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G is the weakly connected Roman graph. In this paper, we show that the decision problem of whether
a bipartite graph is Roman is a co-NP-hard problem. Next, we prove similar results for weakly
connected Roman graphs. We also study Roman trees improving the result of M.A. Henning’s
A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002). Moreover, we give a
characterization of weakly connected Roman trees.
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1. Introduction

A Roman dominating function (RDF) on a graph G = (V, E) was defined by Cockayne
et al. in [1] as a function f : V → {0, 1, 2} such that every vertex x with f (x) = 0 is adjacent
to at least one vertex y for which f (y) = 2. Let V0, V1, and V2 be the sets of vertices such
that they are assigned values 0, 1, and 2, respectively, under f . Since there is one-to-one
correspondence between the ordered triple (V0, V1, V2) and the function f : V → {0, 1, 2},
we will write f = (V0, V1, V2) for short. The weight of f is w( f ) = ∑v∈V f (v), that is
w( f ) = |V1|+ 2|V2|. Similarly, for S ⊆ V, we define f (S) = ∑v∈S f (v). Hence, w( f ) = f (V).
The Roman domination number, denoted γR(G), is the minimum weight of an RDF in G.
We define an RDF of weight γR(G) as a γR(G)–function. Roman domination in graphs is
of interest to many and has been studied, for example, in [1–3]. As it is made known in [4],
the definition of a Roman dominating function was motivated by an article by Ian Stewart
entitled ”Defend the Roman Empire!” [5]. Each vertex in a graph represents a spot in the
Roman Empire, and we want to defend this Empire from barbarians. A location (vertex
v) is meant to be unsecured if no legions are currently stationed there (i.e., f (v) = 0) and
secured otherwise (i.e., if f (v) ∈ {1, 2}, where the number states for the number of legions
in v). An unsecured vertex v can be defended by an adjacent vertex u with f (u) = 2 by
sending one legion from u to v. A vertex u with f (u) = 1 cannot defend any unsecured
vertex. These graph theory definitions are formed on the basis of the ideas of the Emperor
Constantine the Great who wanted to modernize their army in the fourth century. Since it
was expensive to maintain a vast army, the emperor wanted to support as few legions as
possible while still defending the whole Roman Empire. A Roman dominating function of
weight γR(G) corresponds to such an optimal assignment of legions to locations.

In [6], the authors define and investigate the idea of strengthening the security of the
Roman Empire by providing a safe way of communication between the legions while still
having substantial costs of financing the legions as small as possible. Two legions at two dif-
ferent spots (secured vertices u and v) can contact directly if there is at most one unsecured
vertex between them, and the distance between u and v is at most 2. Conversely, u and
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v can contact indirectly if there is a sequence of secured vertices (u = u1, u2, . . . , uk = v)
such that ui and ui+1 can contact directly for i = 1, 2, . . . , k− 1. A graph is communicated
if any two different secured vertices can contact directly or indirectly.

Following [7], we introduce some graph-related theoretical terminology. For a simple
graph G, let |V(G)| = n(G) be the order of G. The neighborhood NG(v) of a vertex
v ∈ V(G) is the set of all vertices adjacent to v and the closed neighborhood is defined as
NG[v] = NG(u) ∪ {v}. If D ⊆ V(G), then NG[D] =

⋃
v∈D NG[v]. The degree dG(v) of v

is the number of edges incident with v in G, so dG(v) = |NG(v)|. Let L(G) be the set of
all leaves of G, that is, the set of vertices of degree 1. Next, v is called a support vertex
if v is a neighbor of a leaf. Let S(G) denote the set of all support vertices in G. A strong
support vertex is a vertex adjacent to at least two leaves, while a vertex adjacent to exactly
one leaf is a weak support vertex. A set D ⊆ V(G) is a dominating set of G if every vertex
v ∈ V(G)− D is adjacent to a vertex u belonging to D. The minimum cardinality of a
dominating set in G is the domination number, denoted γ(G).

In [1] is proved that for every graph, its Roman domination number is bounded from
above by twice the domination number. Graphs G with γR(G) = 2γ(G), or just (γR, 2γ)–
graphs for short, are called Roman graphs. The following classes of graphs are established
to be Roman [1]: P3k, P3k+2 for k ≥ 1, C3k, C3k+2 for k ≥ 1, Km,n for min{m, n} 6= 2, any
graph with ∆(G) = n− 1. Henning [3] characterized Roman trees and Xueliang et al. [8]
characterized the Roman graphs in the following classes of graphs: circulant graphs,
generalized Petersen graphs, and the Cartesian product of cycles.

From now on, we assume G to be connected. The subgraph weakly induced by a
set D ⊆ V(G) is the graph 〈D〉w = (N[D], Ew), where Ew is the set of all edges of G that
have at least one end vertex in D. A set D ⊆ V(G) is a weakly connected dominating set
(WCDS) of G if D is both a dominating set, and 〈D〉w is connected. The weakly connected
domination number of G, denoted γwc(G), is the minimum cardinality of a WCDS of G. A
minimum WCDS of a graph G is called a γwc(G)-set. The weakly connected domination
number was introduced in [9] and studied, for example, in [10–12].

The function f = (V0, V1, V2) is called a weakly connected Roman dominating function
in G (WCRDF) if f is an RDF, and the subgraph 〈V1 ∪V2〉w weakly induced by V1 ∪V2 is
connected in G. The weakly connected Roman domination number, denoted γwc

R (G), is the
minimum weight of a WCRDF in G, that is, γwc

R (G) = min{w( f ) : f is a WCRDF in G}. A
WCRDF of weight γwc

R (G) is called a γwc
R (G)–function. These terms were first introduced

and motivated in [6].
In [6], it is proven as follows:

Proposition 1 ([6]). If G is a connected graph, then

γwc(G) ≤ γwc
R (G) ≤ 2γwc(G).

The authors of [6] also describe all graphs for which the lower bound is attained.

Proposition 2 ([6]). For any connected graph G of order n, γwc(G) = γwc
R (G) if and only if

G = K1.

Graphs G for which γwc
R (G) = 2γwc(G) are the weakly connected Roman graphs.

In this paper, we show that the decision problem of whether a bipartite graph is
Roman is a co-NP-hard problem and we also study Roman trees on this basis [3]. We also
show that the decision problem of whether a bipartite graph is a weakly connected Roman
is a co-NP-hard problem. In addition, we give a characterization of weakly connected
Roman trees.

2. Complexity Results

In this section, we state the computational complexity of decision problems for Roman
and weakly connected Roman bipartite graphs.
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The three-satisfiability (3SAT) problem is as follows [13]:
INSTANCE: A literal is a logical variable or its negation. We are given a Boolean expression
E in conjunctive normal form (CNF), that is, the conjunction of clauses, each of which is
the disjunction of three distinct literals.
QUESTION: Is E satisfiable?

Theorem 1. It is co-NP-hard to determine if a given graph G is Roman even for bipartite graphs.

Proof. We describe a polynomial reduction from 3SAT to the considered problem. The
3SAT problem was proven to be NP-complete in [13]. Without loss of generality, we can
assume that the formula in 3SAT contains the instance of any logical variable u and its
negation u′, because in the other case, all clauses containing the variable u (or u′) are
satisfied by assigning true (false) to u. We also assume that the formula contains at least
two clauses (otherwise the answer is trivial).

For an instance E of 3SAT, denote the set of variables of E by U = {u1, u2, . . . , un} and
the set of clauses by C = {c1, c2, . . . , cm}. Based on E, we construct a graph G whose order
and size are polynomially bounded from above in terms of n and m, and such that the
formula E is satisfiable if and only if γR(G) < γ(G). At first, for each variable ui construct
a copy of G(ui) of the graph in Figure 1. Vertex ui corresponds to literal ui, while vertex
u′i—to the negation of ui, ¬ui. Notice that G(ui) is a bipartite graph.

ui

u′i

w1
i w2

i w3
i

Figure 1. The graph G(ui).

For each one clause Cj, we create a clause vertex cj and if Cj contains literals x, y, and
z, we create the three edges cjx, cjy, and cjz. If, for example, C1 = ¬u1 ∨ u2 ∨ u3, then these
edges are c1u′1, c1u2, and c1u3. Additionally, we add two vertices, a and b, and next we add
the edges acj for j = 1, 2 . . . , m, and bui, bu′i for i = 1, 2, . . . , n, as shown in Figure 2. This
accomplishes the depiction of G. It is easy to see that G is bipartite.

Observe that for each graph, G(ui), ui, or u′i belongs to every minimum dominating
set of G. Since a is adjacent to each clause vertex and b is adjacent to each variable vertex
and its negation, it is clear that γ(G) = n + 2, and hence, γR(G) ≤ 2n + 4. Therefore, it
remains to be proven that E is satisfiable if and only if γR(G) < 2n + 4.

First, we assume that E is satisfiable and consider a satisfying truth assignment. Let f
be a function assigning 2 to each true variable vertex (or its negation) and b, let f (a) = 1
and let f assign 0 to every other vertex of G. Since E is satisfiable, each clause vertex cj is
adjacent to a variable vertex (or its negation) u with f (u) = 2. Similarly, each vertex of
C(ui) has in its closed neighborhood a vertex u with f (u) = 2. Therefore, f is a Roman
dominating function of G. Since | f | = 2n + 3, γR(G) < 2γ(G), implying that G is not a
Roman graph.

Next, we assume that E is not satisfiable. Then, for each truth assignment for some
j ∈ 1, 2, . . . , m each literal of the clause Cj is false. Let f be a function assigning 2 to each
true variable vertex (or its negation) and b. If f (a) = 1 and f assigns 0 to every other vertex
of G, then f (cj) = 0 and no vertex if the closed neighborhood of cj has the f function value
equal to 2. Therefore, in this case, let f (a) = 2 and let f assign 0 to every other vertex of G.
Then, | f | = 2n + 4, and G is a Roman graph. This completes the proof.
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u1

u′1

u2

u′2

u3

u′3

c1a b

Figure 2. The edges between G(C1) and G(u1) ∪ G(u2) ∪ G(u3) for the clause C1 = ¬u1 ∨ u2 ∨ u3.

Theorem 2. It is co-NP-hard to determine if a given graph G is a weakly connected Roman even
for bipartite graphs.

Proof. The construction and the proof are analogous to the previous proof, however, we
add one additional edge to the graph G, namely, aw1

1, to provide the minimum dominating
set of G to be weakly connected even if no clause has a true literal.

3. Roman Trees

Henning, in [3], has constructively characterized (γR, 2γ)-trees as a family T of
all rooted trees that can be obtained from a star K1,r for r ≥ 1 by applying recursively
three operations. Two of those operations attach new small tree structures to the vertex
v of the existing tree from T , where v ∈ VS(T). The set VS(T) is defined as follows:
VS(T) = {v ∈ V(T) : v ∈ S(T) and γR(T − v) ≥ γR(T)}. For details of the construction
please check [3].

However, the characterization given in [3] does not include all (γR, 2γ)-trees. For
example, a tree T presented in Figure 3 is a Roman tree since γR(T) = 2γ(T) = 8, but it is
not possible to obtain T using the characterization given in [3].

Figure 3. A (γR, 2γ)-tree not obtained by the original characterization [3], see also [14].

To fully characterize all Roman trees, the definition of VS(T) needs to be changed as
follows

VS(T) = {v ∈ V(T) : γR(T − v) ≥ γR(T)}.
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Then more trees are members of the family T . Despite the change in the definition
of VS(T), the proofs in the original work of Henning [3] are correct for the new version of
VS(T) because of the assumption that a vertex v ∈ VS(T) is a support vertex in the proofs
of [3] and is not used.

4. Weakly Connected Roman Trees

In this section, we describe all trees T for which γwc
R (T) = 2γwc(T).

Let T be a tree. A vertex v belongs to the set A ⊂ V(T) if and only if v is of degree
at least 2 (v is not a leaf) and N(v) ⊆ S(T), that is, A = {v ∈ V(T)|dT(v) ≥ 2 and N(v) ⊆
S(T)}.

Let v be a weak support vertex of T. Depending on its neighborhood, we classify it as
type-1, type-2, or type-1a weak support vertex. The weak support vertex v is

• Type-1, if v is adjacent to exactly one vertex of A, that is |N(v) ∩ A| = 1;
• Type-2, if v is adjacent to more that one vertex of A, that is |N(v) ∩ A| > 1;
• Type-1a, if v is type-1 and v is adjacent to a strong support vertex or to a weak support

vertex type-2.

Definition 1. Let T be the family of all trees such that

1. P1, P2 ∈ T ;
2. V(T) = L(T) ∪ S(T) ∪ A;
3. If v is a weak support vertex, then v is adjacent to a vertex of A;
4. If v ∈ A, then v is adjacent to at most two weak support vertices of type-1;
5. If v ∈ A, then v is adjacent to at most one weak support vertex of type-1a.

Property 1. Let T be a tree such that γwc
R (T) = 2γwc(T). Then, each vertex of a minimum weakly

connected dominating set of T is either a leaf or a support vertex.

Proof. Suppose that a vertex v belongs to a minimum weakly connected dominating
set of T, say Dwc, and v is neither a support vertex nor a leaf. Then each neighbor of
v is adjacent to a vertex of Dwc − {v} or belongs to Dwc. However in this situation,
(V(T) − Dwc, v, Dwc − {v}) is a weakly connected Roman dominating function of T of
weight smaller than 2γwc(T), a contradiction.

Lemma 1. Let T be a tree. If γwc
R (T) = 2γwc(T), then T belongs to the family T .

Proof. The result is obvious for P1, P2, and for trees of diameter 2. Thus, in what follows,
we focus on trees of diameter at least 3. By Claim 1, V(T) = L(T)∪ S(T)∪ A, which is con-
dition 2 of Definition 1. Moreover, if γwc

R (T) = 2γwc(T), then S(T) is a minimum weakly
connected dominating set of T and a weakly connected Roman dominating function assign-
ing 2 to each support vertex and 0 to every other vertex, namely, (V(T)− S(T), ∅, S(T)),
is a γwc

R (T)-function.
Assume that γwc

R (T) = 2γwc(T) and v is a weak support vertex such that v is not
adjacent to a vertex of A. Then one neighbor of v is a leaf, say u, and every other
neighbor is a support vertex. Moreover, f = (V − S(T), ∅, S(T)) is a γwc

R (T)-function.
However, ((V(T)− S(T)− {u}) ∪ {v}, {u}, S(T)− {v}) is a weakly connected Roman
dominating function of T of weight smaller than γwc

R (T), a contradiction. Therefore, if
γwc

R (T) = 2γwc(T), then each weak support vertex is adjacent to a vertex of A, which is
condition 3 of Definition 1.

Assume now that γwc
R (T) = 2γwc(T) and v ∈ A is adjacent to at least three weak

support vertices of type-1 denoted u1, u2, u3. Denote by w1, w2, w3 the leaves adjacent to
u1, u2, u3, respectively. Again f = (V(T)− S(T), ∅, S(T)) is a γwc

R (T)-function. However,
(((V(T)−S(T))−{v, w1, w2, w3})∪{u1, u2, u3}, {w1, w2, w3}, (S(T)∪{v})−{u1, u2, u3})
is a weakly connected Roman dominating function of T of weight smaller than γwc

R (T), a
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contradiction. Therefore, if γwc
R (T) = 2γwc(T), then each vertex of A is adjacent to at most

two weak support vertices of type-1, which is condition 4 of Definition 1.
Lastly, assume that γwc

R (T) = 2γwc(T) and v ∈ A is adjacent to at least two weak
support vertices of type-1a denoted u1, u2. Denote by w1, w2 the leaves adjacent to u1, u2,
respectively. Clearly, f = (V(T)− S(T), ∅, S(T)) is a γwc

R (T)-function. Since u1, u2 are
type-1a, ((V(T)− S(T)− {v, w1, w2}) ∪ {u1, u2}, {v, w1, w2}, ST)− {u1, u2}) is a weakly
connected Roman dominating function of T of weight smaller than γwc

R (T), a contradiction.
Therefore, if γwc

R (T) = 2γwc(T), then each vertex of A is adjacent to at most one weak
support vertex of type-1a, which is condition 5 of Definition 1.

Lemma 2. Let T be a tree. If T belongs to the family T , then γwc
R (T) = 2γwc(T).

Proof. Suppose that T ∈ T , we will prove, by induction on the number of vertices of T,
that γwc

R (T) = 2γwc(T).
Let P = (v0, v1, v2, . . . , vk) be a longest path in T.
If k ≤ 4 and T ∈ T , then clearly γwc

R (T) = 2γwc(T). Hence, assume k ≥ 5 and
n(T) ≥ 6.

If d(v2) = d(v3) = 2, then v2 /∈ L(T) ∪ S(T) ∪ A, a contradiction with condition 2 of
Definition 1. Therefore, we can consider the following cases.

• Assume d(v2) = 2, v2 ∈ A and d(v3) > 2. In this situation, v1, v3 are support vertices.
Let T′ be the connected component of T − v1v2 containing v2. Since T ∈ T , T′ also
fulfills all conditions of Definition 1 to be in T . Hence, by the induction hypothesis,
γwc

R (T′) = 2γwc(T′).
Moreover, each γwc(T′)-set can be extended to a weakly connected dominating set of T
by adding to it v1, so γwc(T) ≤ γwc(T′) + 1. Let f = (V0, V1, V2) be a γwc

R (T)-function.
Without loss of generality, we may assume that v1, v3 ∈ V2, and v2 as well as each
leaf adjacent to v1 belong to V0. Then f restricted on T′ is a WCRDF, and therefore,
γwc

R (T′) ≤ γwc
R (T)− 2. Hence,

2γwc(T) ≤ 2γwc(T′) + 2 = γwc
R (T′) + 2 ≤ γwc

R (T)

implying that γwc
R (T) = 2γwc(T).

• Suppose d(v2) > 2 and v2 is not a support vertex. Then, v2 is adjacent to at least two
support vertices and since T ∈ T , by Definition 1 v2 is adjacent to at most two weak
support vertices of type-1. Let T′ be the connected component of T− v1v2 containing
v2. Since T ∈ T , in this situation, T′ also fulfills all conditions of Definition 1 to
be in T . Hence, by the induction hypothesis, γwc

R (T′) = 2γwc(T′). Moreover, each
γwc(T′)-set can be extended to a weakly connected dominating set of T by adding to it
v1, so γwc(T) ≤ γwc(T′) + 1. Let f = (V0, V1, V2) be a γwc

R (T)-function. Without loss
of generality, we may assume that each support vertex adjacent to v2 is in V2, and v2,
as well as each leaf adjacent to v1 belong to V0. Then, f restricted on T′ is a WCRDF,
and therefore, γwc

R (T′) ≤ γwc
R (T)− 2. Hence,

2γwc(T) ≤ 2γwc(T′) + 2 = γwc
R (T′) + 2 ≤ γwc

R (T)

implying that γwc
R (T) = 2γwc(T).

• Suppose d(v2) > 2 and v2 is a support vertex. Then, v1 is a strong support vertex
and d(v1) ≥ 3. If v2 is a weak support vertex, then v3 ∈ A. Let T′ be the con-
nected component of T − v1v2 containing v2. Since T ∈ T , in this situation, T′ also
fulfills all conditions of Definition 1 to be in T . Hence, by the induction hypothe-
sis, γwc

R (T′) = 2γwc(T′). Moreover, each γwc(T′)-set can be extended to a weakly
connected dominating set of T by adding to it v1, so γwc(T) ≤ γwc(T′) + 1. Let
f = (V0, V1, V2) be a γwc

R (T)-function. Without loss of generality, we may assume that
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v1, v2 are in V2 and each leaf adjacent to v1 or v2 belongs to V0. Then f restricted on T′

is a WCRDF, and therefore, γwc
R (T′) ≤ γwc

R (T)− 2. Hence,

2γwc(T) ≤ 2γwc(T′) + 2 = γwc
R (T′) + 2 ≤ γwc

R (T)

implying that γwc
R (T) = 2γwc(T).

By Lemmas 1 and 2 we obtain the next theorem.

Theorem 3. Let T be a tree. Then,

γwc
R (T) = 2γwc(T)

if and only if T belongs to the family T .

Since the definition of the family T considers only closed neighborhoods of the vertices
of a tree, the weakly connected Roman trees can be recognized in polynomial time.

The tree in Figure 4 is an example of a graph belonging to the family T .

A

1

2
A

1a

Figure 4. The tree in T . Markings denote the type of a weak support vertex
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