was found to have the most effective 
impact on predicting creep failure life among all the regression models. Furthermore, the model trained with 
creep failure life as the target feature demonstrated the best stability and accuracy.In conclusion, the current 
study successfully demonstrated the high efficiency and viability of integrating ML with knowledge of creep 
to predict the creep failure life of adhesive-bonded single-lap joints. It should be noted that proposed ML pro-
gram code could be served as a useful tool for predicting creep failure life based on the mechanical character-
istics of adhesive-bonded single-lap joints, but it has not yet fully elucidated the complex creep mechanisms 
of these joints under severe conditions that affect their longevity. Consequently, there is still considerable 
research to be done on the creep properties of adhesive-bonded single-lap joints under severe conditions. 
In future studies, one could explore the potential of combining clustering methods and correlation analysis 
in local modeling to predict properties alongside additional target features influenced by durability effects. 
Undoubtedly, further research is needed to investigate the effects of additional parameters, including extreme 
environmental factors over an extended period, on the creep behavior of bonded joints. Ultimately, address-
ing these challenges will not only refine predictive models but also enhance our understanding of the intricate 
behavior of adhesive-bonded joints, paving the way for more durable and reliable structural applications.

Data Availability
Additional data on which this paper has been developed can be found in the supplementary information files 
at: ​h​t​t​p​s​:​​​/​​/​c​l​o​u​​d​.​w​i​l​i​​s​.​​p​g​​.​e​​d​u​​.​​p​l​/​i​n​​​d​e​x​​.​p​​​h​p​/​s​/​8​​b​M​N​d​n​M​W​k​o​d​t​w​j​p​. This data can be shared as a part of the ​p​u​b​
l​i​c​a​t​i​o​n of our paper.
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