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Abstract 

Treatment of municipal wastewater to meet the stringent effluent quality standards is an 

energy-intensive process and the main contributor to the costs of wastewater treatment plants 

(WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and 

operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, 

and climate-based parameters on the daily consumption of EC by East Melbourne WWTP was 

investigated based on the data collected over six years  (2014-2019).  Data engineering methods 

were applied to combine features from different resources. To this end, four various feature 

selection (FS) algorithms were used to reveal the relations among those variables and to select 

the most relevant variables for training the machine learning (ML) models. Further, the 

application of artificial neural networks (ANN) and two decision tree algorithms of Gradient 

Boosting Machine (GBM), and Random Forest (RF) were studied to predict EC records 

followed by a 95% confidence interval assessment. Results of FS algorithms revealed that total 

nitrogen, chemical oxygen demand (COD), and inflow-flow had the highest impact on WWTP 

energy consumption. Moreover, GBM had the best performance prediction among all other 
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regression algorithms. 95% of confidence interval showed a reasonable prediction error band 

(±68 𝑀𝑊ℎ/𝐷𝑎𝑦). 

Keywords: Machine learning; energy consumption; power-grid prediction; WWTP; feature 

selection; wastewater characteristics 

1 Introduction   

Recent developments in data science have provided the opportunity to predict prerequisite 

phenomena to improve operations, energy-saving, and costs reduction. The appropriate 

wastewater collection, treatment, and safe discharge from WWTPs are important issues for 

protecting the environment and public health, requiring a significant amount of 

energy  (Hernández-Chover et al., 2018; Molinos-Senante et al., 2015). WWTPs collect raw 

sewage from the sewer networks and use different operational unit processes to remove 

pollutants to meet stringent effluent standards for reuse or discharge of wastewater (Newhart 

et al., 2019).  

The energy is not only used inside WWTPs (like reactors, aeration supply, and electricity for 

pump devices), but also used for transportation, and production of different chemicals used in 

treatment processes (Longo et al., 2016), and energy consumption (EC)  can be accounted up 

to the  48% of the WWTP operation cost (Wang et al., 2020). Hence, forecasting of EC in the 

WWTPs can be one of the fundamental subjects for obtaining sustainable development, power 

management, improved decision-making, monitoring various operational functions, and 

environmental protection (Ahmad and Chen, 2018). 

Long-term prediction of EC in WWTPs provides a better understanding of required energy for 

various operational strategies, which eventually can lead to the minimization of the energy. It 

can also allow the wastewater practitioners to know which form of energy is mainly used and 
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try to change the consumption pattern (Torregrossa et al., 2016). Different variables, primarily 

caused by the aeration processes in activated sludge, wastewater quality, weather condition, 

and operational circumstances, influence the amount of energy consumed in WWTPs which 

makes the forecasting of EC in WWTPs, a complex task (De Gussem et al., 2014; Panepinto 

et al., 2016).  

Feature selection is a method for investigating the effect and importance of independent factors 

on the dependent variable, and these methods are used for the selection of the best input data 

to enhance prediction accuracy (Bagherzadeh et al., 2021; Kazemi et al., 2021). Artificial 

intelligence (AI) is used in a variety of fields to predict natural and artificial processes. As a 

subset of AI, Machine Learning (ML) is the method of recognizing a specific pattern giving 

the required data for prediction or classification (Géron, 2019).  

ML techniques have recently grown in popularity in many fields such as wastewater 

components prediction and optimization, owing to their high accuracy without requiring a 

detailed understanding of the underlying mechanisms which is needed for building mechanistic 

models (Picos-Benítez et al., 2020; Zhao et al., 2020). In addition, in many cases, such 

understanding at the level required for accurate modeling is not available, thus making data-

driven approaches using machine learning is preferable. 

Some studies have been recently published on WWTPs energy consumption modeling and 

prediction with different statistical and ML algorithms. For instance, Żyłka et al. (2020) 

evaluated an application for the least square linear regression model for electricity consumption 

forecasting for a Polish dairy WWTP which caused optimization of the energy usage. Also, the 

impact of the air temperature and biological load as effective parameters on EC was observed. 

Yang et al. developed a regression model for WWTPs annual EC under different influent 
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conditions. It was reported that influent flow rate and COD concentration are two main 

correlated features with EC of bioreactors (Yang et al., 2020).  

The weather-based cluster analysis of historical influent data coupled with the different 

aeration strategies was implemented by (Borzooei et al., 2020) to optimize the EC of a large-

scale WWTP in Italy. Furthermore, an EC model was proposed using ANN in WWTP with 

considering environmental and biological characteristics which reported an application of 

ANN model developed based on environmental parameters and wastewater characteristics in a 

WWTP (Oulebsir et al., 2020). Ahmad and Chen presented four different ML forecasting 

models for the EC requirement of pumps using in the water source sector, and environmental 

and power usage data of the water source pumps were used as input data on a weekly and 

monthly basis (Ahmad and Chen, 2018). Energy consumption based on a weather-based dataset 

in Egypt with a hybrid method (random vector functional link and artificial ecosystem-based 

optimization) was predicted (Essa et al., 2020). Yu et al. estimated the EC of WWTP using 

Bayesian semi-parametric quantile regression. Wastewater parameters such as BOD, COD, pH, 

and total nitrogen (TN) were input parameters to predict the EC, and correlation analysis results 

showed the highest relationship between the target with COD (0.96) and BOD (0.86), 

respectively (Yu et al., 2019).  

In this study, the goal is to predict the long-term daily EC of the Melbourne East WWTP with 

four ML algorithms by evaluating the effectiveness and importance of various parameters 

(time, climate, hydraulic flow, and wastewater characteristics) on the target to enhance the 

performance. Until now, just a few studies have investigated the forecasting of EC in the 

WWTP using ML technologies, and to our best of knowledge, the combination of wastewater 

characteristics and climate conditions for a full-scale WWTP EC prediction has not been 

studied yet. Furthermore, applying the GBM for this aim is another novelty of this work. 
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Moreover, obtained results would be useful for WWTPs across the world for operational 

monitoring, electricity consumption management, and prediction toward the global sustainable 

development policy. 

2 Methodology  

2.1 Case study information  

Melbourne city has two main WWTPs, including Western Treatment Plant (WTP) and Eastern 

Treatment Plant (ETP), which are situated in the suburbs of Werribee and Bangholme, 

Melbourne, respectively. Both WWTPs are operated by Melbourne Water. The ETP was built 

to reduce the pressure on the western WWTP of Melbourne to meet the needs of the south-

eastern growing population. ETP size is almost one-tenth the size of the western treatment plant 

(WTP) of Melbourne, but it treats nearly half of Melbourne sewage (2.5 million householders) 

(Melbourne Water, 2021). Around 330 million liters of sewage per day from the southeastern 

suburbs of Melbourne flow through the trunk sewerage network to the ETP and turns into class 

A recycled water. This plant consists of a mechanical plant, tanks, effluent basins, sludge 

drying pans, and holding areas for dried sludge, as shown in Figure 1. The treatment procedure 

starts with physical cleaning of raw wastewater such as removing debris, separating large 

particles, and grit filtering, then moving further for the biological treatment section. 

 

Figure 1.The Eastern Treatment Plant (ETP) of Melbourne (Melbourne Water, 2021) 
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The influent composition data was gathered at various time intervals using continuous sensors 

and quarterly/daily lab reports. The standard of sampling, treating, and effluent management 

of ETP follows the national water quality management strategy (National water quality, 1997).  

 

2.2 Data collection  

A data set consisting of 1000 records (almost 6 years between 2014-2019) was collected from 

the Melbourne water (open) database.  Under the Victoria Government’s open data policy this 

data can be accessed used and shared by anyone (Melbourne water database, 2021). The total 

daily electricity consumption data was collected via revenue quality meters with a cycle of 15 

minutes and represented in a daily form. The wastewater characteristics were recorded by 

sampling and sensors. Furthermore, climate reports were collected from the Melbourne airport 

weather station (Melbourne airport weather station, 2021), which is the nearest weather station 

to the ETP. To join the data, the hourly power consumption was replaced by the average daily 

power consumption with the corresponding date. Then, the climate table was obtained by web 

scraping methods (with BeautifulSoup python library). As there are many unfilled rows in 

biology data (lack of sampling due to holidays and weekends), all six datasets were joined with 

an inner-joint operation on the column of the record date. In the end, several records with Null 

values, very low power consumption (near zero), extremely high consumptions, irrelevant 

feature values, and outlier data values (data point that differs significantly from other 

observations) were removed. The number of removed records was less than 5% of the dataset.  

The overall dataset consists of daily total grid power consumption, Ammonia (NH4-N), total 

nitrogen (TN), biological oxygen demand (BOD), chemical oxygen demand (COD), average 

Temperature (Tavg), Maximum temperature (Tmax), Minimum temperature (Tmin), atmospheric 

pressure (AP), average relative humidity (H), total rainfall and/or snowmelt (Pr), average 
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visibility(VIS), average wind speed (WSavg), and Maximum wind speed (WSmax), The dataset 

was split into a training set which comprised of the, first 48 months (75%) of the selected data 

and an unseen test set comprising of the subsequent 18 months (25%) of the data. Furthermore, 

as there are many features in the dataset, comprehensive feature engineering was done to 

remove the redundant variables and train the ML models with the best subset of variables 

(Julián Luengo et al., 2020; Ranjan et al., 2021). 

To perform the calculations, Python 3.8 programming language via the Anaconda platform 

(Jupyter notebook), and libraries such as Pandas (data engineering), Scikit-Learn for FS, and 

ML models, MatplotLib, and Seaborn for visualization were implemented. 

2.3 Feature selection (FS) 

Efficiently decreasing the input data dimensions helps to simplify the model and obtain better 

accuracy. FS methods aim to score the independent variables based on specific criteria and 

introduce the best subset of features (Luíza da Costa et al., 2021). In this study, mutual 

information (MI) (Gao and Wu, 2020; Gonzalez-Lopez et al., 2020), Pearson correlation (PC) 

(Michalak and Kwasnicka, 2006), backward elimination (BE) (Fernando Jimeneza et al., 

2020), and RF (Masmoudi et al., 2020) were used as FS methods. More details about each 

method can be found in the supplementary information (SI). 

 

2.4 Modeling approaches  

2.4.1 Neural networks (ANN, RNN-LSTM) 

In the simplest format of neural networks, each neuron in each layer is fully connected with all 

neurons of the previous layer and the next layer, which is called ANN. This type of network 

architecture usually consists of three layers: input, hidden, and output. Mostly, the size of the 
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input layer is equal to the number of independent input variables. Similarly, the output layer 

has the number of neurons equal to some dependent features (target features). With the 

increasing complexity of the model (dimensionality), the hidden layer becomes larger and more 

complicated. Selecting the size and number of hidden layers is still challenging and requires a 

trial and error method to obtain the optimal hyper-parameters (P. Raut and A. Dani, 2020; 

Tosun et al., 2016). 

Similar to ANN, the Recurrent neural network (RNN) is a sequence of neurons. RNNs can 

utilize their internal memory to process input data with variable lengths. A large number of 

RNN neurons lead to the issue of vanishing gradient. The Long Short-Term Memory (LSTM) 

network was suggested to solve the problem of vanishing gradient by incorporating the data-

dependent controls to the RNN unit. Also, LSTM can learn the short-range relations between 

features (Sherstinsky, 2020). 

2.4.2 Decision tree (RF, GBM) 

Utilizing a combination of algorithms to increase prediction accuracy is called ensemble 

learning. Bootstrap aggregation is a method for combining the result of different algorithms in 

an ensemble technique (Sharafati et al., 2020). RF generates many decision trees (a forest) 

based on random subsampling of the dataset, and then it aggregates the results of trees to predict 

the output value (Lakshmanaprabu et al., 2019). Similarly, GBM uses the decision tree 

algorithms but with a different strategy for generating the forest. GBM creates a new tree to 

decrease the error of estimation by considering the target value. As it adds more trees, the 

prediction error shrinks (Natekin and Knoll, 2013). 

In this study, four ML algorithms were employed. The best hyper-parameters were selected for 

each type of model through trial and error on the training dataset (Table 1). 
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Table 1 

Hyperparameters for each model 

Model Parameter Value 

GBM  

Number of estimators 3000 

Learning rate 0.001 

Min sample leaf 20 

Min sample split 30 

Max depth 15 

RF 

Number of estimators 2000 

Min sample leaf 5 

Min sample split 5 

Max depth 30 

Max features Auto 

ANN 

  

Input layer 10 

Hidden layer 1 (Relue) 10 

Hidden layer 2 (Relue) 10 

Hidden layer 3 (Relue) 4 

Output layer 1 

Loss MAE 

Optimizer Adam 

RNN-LSTM  

Input layer (None,10,1) 

Hidden layer 1 (LSTM) 10 

Hidden layer 2 (LSTM) 10 

Output layer 1 

Loss MSE 

Optimizer Adam 

 

2.5 Model construction 

As shown in Figure 2, the model construction was as follows: After joining datasets from 

different sources, a comprehensive set of data engineering such as removing outliers, analyzing 

multi-collinearity, normalization, and FS was performed as described in section 2.2. Then, four 

different ML algorithms (ANN, LSTM, RF, GBM) were trained to predict total grid power 

consumption. Finally, the accuracy of each model was calculated based on model metrics to 

report the best model. 
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Figure 2. Modeling and prediction procedure construction  
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2.6 Model performance evaluation 

The performance of the model determines the model's goodness. In this study, Root means 

square error (RMSE) (Eq.1), Mean absolute error (MAE) (Eq.2), and Mean square logarithmic 

error (MSLE) (Eq.3) (Bhagat et al., 2021; Camacho et al., 2020) were calculated. MSLE 

indicates the relative difference between actual and predicted values while treating large and 

small errors differently. It generates a percentage difference which is more meaningful in the 

case of large numbers. Also, it penalizes underestimated values more than overestimated ones. 

Coefficient of determination (R2) was used to measure the goodness-of-fit of a model that 

considers the changes in the target variable related to the features with a linear relationship. A 

model with accurate prediction will possess higher values (up to 1.0) of R2 (Rosenthal, 2011; 

Warner, 2013). 

MSE =
1

n
 ∑ (ŷi − 𝑦i)

2n
i=1  ;  RMSE =  √MSE                                          (1) 

MAE =
1

n
∑ |ŷi − 𝑦i|

n
i=1                                                (2) 

MSLE =
1

n
∑ (log𝑒(1 + 𝑦i) − log𝑒(1 + �̂�i))2n

i=1                (3) 

𝑅2 = 1 −   
𝑅𝑆𝑆

𝑇𝑆𝑆
            (4) 

𝐽2 =   
𝑅𝑀𝑆𝐸𝑡𝑒𝑠𝑡

2

𝑅𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛
2             (5) 

Where 𝑖 = 1,2, . . 𝑛  is the number of observations, and 𝑛  is the total number of records. 

Considering �̂�𝑖 for model output (prediction) and 𝑦𝑖 as real values. For Eq. 4, 𝑅𝑆𝑆 is the sum 

of squares of residuals, and 𝑇𝑆𝑆 is total sum of squares. 

After finding the best model, the confidence interval (𝐶𝐼) for predicted values will be calculated 

with Eq. 6, where �̅�  is the sample mean,  𝑧  is confidence level value, 𝜎  is the standard 
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deviation, and 𝑛 is the total number of observations. As there is a large number of observations 

and the error distribution is approximately normal (as will be seen in Figure 7), the z-score was 

used to determine the CI. 

𝐶𝐼 = �̅� ± 𝑧
𝜎

√𝑛
          (6) 

3 Results and discussion  

3.1 Data - Statistical information 

A brief description of elementary statistical properties is given in Table 2 which shows all the 

features of the joined dataset. Total Grid Consumption is the dependent variable (prediction 

target), and the rest are independent variables.  
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Table 2 

 Statistical description of the data set  

Parameters (Abbreviation) Unit Max Mean Min SD 

Average Inflow (Qin) m3/s 19 4.5 2.6 1.4 

Average Outflow (Qout) m3/s 7.9 3.9 0.1 1.2 

Energy Consumption (Ec) MWh 398 275 116 44 

Ammonia (NH4-N) mg/L 93 39 13 7 

Biological Oxygen Demand (BOD) mg/L 850 382 140 86 

Chemical Oxygen Demand (COD) mg/L 1700 846 360 145 

Total Nitrogen (TN) mg/L 92 62 40 3.6 

Average Temperature (Tavg)   ֯ C 35.5 15 0 5.4 

Maximum temperature (Tmax)   ֯ C 43.5 20.5 0 7.1 

Minimum temperature (Tmin)   ֯ C 28 10 -2 4.7 

Atmospheric pressure (AP) (hPa) 1022 3.7 0 61 

Average humidity (H) % 97 63 0 14 

Total rainfall and / or snowmelt (Pr) mm 18 0.2 0 1.3 

Average visibility (VIS) Km 512 9 0 16 

Average wind speed (WSavg) Km/h 49 19 0 7.1 

Maximum wind speed (WSmax) Km/h 83.5 35.4 0 11.6 

Year (year) - 2019 - 2014 - 

Month (month) - 12 - 1 - 

Day (day) - 31 - 1 - 

 

3.2 Summary of the feature selection procedure 

The main objective of FS methods was to reduce the number of input variables by removing 

non-informative and/or redundant predictors in a predictive model. To this end, two statistical-
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based, as well as two intrinsic and wrapper methods, were implemented in the FS step. Pearson 

correlation and Mutual information were used for numerical and categorical variables to 

measure dependence between variables of the dataset. Further, the RF algorithm was used to 

describe the contribution of each feature in the prediction of the target values. To facilitate the 

comparison among different methods, calculated scores were presented as a percentage by 

considering the maximum score as 100% (Figure 3).  

 

Figure 3. Feature selection scores for each group affecting on the target 

 

As shown in Figure 3, features are divided into four groups of Time, wastewater, climate, and 

Hydraulic parameters. In the first group (Time) all the FS methods indicated that the month is 

an important variable followed by the year. Melbourne Water has a constant development 

policy to improve the plant as the population of the city increases every year, explaining why 

annual power consumption changes. However, the total EC relation with month seems to be 

due to the seasonal and weather changes as there is a 0.22 correlation between the month and 

daily maximum temperature (Tmax) (See SI, Figure S2). Day, month, and year can be considered 

as a time variable with different levels of smoothing. Year, with the highest smoothing, will 
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have reduced sensitivity to daily and seasonal variations since for the same year, the daily 

energy consumption will differ according to seasons while the value of the year is the same. 

Furthermore, the energy consumption on a particular day of the year can vary from year to 

year. On the other hand, the day is the time variable with the lowest level of smoothing. In this 

case, days within a season can vary significantly from year to year in addition to seasonal 

impacts varying from year to year. Thus a low level of time smoothing could lead to random 

fluctuations obfuscating the time correlation of EC. The data and analysis presented here 

indicate that amongst day, month and year, the level of smoothing afforded by using the month 

as the time variable leads to the best correlation with daily consumption. It may be possible to 

determine an optimal block of time (other than the day, month, or year) that provides maximum 

correlation with EC. Additionally,  although the month is indicating a higher correlation with 

EC compared to day and year, there might be other factors hidden in this feature (month) that 

we have not investigated yet. Further investigation and additional data would be required to 

obtain a more comprehensive understanding of the effect of time on EC. 

In the second group (wastewater parameters) TN and BOD received higher scores in correlation 

with the target (100% and 50%, respectively). Also as shown by the PC heat-map graph (Figure 

S2), there is a high correlation between COD and TN (0.68), as well as COD and BOD (0.52). 

Thus, it is reasonable to ignore COD. Wang et al (2020) found the relation between reduction 

of COD and ammonia with the energy consumption. In the third group (Climate parameters), 

variables such as Tavg, Tmax, Tmin, and H were more effective. Considering the correlation 

between these values H with Tavg (0.55), Tmin, with Tmax (0.76), and Tavg with Tmax (0.92) 

utilizing all of them for ML training can lower our model accuracy. As the correlation values 

of more than 0.8 are known for “very highly correlated” and more than 0.7 is known for “highly 

correlated” among Tavg, Tmax, and Tmin only one is chosen in the final subset to be used for the 
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training process (Yoon et al., 2013). Several climate features such as AP, Pr, VIS, WSavg, and 

WSmax are irrelevant to the target feature, and they should not be considered for training the 

model.  

In hydraulic parameters, average daily influent and effluent flowrates are highly correlated 

(0.54), and it is logical to select only one of them for the final subset of features. Considering 

all the FS methods used in this study, Qinf with a higher score (55%) was considered in the final 

subset. 

 

Figure 4. Sequential backward elimination 

The backward elimination result (Fig. 4) displays the maximum number of variables that can 

improve the model. It shows that with the first ten features, the model can reach the maximum 

possible accuracy, and adding more independent variables may lead to overfitting issues. 

Considering all these steps (FS results), and trial and error in training the models, the following 

input parameters were selected finally: Month, TN, NH4-N, BOD, Tmax, H, Pr, and Qinf, and 

the Energy Consumption as model output. This subset of features was used to train and test all 

the ML models during this study. 
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3.3 Energy consumption Prediction  

The forecasting accuracy of the trained models applied to test datasets was evaluated in terms 

of model metric functions, namely RMSE, MAE, MSLE, R2, and J2, which are summarized in 

Table 3. Comparing all the performance measures listed in Table 3, it can be seen that overall, 

GBM provides the best performance. Decision tree models (GBM and RF) had the lowest 

RMSE and MAE error values. Among all models, RF and RNN showed the highest and lowest 

J2, respectively, indicating the presence of overfitting issues in the RF model as well as poor 

calibration of RNN. Therefore, GBM was revealed as the best prediction model. 

Table 3 

 Evaluation of each forecasting approach by the model metrics  

Model Type Dataset RMSE MAE MSLE R2 J2 

GBM 
Test 33.9 26.9 0.02 0.18 

1.66 
Train 29.9 23.7 0.01 0.53 

RF 
Test 34.8 27.7 0.02 0.14 

4.16 
Train 24.3 18.6 0.01 0.69 

ANN 
Test 39.8 32.1 0.02 0.00 

1.45 
Train 36.3 28.1 0.02 0.31 

RNN 
Test 37.3 29.3 0.02 0.01 

0.76 
Train 39.9 31.8 0.02 0.17 

 

Furthermore, to better understand model metrics, a multi-feature representation was developed 

as shown in Fig.5. This figure indicates the prediction errors (MAE and MSE) after inverse 

scaling based on training set scale, in a scatter plot for various ML algorithms. The color bar 

shows the coefficient of determination (R2), and the shape of points defines the type of dataset 

(train or test). Overall, decision tree algorithms (GBM and RF) showed better performance than 

neural networks (ANN, and RNN). Although RF had the lowest errors on the training dataset 
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(MAE=18.6 and RMSE=24.3 MWh), the result on the test data set was found to be far from 

train data performance indicating overfitting.  GBM performed better for train and test data 

with MAE=23.8 MWh, RMSE=29.9 MWh, R2=0.53, and MAE=26.9 MWh, RMSE=33.9 

MWh, R2=0.18 for train and test data sets respectively. On the other hand, neural networks, 

including RNN and ANN, showed the least level of R2 (near zero) on the test dataset and 

substantial errors.  

 

Figure 5. Model performance by all algorithms 

 

Figure 6 illustrates model predictions versus real values for the period of the test dataset 

(1/1/2018 – 1/7/2019). The daily power consumption actual records are fluctuating 

dramatically almost every week. Although models have failed to capture every peak and valley 

of the target value, they could predict the trend and approach of the target curve relatively 

accurately.  

It is noticeable that the power consumption has a flat trend in the test set with a sudden drop in 

the mean consumption from around day 1250. The models capture this drop in the mean. A 
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close inspection of Figure 6(A) indicates that the model based on GBM is slightly better in 

capturing the finer fluctuations compared to other models. Another point to note is that the 

power consumption in the test set has relatively larger fluctuations around the mean than in the 

training set, which has much fewer sharp day-to-day fluctuations. One reason for the model 

not capturing these fluctuations could be due to not enough “examples” in the training set for 

the model to be trained to pick up these fluctuations.  

Wastewater plants undergo frequent changes with multiple upgrades to the equipment and 

process over the years. Also, requirements can change due to population changes. Since future 

changes that manifest in the test set data cannot be taken into account when building the 

machine learning models, degradation in model performance when applied to data from 

subsequent months can be expected.  Thus, some form of retraining the model will have to be 

developed to account for process and equipment changes to ensure the model can accurately 

predict power consumption. Due to a large number of records of the training dataset, and 

visualization limitations, Fig 6(B) only shows a part of the training dataset. 
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Figure 6. Total grid power consumption prediction of Melbourne east WWTP. A: unseen test dataset (1/1/2018 

– 1/7/2019), and B: a part of the training dataset (1/1/2014 – 1/1/2015),    

 

The residual histogram in Fig.7 confirms that the natural (Gaussian) distribution of errors. 

Errors are symmetrically distributed around a mean value of -2.2 MWh. Considering 95% CI, 

the lower limit is -68 MWh, and the higher limit is 64 MWh for GBM predictions on the test 

dataset as shown in Fig.7. 
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B 
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Figure 7. Residual distribution of GBM model with 95% confidence interval  

 

To better visualize the model prediction and 95% confidence interval, Figure 8 was developed, 

showing that the given CI covers the majority of the data points from the unseen test dataset to 

validate the model predictions by the GBM model. As there are a high number of observations 

and error distribution is normal, the z-score was used to determine the CI.  

 

Figure 8. Prediction result by GBM model with 95% confidence interval 

 [Predicted value -68 MWh/day , Predicted value +64 MWh/day]  

As summarized in Table 4, various ML models and benchmarking methods were used in 

previous studies to predict the power consumption in WWTPs and define correlated parameters 

on the target.  
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Table 4. Summary of different studies on the WWTPs power consumption prediction using ML methods 

Features 
Prediction 

Algorithm 

  Performance 

metric 
Remarks Dataset  References 

TN, TP, BOD, 

COD, T 
LSLR 

R2
Train=0.912 

 

Air temperature and biological 

load had effective parameters on 

energy consumption. Prediction 

performance was not evaluated 

using a separate test set. 

Features were collected from 3 

different points of the system consists 

of 95 series of measurements over 30 

month 

(Żyłka et al., 

2020) 

Qinf ,T, BOD, TN,  

RNN 

(GRU and 

LSTM) 

RMSE=509 

kWh/day, 

MAE=389.2  

The presented model can be used 

in optimization scenarios to 

provide data-driven solutions for 

regular WWTP activity. R2 

values were not provided. 

Training data were collected daily 

from 2010 till 2017 and one year 

(365) records were used as a test 

dataset  

(Cheng et 

al., 2020) 

pH, BOD, COD, 

SS, Chrom, TP, 

TN, NH3,  

 

Bayesian 

semi-

parametric 

quantile 

regression

. 

R2=N/A 

the highest relationship between 

the energy consumption with 

COD and BOD was observed. 

Regression analysis was done 

for 3 different energy 

consumption levels for 

investigating the effects of 

parameters on consumption. 

Energy prediction performance 

was not evaluated.  

Daily records, 363 samples (from 

December 2015 to December 2016) 

(Yu et al., 

2019) 

COD, BOD, SS, 

NH4, T, Flowrate   
DNN 

R2
Test =0.74 

RSR=0.33-0.52 

Pollution indicators are efficient 

estimators for the prediction and 

optimization of power 

consumption  

A total number of 318 records were 

used from 2006 till 2016. Two 

selection steps, which significantly 

reduced the number of data points, 

were used before model building and 

testing. The final number of data 

points used was not given.  

20% of the selected data points were 

used for testing the models 

utilizing key performance indicators 

of WWTP 

(Oulebsir et 

al., 2020) 

COD, BOD, TP, 

TN, Flowrate,  

ANN 

RF 

R2
Train =0.6-0.9 

R2
Test =0.4-0.8 

 

Increasing the number of 

neurons doesn’t necessarily 

improve the ANN models. In 

case of overfitting issues, RF 

had better results than ANN 

317 WWTPs using CAS technology, 

and located in northwest Europe. 

The test dataset (112 records) was 

selected randomly from the database. 

Models were built for predicting 

yearly energy consumption.  

(Torregrossa 

et al., 2018) 

 

Months, TN, 

NH4-N, BOD, 

Tmax, H, Pr, and 

Qinf 

GBM 

 RF 

ANN 

 RNN  

R2
train=0.53 

R2
test=0.18 

 

TN, ammonia, BOD, 

temperature, humidity, and 

influent flow were among the 

highest correlated parameters 

with energy consumption of ETP 

based on three FS methods. 

Nearly 1000 records of data from 

ETP Melbourne were collected after 

data engineering during the years 

(2014-2019). Dataset was a result of 

inner joining between weather, 

wastewater characteristics, and 

energy consumption parameters. 

Models were built for predicting daily 

energy consumption. 

This study 

Total Nitrogen(TN), Total Phosphorus (TP), Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), 

Temperature (T), List Square Linear Regression (LSLR), Chlorine (Cl), Suspended Solids (SS), RMSE-observations standard 

deviation ratio (RSR), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), 

Dense Neural Network (DNN), Gradient Boosting Machine (GBM), Random Forest (RF), Artificial Neural Network (ANN), 

Conventional Activated Sludge (CAS), Ammonia (NH4-N), Maximum Temperature (Tmax), Minimum Temperature (Tmin), 

Average relative humidity (H), Total rainfall and/or snowmelt  (Pr), Eastern Treatment Plant (ETP) 
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4 Conclusions 

In this study, at first, the importance and effectiveness of different characteristics like 

hydraulic, climate, time, and wastewater parameters were studied on the EC of  Melbourne east 

WWTP. Then, four ML algorithms were applied regarding the best-achieved input dataset to 

predict the power consumption forecasting. Results of the current study can be useful for 

decision-making and energy saving of WWTPs. By estimating of needed EC, the influential 

parameters can be better adjusted and cause savings in cost and energy by the operational 

systems. Furthermore, the following conclusions can be derived: 

• Melbourne east WWTP energy consumption positively relates to weather situations 

such as temperature (average, max, min) and humidity. 

• Precepetations, atmospheric pressure, and wind speed did not have considerable effects 

on the target. 

• TN, BOD, ammonia, daily temperature, humidity, and influent flow had the highest 

impact on the EC in Melbourne east WWTP. 

• GBM algorithm revealed the best performance for prediction among other algorithms 

showing its prediction power in non-linear irregular patterns. 

• A confidence interval study showed a reasonable error interval band (±68 𝑀𝑊ℎ/

𝐷𝑎𝑦), which can be used for further optimization of the ETP energy consumption. 
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Data available 

The merged data (wastewater characteristics and climate parameters) used in this paper is 

accessible at: https://data.mendeley.com/datasets/pprkvz3vbd/1 
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