
Introduction

Among the gaseous air pollutants, the so-called odorants 
(odorous substances) are of special importance. These 
compounds are characterized by odor nuisance. They 
deteriorate the quality of life of citizens inhabiting the 
areas adjacent to emission sources (Zhang et al. 2021). 
Odor-generating substances are volatile components of air 
having toxic properties, being detectable at relatively low 
concentrations and causing undesirable odor sensations 
(Cheng et al. 2019). This group includes volatile organic 
compounds (VOCs) and volatile inorganic compounds 
(VICs) (Zhang et al. 2010). Selection of the appropriate solid 
waste management methods (Pawnuk et al. 2022) or waste 
gas treatment technology is a complex process. Chemical 
composition and physical properties of a given gas stream, 
including gas flow rate, temperature, humidity, solubility 
and concentration of pollutants have to be taken into account 
(Schlegelmilch et al. 2005).

Biological methods are commonly and widely used for the 
removal of contaminants and gas deodorization (Rybarczyk 
2022). These methods use microorganisms to oxidize both 

volatile organic compounds (including odorants) and inorganic 
substances, mainly hydrogen sulfide and ammonia. This 
is possible thanks to heterotrophic microorganisms, which 
use the energy of chemical bonds of the absorbed organic 
compounds to sustain life processes, and autotrophs which, 
for the same purpose, convert the energy of such reactions as 
nitrification or decomposition of hydrogen sulfide to elemental 
sulfur (Wysocka et al. 2019).

The microbes used in biofiltration processes are 
characterized by good adaptability, therefore these processes 
can be applied to the purification of gas streams of diverse 
composition. However, certain limitations must be borne in 
mind. The removed pollutants must be biodegradable, occur 
in low concentrations, cannot be toxic for microorganisms 
and should be soluble in water (Schlegelmilch et al. 2005). 
Degradation of hydrophobic contaminants is also possible, 
but poses considerable problems, mainly due to mass transfer 
barrier from gas to liquid phase. However, biotrickling 
filtration of hydrophobic VOCs may be enhanced. This may 
be achieved, e.g., by modification of liquid phase by adding 
organic solvents (two-phase bioreactors) or surfactants, use of 
fungi, dedicated microbial consortia or novel packing materials, 
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introducing gas pre-treatment with, e.g., UV radiation as well 
as by mixing hydrophobic VOCs with hydrophilic ones (Miller 
et al. 2020, Rybarczyk et al. 2021, Cheng et al. 2016b, Wu et 
al. 2022). Compared to other deodorization methods, during 
biofiltration the pollutants are not only removed from the gas, 
but also inactivated and neutralized during biodegradation by 
microbes. As a result of biofiltration, no burdensome secondary 
wastes are generated (Chen et al. 2016).

Biofiltration processes as well as other deodorization 
methods should be monitored and controlled continuously. 
Various measurement techniques are used for this purpose, 
allowing for both quantitative and qualitative analysis of gas 
composition. Instrumental techniques are most commonly used 
with special regard to gas chromatography coupled with mass 
spectrometry (GC-MS) or flame ionization detector (GC-FID) 
(Giungato et al. 2018, Buliner et al. 2012). In recent years, 
a rapidly developing analytical technique, Multidimensional 
Gas Chromatography-Mass Spectrometry (MDGC-MS), has 
emerged to achieve even lower detection limits (Giungato et 
al. 2018). 

On the other hand, methods using matrices of non-
-selective gas sensors (so-called electronic noses) are becoming 
more and more popular. The research conducted in this area 
is quite intensive as the possibility of using these devices for 
continuous monitoring of odor quality has been observed 
(Munoz et al. 2010). Electronic noses belong to the group of 
analytical (instrumental) techniques included in the methods 
of odor quality analysis. Multidimensional signal from the 

matrix needs to be statistically analyzed. Principal Component 
Analysis (PCA) is often used for this purpose, but Multiple 
Linear Regression (MLR), Principal Component Regression 
(PCR) or Partial Least Squares Regression (PLSR) are also 
used however a little less frequently. The most complicated 
method of identifying the smell of gas mixture is the use of 
Artificial Neural Network – ANN (Sabilla et al. 2017 , Brattoli 
et al. 2011).

Contrary to chromatographic methods, electronic noses 
are much cheaper and allow for shorter analysis time. Thanks 
to easily replaceable modules, electronic noses may be adapted 
to different types of application. Table 1 shows the latest 
application of electronic noses and gas sensor array to control 
biofiltration gas treatment processes.

This paper presents the use of a gas sensor array to assess 
the effectiveness of the biotrickling filtration of air polluted 
with n-hexane and cyclohexane. These two compounds 
were selected due to their co-existence in atmospheric air in 
the vicinity of potential sources of odor emissions such as 
Municipal Solid Waste Treatment Plant, Municipal Landfills 
or Wastewater Treatment Plants (Fang et al. 2012, Zarra et 
al. 2014). Moreover, both are characterized by low olfactory 
thresholds (Nagata et al. 2003), which makes them easily 
perceptible to the human sense of smell and subsequently 
contributing significantly to the odor nuisance in a given 
area. The main objective of this study was to demonstrate 
the feasibility of sensor matrices as an alternative method for 
monitoring the efficiency of the biofiltration of VOCs mixture 

Table 1. Applications of electronic noses for monitoring of biofi ltration processes

Type 
of biofi lter

Compounds 
removed

Data 
analysis Process Control Ref.

BTF
n-hexane
acetone
toluene

MLR Electronic nose prototype with eight MOS sensors (Szulczyński et al. 
2018a)

BTF VOCs PCA
PLSR

Pen3 e-nose (Airsense Analytics GmbH, Germany) with an 
array of 10 diff erent MOS sensors

(Lopez et al. 
20011)

BTF cyclohexane MLR E-nose prototype with eight MOS sensors manufactured by 
Figaro Engineering Inc. (Mino, Osaka, Japan)

(Rybarczyk et al. 
2019)

BF VOCs
PCA
PLSR
ANN

E-nose (AromaScan A32S, Crewe, UK) with an array of 32 
conducting polymer sensors (Sohn et al. 2009)

BTF n-butanol
MLR
PCR
PLSR

The e-nose prototype with eight TGS MOS sensors 
manufactured by Figaro Inc.

(Szulczyński et al. 
2018b)

BTF α-piene PCA
Pen3 e-nose (Airsense Analytics GmbH, Germany) with 
an array of 10 diff erent MOS sensors and portable VOCs 
analyzer (MULTIRAE IR, PGM-54, USA)

(Cabeza et al. 
2013)

BTF hexane
ethanol MLR The prototype of an e-nose with eight sensors: Mini PID, 

2 electrochemical sensors and 5 MOS sensors
(Rybarczyk et al. 

2020)

BF
VOCs
Ammonia
H2S

N/A
Portable multi-Gas detector MultiRAE (RAE System Inc., 
San Jose, CA) with electrochemical, catalytic, infrared and 
photoionization (PID) sensors

(Rolewicz-Kalińska 
et al. 2021)

BTF n-butanol ANN
The e-nose prototype with eight chemical sensors: ION 
Science Mini PID and TGS MOS sensors manufactured by 
Figaro Inc.

(Szulczyński et al. 
2019)

BF VOCs PCA Portable E-nose PEN3.5 (Win Muster Airsense Analytics Inc., 
Schwerin, Germany) with 10 diff erent MOS sensors (Liang et al. 2020)
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using gas chromatography as a reference. The self-constructed 
matrix consisted of seven commercially available gas sensors, 
and two statistical techniques were used to calibrate it, which 
were Multiple Linear Regression (MLR) and Principal 
Component Regression (PCR). 

In this work, the matrix was calibrated and validated 
in relation to the chemical concentrations of individual 
compounds expressed in parts per million (ppm). The results 
obtained with the sensor array were compared with those 
obtained using gas chromatography with flame-ionization 
detector (GC-FID), trying to show that the results can be of 
a similar quality. Although gas sensor arrays are not yet widely 
used for monitoring deodorization processes, they show high 
application potential. Moreover, unlike gas chromatography, it 
is possible to use them for continuous monitoring of main odor 
features such as: odor concentration, hedonic tone and odor 
intensity. This requires the use of multidimensional statistical 
analysis and machine learning methods as well as sensory 
analysis (e.g. field olfactometry) in order to determine the 
odor interactions occurring in multicomponent odor mixtures 
of chemical compounds (Maurer et al. 2018). However, 
combination of all these elements and their simultaneous 
analysis using one device would save significant time and 
funds. 

Theoretical
Both Multiple Linear Regression (MLR) and Principal 
Component Regression (PCR) are statistical mathematical 
methods that allow for the determination of a linear relationship 
between the independent variables (sensor signals) and the 
dependent variable (chemical compound concentration). In the 
case of MLR, direct regression of the explanatory variables to 
the dependent variable is used, assuming that there is a linear 
relationship at all, independent variables are not correlated 
with each other and the variance of the residuals is constant 
and independent. The general formula for MLR is represented 
by Eq. (1):

 yi = α0 + α1S1 + α2S2 + ... + αiSi  (1)

where yi is the predicted variable, αi regression coefficients, 
Si explanatory variables, i number of independents variables, 
and α0 the intercept. The PCR technique is used for the same 
purpose, but for regression analysis it uses the so-called 
Principal Components (PCs) in place of the original attributions. 
This requires a multivariate reduction technique in the form 
of Principal Component Analysis (PCA), but it allows for the 
disentangling of the dataset and the elimination of variables 
with low impact on model improvement. Then in the next step, 
after creating the disparate variable matrix, the MLR model 
is fitted with the PCs as predictor variables. The dependent 
variable is computed in accordance with Eq. (2):

 yi = β0 + β1PC1 + β2PC2 + ... + βiPCi  (2)

where yi is the predicted variable, β1 regression coefficients, PCi 
principal components, i number of principal components, and 
β0 the intercept. As can be deduced, the main idea of PCR is to 
reduce the multidimensionality of the dataset, which decreases 

the chances of model overfitting, which is a common problem 
when using MLR. This is due to the fact that the coefficient of 
determination (R2), which informs how the dependent variable 
can be explained by the variation of independent variables 
increases as the number of predictors in the model is added. 
PCR reduces the number of predictors by assuming that fewer 
PCs represent most of the variability in the data set.

It should be noted that MLR and PCR are conventional 
statistical techniques whose main limitations are related to the 
assumptions of linearity, normality, independence of variables, 
single-pass approximation or dimensionality. If the considered 
data set meets these assumptions, there is no need to use more 
complex techniques. Another approach would require the 
use of machine learning including artificial neural networks 
(ANN), which may also be successfully used for prediction 
problems but are much more complicated. 

Experimental
Biofiltration unit
The gas mixture generation system consisted of two vials 
filled with the investigated chemical substances in a liquid 
form through which dried and purified air was passed with 
a constant flow rate controlled by mass flow controllers 
(MFC). As a result of bubbling, air bubbles are saturated with 
VOCs vapors. The concentration and flow of the gas mixture 
was controlled and regulated using MFC (Figure 1). Gaseous 
samples were taken at the inlet and the outlet of the BTF using 
TEDLAR foil bags and then immediately analyzed with the 
GC-FID and the gas sensor array.

The investigations were carried out in a biotrickling filter 
fabricated as a single-section Plexiglas column with an inner 
diameter (di) of 0.08 m. The biofilter was packed with round 
discs of polyurethane foam (Murano Feniks, Wejherowo, 
Poland, PPI: 10, porosity: 97%, bulk density: 25 kg m-3) 
and the total height of the packing (h) was equal to 0.68 m. 
The polyurethane discs were inoculated with peat-derived 
microorganisms during previously conducted biotrickling 
filtration process. In the mentioned process, a biotrickling 
filter was packed with alternate layers (sandwich-type) of 
a polyurethane foam discs and a commercially available 
mixture of peat and perlite (Compo Sana, Compo GmbH, 
Munster, Germany, porosity of dry material: 90%, porosity of 
wet material: 25–30%, bulk density 176 kg m-3) with ceramic 
Raschig rings (BROWIN, Łódź, Poland, porosity: 58%, bulk 
density: 946 kg m-3, material density: 2250 kg m-3). 

Such inoculum and packing materials were chosen for 
two main reasons. Firstly, peat is a well-established biological 
material to serve as a source of various microorganisms useful 
in biofiltration processes (Arnold et al. 1997, Chou and Shiu 
2011). Secondly, the proposed mode of polyurethane foam 
inoculation may be of practical application in the future, 
offering acceptable pressure drop during the inoculation 
phase (mixed packing with peat, perlite, ceramic rings and 
polyurethane foam discs) and stable process performance after 
removing the peat/perlite fraction. 

The biofilter bed was trickled periodically using a mineral 
salt medium consisting of Na2HPO4x2H2O, KH2PO4, NaCl 
and NH4Cl. Volumetric flow rate of trickling liquid (Vl) was 
0.2 dm3 min-1 and the trickling frequency (tf) was 0.5 min h-1. 
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Total volume of the biotrickling filter packing (V) was equal 
to 2.5 dm3. The effectiveness of the conducted air biofiltration 
deodorization was evaluated by calculating the values of 
removal efficiency (RE) and elimination capacity (EC) 
according to the relationship presented by Eq. (3) and (4). In 
addition, the effect of IL on gas stream purification efficiency 
was analyzed while keeping the empty bed resistance time 
(EBRT) constant.

  (3)

where Cin is the concentration of the chemical substance in the 
inlet stream expressed in ppm, Cout is the concentration of the 
chemical substance in the outlet stream expressed in ppm, and 
Q is a volumetric gas flow rate amounting to 2.5 dm3 min-1. 

  (4)

  (5)

  (6)

GC-FID analysis
Gas chromatography coupled with a flame-ionization detector 
(Varian CP-3800, Varian Analytical Instruments, USA) was 
used as a reference method in this study. The concentration 
of n-hexane and cyclohexane in gaseous samples was 
determined using a DB-624 column (Agilent Technologies, 
USA) and nitrogen as a carrier gas (3.5 ml min-1). The other 

parameters were as follows: injector temperature – 130°C, 
Oven temperature – 150°C, detector temperature – 250°C, split 
ratio – 10, and inject volume – 0.5 ml.

Electronic nose measurement
Gas sensors array development
The constructed gas sensor array consisted of seven 
commercially available gas sensors. Five of them were TGS 
Metal Oxide Semiconductor (MOS) sensors produced by 
Figaro Engineering Inc. (Mino, Osaka, Japan): TGS2600 (air 
contaminants), TGS2602 (VOCs and odorous gases), TGS2603 
(air contaminants), TGS823 (organic solvents vaporous) and 
TGS8100 (air contaminants). Moreover, one photo-ionization 
detector (PID-A12 for VOCs with ionization potentials <10.6 
eV) manufactured by Alphasense Metek (Great Notley, 
Braintree, United Kingdom) and a temperature and humidity 
sensor were placed in the measurement chamber because these 
parameters were expected to change significantly between 
the inlet and outlet streams, which undoubtedly affected 
the signals received from the matrix. All of the sensors are 
capable of detecting a wide range of volatile chemicals and 
have been selected so that their detection ranges correspond 
to the concentrations expected during the research. Sensors 
were placed in the separate gauge cell in order to provide an 
individual working environment for each of them. The sensor 
chambers were made of materials that do not adsorb pollutants 
(Polytetrafluoroethylene – PTFE) in order to avoid disturbances 
in consecutive measurements. Figure 2 presents the system 
used for the sensor analysis of collected gas samples.

Prior to analysis of each sample, the system was flushed with 
purified air from zero air generator (LAT LTD. Katowice, Poland) 
which caused the signals from the sensors to return to their initial 
values (sensors baseline). The three-way valve made it possible 
to switch between the reference track and the measurement track 
through which the analyzed sample was sucked into the sensor’s 

Fig. 1. Scheme of a biofi ltration unit
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chamber by a diaphragm pump (DP 0102-X1-0001, Nitto Kohki 
CO., LTD. Tokyo, Japan) with a constant flow rate (50 ml/min). 
All electronic connections have been made in accordance with 
the manufacturer’s recommendations and relevant product data 
sheets. Analog sensor signals were converted from a continuous 
form to the analytically useful discrete form using an analog-
-to-digital converter and saved on the computer. The voltage 
supplying the pump was controlled by pulse-width modulation 
module (PWM), which allows for the control of the rotational 
speed of the engine while clearly translating the samples flow 
rate through the system. This method of controlling the flow 
rate allowed for the application of the gas sensor array in the 
stop-flow mode. The sample flow time through the system was 
60 seconds and the stoppage time in the sensor’s chamber was 
40 seconds. The times of individual stages selected in this way 
ensured that all of the sensors used would achieve a steady 
(stable) state. 

Data analysis and calculations
In the case of MOS sensors, the presence of reducing gases 
increases the conductivity of the active layer (metal oxide) 
and the value on the transducer corresponds to voltage on the 
resistive divider formed by the precision thin film resistors. In 
such system, the relationship between the sensor signal and the 
concentration of a substance is presented by Eq. (7).

  (7)

where Si is sensor signal, U supply voltage, Rl reference 
resistance, and Rs sensor resistance. The reference resistances 
are constant values for a given sensor and have been selected 
in such a way as to ensure the correct operation of the sensors 

within a wide detection range. For PID sensor, the voltage 
dependence on gas concentration is linear, but the directional 
coefficient is strongly dependent on the type of gas. This means 
that it needs to be calibrated for each practical application. 

Data analysis and other calculations were accomplished 
using RStudio desktop (v.1.0.143) software. To perform 
mathematical operations, the signals from the installed sensors 
in the form of voltage values on the ADC converter were used. 
In the conducted research, two approaches were used to extract 
the signals from the sensor array. The first was to calculate 
the difference between the sensor baseline and the maximum 
signal value for a given analysis – Si (Eq. 8). Whereas the 
second reflected the relative signal values from the individual 
sensors – Sr,i (Eq. 9). 

  (8)

  (9)

where Smax,i is the maximum value of the signal in a given 
analysis after reaching steady state, and S0,i is sensor baseline 
determined for synthetic (zero) air. Based on the data set 
prepared in this way, the developed gas sensor matrix was 
calibrated using statistical models, which were Multiple Linear 
Regression (MLR) and Principal Component Regression 
(PCR). Gas calibration mixtures were prepared using the 
mixture generator system shown in Figure 1 after minor 
modifications. The vial of pure water was added to account 
for the effect of humidity on the gas sensor array signals. The 
modified gas mixture generator is shown in Figure 3. Validation 
of the prepared mathematical models was performed on real 
samples from the biofiltration air deodorization process.

Fig. 2. Diagram of a system used for the gas sensor array measurements

Fig. 3. Diagram of the gas calibration mixtures generator

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


90 D. Dobrzyniewski, B. Szulczyński, P. Rybarczyk, J. Gębicki

Results and discussion
In the first phase of the study, the developed gas sensor 
array had to be calibrated. For this purpose, the prepared gas 
mixtures were used, in which the concentration of n-hexane 
and cyclohexane ranged from 50 to 500 ppm. The quantitative 
analysis to determine the concentrations in individual mixtures 
was performed with the use of GC-FID and then they were 
correlated with the signals from the sensor matrix using MLR 
and PCR. The analysis of each sample was repeated three 
times. The equations of the obtained models along with the 
determination coefficients are outlined in Table 2. As can 
be seen, not all signals from the sensors were statistically 
important in the developed models. The models were iterated 
on the basis of the t-test (test statistic) which allowed us to 
reduce the probability that the obtained results were incidental.

In the case of the MLR model for cyclohexane, the signals 
from the TGS2602 and TGS2603 sensors in the form proposed 
by Eq. (8) and Eq. (9) turned out to be completely insignificant. 
A similar situation occurred for n-hexane, but this time the 

TGS823 sensor was completely excluded from the developed 
MLR model. Additionally, it is worth noting that temperature 
and humidity were statistically significant elements of each of 
the prepared models. 

Figure 4 presents calibration plots showing the 
relationship between the reference results obtained by the 
gas chromatography method and the predicted concentration 
values of individual substances calculated on the basis of 
the prepared models. For both substances, the PCR models 
are characterized by a smaller scatter of the predicted 
concentrations as compared to the chromatographic results, 
which is reflected by their higher coefficients of determination.

In the next step, the prepared models were validated by 
testing them on real samples from the air stream deodorization 
process conducted in a biotrickling filter. Figure 5 shows the 
influence of inlet loading (IL) on the air purification efficiency 
of cyclohexane and n-hexane vapors. The process was divided 
into three stages, each lasting ten days and characterized by 
a different IL while maintaining a constant empty bed resistance 
time (EBRT) of sixty seconds. This figure also presents the 

Table 2. Equations of the obtained models

Chemical 
Compound Model Equation R2

Cyclohexane

MLR C = –264.42 – 416.75 · S1 + 195.61 · S4 + 0.09 · Sr1 – 0.58 · Sr4 + 8.16 · Sr5 + 
106.71 · Sr6 + 3.30 · T + 2,14 · RH 0.963

PCR C = –124.87+ 1.59 · PC1 + 11.12 · PC1 – 11.59 · PC3 – 20.72 · PC4 = 7.37 · PC5 – 
2.64 · PC6 – 36.99 · PC7

0.989

n-hexane

MLR C = 217.85 – 201.52 · S1 – 828.16 · S2 + 224.71 · S3 + 138.79 · S5 + 129.05 · 
S6 + 16.44 · Sr2 – 560.12 · Sr6 – 4.63 · T + 6.47 · RH 0.932

PCR C = 145.63 + 39.01 · PC1 + 10.91 · PC2 – 19.356 · PC3 – 7,33 · PC4 – 43.95 · PC5 + 
20.41 · PC6 + 27.84 · PC7

0.990

Fig. 4. Gas sensor array calibration scatter plots

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted... 91

effectiveness of deodorization controlled by a gas sensor array 
and calculated on the basis of the proposed models.

For the first ten days of the process (stage I) the IL for 
n-hexane ranged from 19.87 to 24.36 g m-3 h-1 and then the 
highest removal efficiency was achieved for this substance 
which fluctuated between about 70–80%. In stage 2 and 
stage 3, there were increases in IL to values ranging from 
53.12–58.12 g m-3 h-1 and 82.11–87.34 g m-3 h-1, respectively. 
The periods of increases in IL corresponded to a decrease in 
the efficiency of removing n-hexane from the air stream. In 
the second stage, the highest RE value achieved was 59% and 
the lowest was equal to 51% while in the third stage these 
values were 41% and 29%, respectively. These corresponded 
to maximum EC value for n-hexane of about 40 g m-3 h-1. 
Similar relationships can be observed for the efficiency of air 
deodorization from cyclohexane vapors. In stage one, where 
the IL was the lowest (13.20–18.50 g m-3 h-1) the highest 
RE (61–71%) has been achieved. The second stage with the 
highest IL values (57.42–63.19 g m-3 h-1) corresponded to the 
lowest deodorization efficiency. When moving from stage II to 
stage III, the RE initially returned to the value of stage one, but 
higher IL values (28.74–36.48 g m-3 h-1) meant that after two 
days the RE stabilized at level of 42–51%. The highest EC value 
for cyclohexane was about 30 g m-3 h-1. Resembling patterns 
of decline in biofilter performance due to IL manipulation 
have already been observed in the literature (Yang et al. 2010, 
Vergara-Fernandez et al. 2018). The decrease in RE due to the 
increase in IL may be the result of a high input load of the VOC 

mixture. On the other hand, high IL can cause rapid biomass 
growth and lead to bed clogging and drainage phenomena, 
causing the biofilter performance to deteriorate.

It is worth noting that EC values for cyclohexane and 
n-hexane obtained in this work are similar to the results 
obtained in other studies. Elimination capacities for n-hexane 
when treated solely in biotrickling filters were noted in the 
range between about 12 to 45 g m-3 h-1, depending of the process 
condition (Cheng et al. 2016a, Yu et al. 2021). Salamanca 
et al. reported elimination capacity of cyclohexane of about 
38 g m-3 h-1 (Salamanca et al. 2017). In this work, these 
two VOCs were treated simultaneously and the differences 
between process performances are mainly due to different 
packing materials, the use of fungi, the use of peat as a source 
of inoculum as well as applied process parameters, especially 
gas flow rate and trickling pattern. 

The validity and desirability of using a gas sensor array 
to monitor the biofiltration process were confirmed during 
the conducted research. The results obtained in this way are 
comparable to the reference chromatographic outcomes 
(Figure 5). However, the selection of the optimal calibration 
model for the matrix from the point of view of the test performed 
remained a controversial issue. One of mathematical tools used 
to estimate model errors in predicting quantitative data and 
to assess its fit is to determine the Root Mean Square Error 
(RMSE). In data science, RMSE is treated as the normalized 
distance between vectors of predicted and actual values and 
is used as a standard statistical tool to serve as heuristics for 

Fig. 5.  Infl uence of IL on the biofi ltration effi  ciency for removing VOCs from the air stream
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training models and evaluating the usefulness and accuracy of 
the trained models. Theoretically, the lower the RMSE value, 
the better the models fit. However, it should be remembered 
that this is a relative concept and the specific application of 
the model, that is why, the unit in which RMSE is expressed 
and the phenomenon of overfitting must be taken into account 
when making an assessment. Table 3 shows the calculated 
RMSE values for the developed models, both at individual 
stages of the process and for its entire duration. 

PCR model for cyclohexane has a better fit to the reference 
chromatographic results than the MLR. At individual stages of 
the process, the differences in the resulting RMSE are also large 
enough to conclude that the MLR overestimated the predicted 
values. In the case of models created for n-hexane, the RMSE 
values for the entire process are very similar and differ by only 
half a percentage point. Both models return predicted variables 
at a level of quality scaled to the chromatographic results, and 
as shown in Figure 5, MLR tends to indicate values higher 
than the chromatographic ones almost throughout the entire 
duration of the process. Additionally, it should be noted that all 
the developed models are characterized by the lowest RMSE 
values in the process stages where the IL reached the highest 
ranges for a given substance (stage II for cyclohexane and 
stage III for n-hexane). In contrast, the largest RMSE values, 
which theoretically means the worst accuracy of the models, 
corresponded to the stages with the lowest IL. Assuming 
a constant volume of BTF packing and volumetric gas flow 
rate, and bearing in mind that, in the case of the conducted tests, 
higher IL values correspond simultaneously with higher values 
of inlet concentrations of the analyzed substances and with the 
lowest RE values (the highest concentrations at the outlet of 
the BTF) it would mean that the developed models represent 
greater accuracy with increasing concentration of the analyzed 
substances. The fact that the developed models function in 
such a way could be due to the fact that at low concentrations 
the sensors work near the limit of quantification, and at higher 
concentrations in the linear range of operation, i.e., the obtained 
results, and thus the prepared models are more accurate.

Conclusions
The obtained results indicate that the highest removal 
efficiency of n-hexane and cyclohexane from air was achieved 
in conditions set for the lowest of the tested IL values and for 
the empty bed resistance time (EBRT) of 60 seconds. In the 
case of n-hexane, this RE fluctuated between 70–80% with IL 
ranging from 19.87 to 24.36 g m-3 h-1, while for cyclohexane, 
the highest RE varied between 61–71% for IL betwixt 
13.20–18.50 g m-3 h-1. Each increase in IL, while keeping the 
EBRT at a constant level, resulted in a decrease in the biofilter 

removal efficiency. Based on physicochemical and toxicity 
parameters of n-hexane and cyclohexane, the second one should 
be more easily eliminated from the gas stream than n-hexane. 
It is because cyclohexane has lower molecular mass, is less 
toxic (e.g. value of LD50 is 2 orders of magnitude higher than 
for n-hexane), is not regarded to undergo bioaccumulation, and 
has two orders of magnitude higher solubility in water, thus 
should more easily diffuse in the biofilm phase. However, in 
the experimental conditions there were different inlet loadings 
with respect to n-hexane and cyclohexane. From Fig. 5 it stands 
out that the concentrations of n-hexane were in all stages of 
experiment higher than for cyclohexane, thus n-hexane was 
a more abundant carbon source for microorganisms, and its 
removal can be higher than for cyclohexane. Similar behavior 
of the elimination capacities for different VOCs was noted by 
Marycz et al. 2022.

The applied matrix of gas sensors together with developed 
statistical mathematical models (MLR and PCR) allowed 
us to obtain results with a high degree of compatibility with 
the chromatographic ones. Linear calibration correlations 
showing the relationships between the actual concentrations 
of the analyzed substances and those predicted by the models 
were characterized by high compliance (all coefficients of 
determination R2 > 0.93). In order to estimate the errors of 
the models in predicting quantitative data and evaluate their 
fit, root mean square error (RMSE) was used as one of the 
most frequently applied mathematical tools for this purpose. 
The MLR and PCR models prepared for n-hexane represented 
a very similar value of this coefficient (5.954% and 5.494%, 
respectively), therefore the selection of the optimal model was 
complicated. In contrast, for cyclohexane, the PCR model with 
the RMSE of 3.542% was found to be significantly better than 
the MLR model with the RMSE equal to 10.597%.

The results presented in this paper justify the use of gas 
sensor arrays for monitoring biofiltration processes. This type of 
device would enable the process to be controlled automatically, 
continuously and without taking any samples. On the other 
hand, the tests were run in laboratory conditions, and only 
a simple two-component mixture was analyzed. For example, 
landfill gases are generally more complex mixtures in which 
numerous odor-forming substances may be present. In this case, 
the continuous determination of the chemical concentration of 
individual substances would not be the optimal approach. It 
is caused by mutual interactions between odorants (masking, 
neutralization, strengthening), which significantly influence the 
perceived odor nuisance. This could lead to situations when the 
complete elimination of one of the components may increase 
the odor nuisance. This phenomena cannot be captured by 
chromatographic techniques that determine concentrations of 
chemicals. However, the use of gas sensor matrices makes it 

Table 3. RMSE of deodorization effi  ciency (RE) between GC-FID and sensor matrix results.

Chemical 
compound Model

RMSE [%]
Stage I Stage II Stage III Entire process

n-hexane
MLR 6.524 6.206 5.028 5.954
PCR 6.587 4.885 4.827 5.494

cyclohexane
MLR 12.363 5.950 12.192 10.597
PCR 4.477 1.944 3.717 3.542
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possible in this case to switch to the analysis of odor parameters 
such as: odor intensity, odor concentration or hedonic quality. 
This would require calibrating the matrix using, for example, 
field olfactometry or parametric measurements, but it seems to 
be a better approach to monitor the effectiveness of deodorization 
processes and assessment of odor impact (Wiśniewska et 
al. 2020). It would allow for the monitoring of the odorous 
situation of a given facility, not the concentrations of individual 
substances, which do not always reflect the actual odor nuisance. 
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Kontrola procesowa dezodoryzacji strumienia powietrza z par LZO, 
przeprowadzonej w biofi ltrze zraszanym, przy wykorzystaniu matrycy 

czujników gazowych

Streszczenie: W artykule przedstawiono zasadność, celowość i sensowność zastosowania matrycy czujników gazo-
wych do monitowania procesów dezodoryzacji powietrza prowadzonych w biofiltrze zraszanym (BTF) z wypełnie-
niem w postaci torf-perli-pianka poliuretanowa. Celem przeprowadzonych badań była kontrola procesowa skuteczności 
oczyszczania strumienia powietrza z par związków hydrofobowych, którymi były n-heksan i cykloheksan. Skutecz-
ność usuwania hydrofobowego n-heksany i cykloheksanu z powietrza oceniono przy użyciu chromatografii gazowej 
jako techniki referencyjnej oraz skonstruowanej matrycy czujników gazowych składającej się z siedmiu komercyjnie 
dostępnych czujników. Zbadano wpływ obciążenia złoża (IL) n-heksanu i cykloheksanu na wydajności biofiltracji. 
Przygotowana matryca czujnikowa została skalibrowana z wykorzystaniem dwóch technik statystycznych: Multiple 
Linear Regression (MLR) oraz Principal Component Regression (PCR). Opracowane modele matematyczne pozwoliły 
skorelować wielowymiarowy sygnał z matrycy czujników ze stężeniem usuwanych substancji. Wyniki uzyskane na 
podstawie analiz chromatograficznych wykazały, że wydajność usuwania n-heksanu i cykloheksanu osiągnęły odpo-
wiednio około 40 i 40 gm-3h-1. Wyniki uzyskane z wykorzystaniem matrycy czujników gazowych wykazały, że możli-
we było nie tylko wiarygodne określenie stężeń badanych hydrofobowych lotnych związków organicznych w próbkach 
gazowych, ale również charakteryzowały się podobnie wysokim poziomem jakości jak wyniki chromatograficzne. Za-
proponowana w tej pracy matryca czujników gazowych może być wykorzystana do monitorowania procesu biofiltracji 
powietrza zanieczyszczonego n-heksanem i cykloheksanem w czasie rzeczywistym.
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