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ABSTRACT

The characteristics of propagation of sawtooth periodic and impulsive signals at a transducer are analytically studied in this work. A plasma
under consideration is motionless and uniform at equilibrium, and its perturbations are described by a system of ideal magnetohydrodynamic
equations. Some generic heating/cooling function, which in turn depends on equilibrium thermodynamic parameters, may destroy adiabaticity
of a flow and make the flow acoustically active. Planar waves with the wave vector forming a constant angle h with the equilibrium straight
magnetic strength are considered. This model has been proposed in previous publications listed in the Introduction. Conclusions are drawn for
fast and slow magnetoacoustic waves of sawtooth shape and various cases of a nonlinear flow. These nonlinearities occur in accordance with a
type of heating/cooling function under consideration. Amplitude and duration of signals are evaluated as functions of a distance from a
transducer, h, plasma-b, and a type of heating-cooling function. In particular, it is observed that the duration of an impulse enlarges infinitely
in acoustically stable flows, while on the other hand, it tends to some limiting value in acoustically active flows of plasma.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093390

I. INTRODUCTION

A reliable detection and interpretation of hydrodynamic distur-
bances in a plasma are of key importance in the astrophysical and tech-
nical applications, especially as these are related to the dynamics of the
solar atmosphere. The wave perturbations not only transfer energy and
momentum, but may be a reason for heating of a plasma and its bulk
flows.1,2 The difficulty is in a variety of magnetohydrodynamic (MHD)
modes. These include waves, namely Alfv�en, fast and slow magnetoa-
coustic modes, and nonwave modes, i.e., the entropy and the vortex
modes. The important issue is the correct definition of these modes.
The excitation of the nonwave modes is associated with magnetoacous-
tic heating and streaming, and occurs due to nonlinearity and nonadia-
baticity of a flow in the field of intense magnetosound perturbations.
Plasma is an open system, since there is an influx of energy to plasma,
and radiative losses. This may be a reason for deviation of adiabaticity
of a flow along with mechanical and thermal losses. Acoustics of open
systems is well understood. Depending on the balance between attenu-
ation and inflow of energy, the wave perturbations may increase in the
course of propagation.3–5 This happens due to a generic heating-
cooling function which provides isentropical instability of a flow.6,7

Nonlinear distortions may drastically influence the wave process,
even if perturbations are of moderate magnitude. Stationary wave-
forms exist due to nonlinearity in flows with dispersion and attenua-
tion. The balance of the nonlinearity of a flow and dissipation may
lead to formation of a shock wave, which is a solution to the Burgers
equation. The solution for flows with dispersion were proposed, e.g.,
by Rudenko and Soluyan.8 Nonlinearity, if taken alone without attenu-
ation, results in waves with discontinuities of decreasing amplitude,
which at the large distances from a transducer take the sawtooth
shape. The stationary and self-similar waveforms are of special impor-
tance for fluid dynamics for the following reasons: They are common
in many wave processes, including optic waves; they are usually the
simplest mathematical case; the total perturbation often develops in a
set of self-similar or stationary waveforms. The joint action of nonline-
arity and nonadiabaticity arising from a heating-cooling function, may
lead to appearance of self-similar waveforms with variable amplitude
but stable shape. The periodic waves in plasma were discussed by
Chin et al. in Ref. 9, and asymmetric pulses by Zavershinsky et al.5 In
open systems, the heating/cooling function may prevent formation of
shock fronts, or, on the contrary, may enlarge the magnitude of
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perturbations accelerating their formation. This enhances the nonlin-
ear effects. Thus, under some conditions, the waves with discontinu-
ities propagate in a plasma with magnitudes determined not only by
nonlinear attenuation, but also by the kind of heating-cooling func-
tion.5,9 They have been predicted in open systems described by a simi-
lar dynamic equation though of different physical meanings.6,7

A flow of magnetic gas depends strongly on the geometry of a
flow, strength of the magnetic field, and energy balance. The first stud-
ied cases consider planar waves along and across the straight magnetic
field.10–12 We concentrate on the planar, fast and slow magnetoacous-
tic longitudinal velocity of a plasma governed by equation derived by
Nakariakov et al. in Ref. 13. This equation applies to the case of
the constant straight magnetic field forming a constant angle with the
wave vector. This dynamic equation may be readily derived by the
projecting technique which has been exploited by the author in many
problems of fluid dynamics.14–17 It was reproduced by the author in
Ref. 18. The equation is valid if one selected wave mode is dominant,
that is, its specific perturbations are much larger than those of other
modes. The authors of Ref. 9 have concluded that there is possibility of
self-organization of initially sinusoidal MHD waves into shock waves
and solitary pulses in a thermoconducting plasma. The subject of this
study is the analysis of nonlinear evolution of the periodic and impul-
sive signals which take the sawtooth shape at a transducer.

The conclusions concern the dynamics of magnitude and dura-
tion of individual slow and fast perturbations in dependence on
plasma-b and the degree of nonadiabaticity of a flow due to heating/
cooling function. Nonlinear attenuation at the shock front occurs
unusually in the adiabatically unstable flows of a plasma. We do not
consider the electrical resistivity of plasma. Also, we do not consider
attenuation due to mechanical viscosity and thermal conduction of a
plasma. These factors are well understood separately in the context of
nonlinear acoustics.8,19 In the equilibrium flow, they enhance attenua-
tion including nonlinear one, and counteract enlargement of magni-
tudes of perturbations in acoustically active flow. They may prevent
formation of discontinuities or lead to smoothing of shock fronts.

II. THE EQUATIONS OF MHD FLOW

Following Nakariakov and co-authors, we consider the dynamics
of totally ionized gas which is governed by MHD equations. The full
set of MHD equations for perfectly conducting fluid includes the con-
tinuity equation, momentum equation, energy balance equation, and
electrodynamic equations

@q
@t
þ ~r � ðq~vÞ ¼ 0;

q
D~v
Dt
¼ �~rpþ l0ð~r �~BÞ �~B;

Dp
Dt
� c

p
q
Dq
Dt
¼ ðc� 1ÞLðp; qÞ;

@~B
@t
¼ ~r � ð~v �~BÞ;

~r �~B ¼ 0; (2.1)

where p, q,~v; ~B, are the pressure and density of a plasma, its velocity,
the magnetic field strength, and l0 is the permeability of free space.
The two last equations from the system are: The ideal induction equa-
tion, and the Maxwell’s equation which ensures the solenoidal

character of~B. Some generic heating-cooling function L(p, q) accounts
for the optically thin radiative cooling and unspecified inflow of
energy.13 The third equation in the set (2.1) concerns an ideal gas with
the adiabatic index c. An ideal gas consists of molecules of negligible
size with an average molar kinetic energy dependent exclusively on
temperature.

It is useful to remind the conditions and the geometry of a planar
flow used in Ref. 13 along with conclusions from this model. The equi-
librium magnetic strength ~B0 forms constant angle h (0 � h � p/2)
with the wave vector directed along axis z, and its y-component equals
zero, so as

B0;x ¼ B0 sinðhÞ; B0;y ¼ 0; B0;z ¼ B0 cosðhÞ:

Any thermodynamic quantity f(z, t) is a sum of equilibrium value f0
and perturbation f 0ðz; tÞ. We consider an initially homogeneous static
plasma with~v0 ¼~0. The system (2.1) is nonlinear. The leading-order
equations including linear and leading-order nonlinear, that is, qua-
dratically nonlinear terms, follow from Eq. (2.1):

@q0

@t
þ q0

@vz
@z
¼ �q0

@vz
@z
� v

@q0

@z
;

@vx
@t
� B0;z

q0l0

@Bx

@z
¼ �vz

@vx
@z
� B0;z

q0l0
q0
@Bx

@z
;

@vy
@t
� B0;z

q0l0

@By

@z
¼ �vz

@vy
@z
� B0;z

q0l0
q0
@By

@z
;

@vz
@t
þ 1

q0

@p0

@z
� B0;x

q0l0

@Bx

@z
¼ � q0

q0

@p0

@z
� B0;z

q0l0
q0
@Bx

@z

� 1
q0

@

@z

B2
x þ B2

y

2l0

 !
� vz

@vz
@z

;

@p0

@t
þ c2q0

@vz
@x
� ðc� 1ÞðLpp0 þ Lqq

0Þ

¼ ðc� 1Þð0:5Lppp02 þ 0:5Lqqq02 þ Lpqp0q0Þ � cp0
@vz
@z
� vz

@p0

@z
;

@Bx

@t
þ @

@z
B0;xvz � B0;zvxð Þ ¼ �Bx

@vz
@z
� vz

@Bx

@z
;

@By

@t
� @

@z
B0;zvyð Þ ¼ �By

@vz
@z
� vz

@By

@z
;

(2.2)

where primes by components of velocity are dropped, and partial
derivatives of the heating-cooling function L(p, q) with respect to its
variables are designated as

Lp ¼
@L
@p
; Lq ¼

@L
@q
; Lpp ¼

@2L
@p2

; Lqq ¼
@2L
@q2

; Lpq ¼
@2L
@p@q

and refer to the equilibrium state (p0, q0). L equals zero in the unper-
turbed state. Equation (2.2) is an initial point for further evaluations.
The dispersion relations follow from the linearized version of Eq. (2.2),
if one assumes the harmonic dependence of the perturbations is pro-
portional to exp ðixðkzÞt � ikzzÞ, where kz designates the wave
number

f 0ðz; tÞ ¼
ð1
�1

~f ðkzÞ exp ðixðkzÞt � ikzzÞdkz:

They reflect the solvability of linearized version of Eq. (2.2). The first
four roots relate to the slow and fast magnetosound modes of different
directions of propagation
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xj ¼ Cjkz � iCjDj; (2.3)

where j¼ 1,… 4, Cj is one from the four roots of the equation

C4
j � C2

j ðc20 þ C2
AÞ þ c20C

2
A;z ¼ 0;

c0 ¼
ffiffiffiffiffiffiffi
cp0
q0

r
(2.4)

indicates the acoustic speed in unmagnetized gas in equilibrium, and

CA ¼
B0ffiffiffiffiffiffiffiffiffiffi
l0q0
p

is the Alfv�en speed, CA;z ¼ CA cos ðhÞ. Dj is determined in the follow-
ing way:

Dj ¼
CjðC2

j � C2
AÞðc� 1Þ

2c20ðC4
j � c20C

2
A;zÞ

ðc20Lp þ LqÞ:

For any nonzero magnetosound speed Cj, the denominator in the
expression for Dj differs from zero: Zero C4

j � c20C
2
A;z leads to equali-

ties jCA;zj ¼ c20þC2
A

2c0
and C2

A;x ¼ �
ðc20�C2

AÞ
2

4c20
, with the exception of the

case jCjj ¼ c0 ¼ CA which corresponds to the zero nominator. The
next two rootsx5, x6 specify the Alfv�en modes

x5;6 ¼ 6CA;zkz;

and the last root x7 corresponds to the nonwave entropy mode

x7 ¼
iðc� 1ÞLq

c20
:

The dispersion relations Eq. (2.3) along with Eq. (2.4) were established
by Chin et al.9,13 and have been used in studies of various wave pro-
cesses in a plasma. The condition of acoustic (adiabatic, isentropic)
instability depends on the kind of heating-cooling function. In all flows
in open systems, it sounds as3,4

c20Lp þ Lq > 0: (2.5)

This inequality means CjDj > 0 and enlargement of magnetosound
perturbations of infinitely small magnitude in the course of propaga-
tion, accordingly to Eq. (2.3). Hence, this is the case of acoustically
active flow. Nonlinear attenuation of finite-magnitude sound at the
front of a shock wave along with mechanical and thermal damping
and elecrical resistivity may prevent growth of wave perturbations.

The magnetosound modes determined by Eq. (2.3) may not be
the wave processes if strongly attenuated. Wave motion occurs in the
case of weak attenuation (or enhancement) during the characteristic
duration of perturbations

xj � jCjDjj; j ¼ 1;…4:

For the impulsive disturbances, xj should be replaced by an inverse
characteristic duration of a signal, T�1j . This condition determines
actually the domain of magnetosound frequencies to be considered in
the case of slow and fast magnetosound perturbations. This point
requires explanation. In fact, it demands smallness of impact of the
heating-cooling function, so as

jc20Lp þ LqjTj

c20
�

2ðC4
j � c20C

2
A;zÞ

ðc� 1ÞC2
j ðC2

j � C2
AÞ

j ¼ 1;…4: (2.6)

Equation (2.6) may be valid for fast magnetosound modes and broken
for slow ones or, on the contrary, may be valid for slow modes and
broken for fast ones. The expression on the right-hand side of the

inequality is always positive. Figure 1 shows variations of
C2
j ðC2

j �C2
AÞ

2ðC4
j �c20C2

A;zÞ

with bc and h, where plasma-b is determined as as the ratio of ther-
modynamic and magnetic pressures

b ¼ 2
c
c20
C2
A
:

The question at issue is that at h¼ 0 and h¼ p there are two solutions
to Eq. (2.4), jCjj ¼ c0 and jCjj ¼ CA. If b < 2

c, the fast mode has the

speed CA, and if b > 2
c, the fast mode is the sound wave with the speed

c0. That is the reason for the ratio
C2
j ðC2

j �C2
AÞ

2ðC4
j �c20C2

A;zÞ
to vary abruptly at bc¼ 2

if h¼ 0 or h¼ p. The main conclusion is that for any bc and h, and

for any kind of magnetosound wave, fast or slow,
C2
j ðC2

j �C2
AÞ

ðC4
j �c20C2

A;zÞ
� 1. This

can be seen in Fig. 1 that refers to the fast modes. Hence, if

jc20Lp þ LqjTj

c20
� 2

c� 1
; (2.7)

Equation (2.6) is satisfied for arbitrary bc and for both fast and slow
modes. For a small bc, it is valid with a large margin for the fast waves,
and for large bc, it is valid with a large margin for the slow waves.
Summarizing, Eq. (2.6) determines the characteristic duration of per-
turbations and properties of a heating-cooling function supporting the
wave processes.

III. NONLINEAR DYNAMICS OF A MAGNETOACOUSTIC
WAVE WITH DISCONTINUITY

Nonlinearity of wave processes plays a crucial role even in the
case of small magnitudes of perturbations. That is all the more true in
acoustically active media. The dynamic equation for an individual

FIG. 1. Variation of the ratio
C2
j ðC

2
j �C

2
AÞ

ðC4
j �c

2
0C

2
A;zÞ

in the case of fast magnetoacoustic
perturbations.
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magnetosound wave follows from the system (2.2). It has been derived
in the case of one dominant wave mode by Nakariakov et al. in Ref.
13. The dominance means that the absolute values of magnetosound
perturbations are much bigger than those of other modes, at least in
some spatial and temporal domains. The dynamic equation describing
the nonlinear distortion of the longitudinal component of velocity vz,j
in the dominant magnetoacoustic wave ordered as j, takes the form

@vz;j
@t
þ Cj

@vz;j
@z
� DjCjvz;j þ ejvz;j

@vz;j
@z
¼ 0; (3.1)

with

ej ¼
3c20 þ ðcþ 1ÞC2

A � ðcþ 4ÞC2
j

2ðc20 � 2C2
j þ C2

AÞ
:

Equation (3.1) may be readily derived by means of the projecting row
which projects the total vector of perturbations into the specific vector
of perturbations of the mode ordered as j. It projects the governing
system of Eq. (2.1) into dynamic equations for dominant perturbations
as well. The projectors are established by the author in Ref. 18. In the
absence of the magnetic field and deviation from adiabaticity, Eq. (3.1)
coincides with the well-known equation for velocity in the planar
Riemann’s wave propagating in the positive direction of axis z in an
ideal gas with Dj¼ 0, Cj ¼ c0; ej ¼ cþ1

2 .8

Without loss of generality, we will consider magnetosound waves
propagating in the positive direction of axis z, that is, positive Cj.
Hence, the sign of Dj is determined exclusively by the sign of
c20Lp þ Lq. The understanding that the magnetic flows may and almost
always will include discontinuities, comes from the early theoretical
studies.20 Equation (3.1) for the isentropic flow of an ideal fluid (the
caseDj¼ 0) and h¼p/2, for planar or cylindrically symmetric motion,
was derived and analyzed in the context of propagation of a sawtooth
impulse in Ref. 12. Equation (3.1) may be readily rearranged into the
leading-order nonlinear equation, if Dj 6¼ 0, Cj 6¼ 0 (the lower index j
will be omitted in all fore-coming formulas)

@V
@Z
� e
C2

V
@V
@s
¼ 0; (3.2)

by means of new variables

V ¼ vz exp �Dzð Þ; Z ¼ eDz � 1
D

; s ¼ t � z=C:

Note that Z is always positive for nonzero D. Equation (3.2) recalls the
dynamic equations for perturbations in other media which may be
acoustically active due to different reasons.6,7 The important property
of Eq. (3.2), which in fact is analogous to the equation for the simple
wave, is the independence of

Ð
Vds on a distance from a transducer at

any kind of excitation, since

@

@Z

ð
Vds ¼

ð
e
C2

V
@V
@s

ds ¼ 0: (3.3)

The limits of integration may be set as �T/2, T/2 for periodic with
the period T signals, or�1,1 for the impulsive ones. Equation (3.2)
may be solved by the method of characteristics.21 It has been estab-
lished that discontinuity in the waveform always forms in acoustically
active media (that is the case of D> 0) and may not arise otherwise

due to attenuation.6 The peculiarity of the wave motion in the mag-
netic gases is strong dependence of its parameters on h, plasma-b and
magnetic strength. By the way, they determine the rate of enlargement
or decay of the signals. That is the subject of Secs. IIIA and III B. The
particular case D¼ 0 corresponds to c20Lp þ Lq ¼ 0 or C¼CA. It is of
minor importance. Equation (3.2) is still valid with Z¼ z and V¼ vz.

A. Periodic magnetoacoustic wave with
discontinuities

We focus on the periodic velocity in the magnetoacoustic wave
that is sawtooth initially. Its initial variations over one period T0 is
determined by the formula

V
V0
¼

1� 2
s
T0
; 0 � s � T0

2

�1� 2
s
T0
; �T0

2
� s < 0;

8>>><
>>>:

(3.4)

where V0 denotes an amplitude of the periodic perturbation and T0 is
its period at a transducer which is situated at z¼ 0. Dynamics of the
periodic sawtooth velocity of unmagnitized gas in the Cauchy problem
was considered by Landau and Lifshitz.21 At any distance from a
transducer, the shape of a signal remains saw-edged. Figure 2 exhibits
the distortions of one period of velocity in the course of propagation.
The current amplitude vA depends on the distance from a transducer
in the following manner:

vA ¼ VAeDz ¼
V0eDz

1þ 2eV0ðeDz � 1Þ
DC2T0

; D 6¼ 0;

vA ¼
V0

1þ 2eV0z
C2T0

; D ¼ 0:
(3.5)

The conclusion is that vA tends to zero if D< 0 and tends to

vA;1 ¼
DC2T0

2e
(3.6)

if D> 0 when the distance from a transducer z enlarges infinitely. The
limit does not depend on the initial magnitude of a triangular signal,
V0 and is proportional to its period T0 which does not vary with the
distance from a transducer. Quantities D, C, and e depend on the

FIG. 2. Variation of velocity in the sawtooth periodic perturbation in the course of
propagation, if D 6¼ 0. If D¼ 0, Z¼ z, and V¼ vz.
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magnetic strength, plasma-b, and the angle between the magnetic field
and wave vector. Figure 3 shows the limiting magnitude of a periodic
signal vA,1 when z tends to infinity and D is positive (that is, c20Lp
þLq > 0). The first row in plots in Fig. 3 concerns fast wave perturba-
tions, and the second row relates to the slow ones. The limiting values
at h¼ 0 and h ¼ p depend on the domain of plasma-b. If h¼ 0 or
h¼p, the limiting magnitude changes abruptly at b ¼ 2

c. In the case of

the fast magnetosound perturbations and b < 2
c ; vA;1 ¼ 0, and in the

case b > 2
c ; vA;1 ¼ ðc

2
0LpþLqÞT0

c20

c�1
cþ1. In the case of slow perturbations,

vA,1¼ 0 jumps at b ¼ 2
c from

ðc20LpþLqÞT0

c20

c�1
cþ1 until 0. In all evaluations,

c ¼ 5/3. As for h ¼ p/2 and case of slow modes, C¼ 0 and hence the
limiting value of magnitude of velocity formally equals zero for any b.
The theory does not consider the case C¼ 0 that does not reflect a
wave process. The averaged over the period energy of a unit mass of a
plasma equals

E ¼ 1
T0

ðT0=2

�T0=2
v2ðs; zÞds:

It varies with a distance from a transducer and depends on h, plasma-
b, and degree of nonequilibrium, and it is proportional to v2A. When
jDjz tends to infinity and D< 0, it behaves as e2Dz, and it tends to
D2C4T2

0
4e2 E0 in the case of positiveD, where E0 is the averaged over period

kinetic energy of a unit mass at a transducer.

B. The sawtooth impulse

Evolution of triangular at a transducer positive impulse of velocity
with an initial duration T0 is shown in Fig. 4. Excess density and pres-
sure in this impulse are also positive. We make use of Eq. (3.3) and Fig.
4 in evaluations of the magnitude at the front of the triangular impulse

vA ¼ VAeDz ¼
V0eDzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eV0ðeDz � 1Þ
DC2T0

s ; D 6¼ 0;

vA ¼
V0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eV0z
C2T0

r ; D ¼ 0:

(3.7)

FIG. 3. Magnitude of velocity in the periodic sawtooth magnetosound waves with discontinuities in the acoustically active plasma with D> 0 for different domains of b: 0 � b
� 2/c (left panel) and 2/c � b (right panel). The top row corresponds to fast perturbations and the bottom row corresponds to slow perturbations.
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Its duration T varies with a distance from a transducer and equals

T ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eV0ðeDz � 1Þ

DC2T0

s
; D 6¼ 0;

T ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eV0z

C2T0

r
; D ¼ 0:

If D< 0, vA tends to zero at jDjz !1, and T tends to

T1 ¼ T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eV0

DC2T0

r
:

If D> 0, vA enlarges at large distances zD� 1 as CeDz=2
ffiffiffiffiffiffiffiffiffiffi
V0DT0

e

q
, and

T enlarges as eDz=2
C

ffiffiffiffiffiffiffiffiffi
eV0T0
D

q
. Hence, while T tends to the limiting value

T1 for D< 0, it increases infinitely for D> 0. For magnetosound per-
turbations such as a wave process, condition (2.6) must be satisfied
with variable characteristic duration of an impulse, T. It might be bro-
ken with increase of the period, especially probably for positive D and

large b, b > 2
c. Figure 5(a) shows the limiting duration of the triangular

impulse in the case D< 0. The surface is determined by the value
V0c0

T0ðc20LpþLqÞ which in fact is the ratio of the Mach number of a signal at a

transducer in the unmagnetized plasma, M ¼ V0
c0
, and a parameter

responsible for deviation from the adiabaticity of a flow, ðc
2
0LpþLqÞT0

c20
.

The ratio may vary in dependence on a balance between nonlinearity
and nonisentropicity of a flow. Inequality Eq. (2.7) is valid for a wave
processes with any b and h, andM is a small parameter, at least for the
fast magnetosound perturbations. Figure 5(b) concerns the caseD> 0.
Evolution of vA at large distances from a transducer, Dz� 1, is shown
in Fig. 6. The kinetic energy of the unit mass of a plasma averaged
over the duration of an impulse, equals

E ¼ 1
T

ðT
0

v2ðs; zÞds ¼ E0
e2Dz

1þ eV0ðeDz � 1Þ
DC2T0

; D 6¼ 0;

E ¼ E0

1þ eV0z
C2T0

; D ¼ 0:

It tends to zero proportionally to e2Dz when jDjz tends to infinity for
negative D and increases as eDzDC2T0

eV0
E0 for positive D. An impulse is

more effective in transferring of energy than the periodic sawtooth
signal.

IV. CONCLUDING REMARKS

The underlying assumption in this study is that the system of
ideal MHD equations is applicable. Hence, spatial and temporal scales
of perturbations in a flow must be much larger than gyrokinetic scales.
The model imposes equal temperature of ions and electrons, the
Maxwellian distribution function for particle momenta, and deals with
plasma’s equilibrium quantities. The MHD system does not consider
relativistic and quantum effects.22,23 The ideal gas equation of state
completes the system of MHD equations. Most astrophysical plasmas

FIG. 4. Variation of the magnitude and duration of the triangular impulse in the
course of propagation, if D 6¼ 0. If D¼ 0, Z¼ z, and V¼ vz.

FIG. 5. (a) The limiting duration of the triangular impulse T1 in the case D< 0 and fast magnetosound perturbations. The plot corresponds to V0c0
ðc20LpþLqÞT0

¼ �10. (b) The case
D> 0, fast magnetosound perturbations, and duration of the triangular impulse at large distances from a transducer, Dz� 1.
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are well described by the equation of state for an ideal gas. The contri-
bution of the interparticle potential energies is less than ten percent of
the kinetic energies in a fully ionized gas. The recent studies demon-
strate that even coupled system of particles can be described by the
equation of state for an ideal gas.24 Ideal gas law is no longer valid in
very cool and dense plasmas, or in the case of quantum degeneracy.

The exact solution of Eq. (3.2), which is sinusoidal at z¼ 0 with
period T0, reads

vz ¼V0 expðDzÞ
X1
n¼1

2JnðnK�1ðexpðDzÞ�1ÞÞsinð2pnðt� z=CÞ=T0Þ
nK�1ðexpðDzÞ�1Þ ;

D 6¼ 0;

vz ¼V0

X1
n¼1

2Jn
2peV0z
C2T0

n

� �
sinð2pnðt� z=CÞ=T0Þ

2peV0z
C2T0

n
; D¼ 0; (4.1)

where K ¼ DC2T0
2peV0

: It is valid before formation of a discontinuity,6 that
is, if

0 < z < zsh ¼ lnð1þ KÞD�1; D 6¼ 0;

0 < z < zsh ¼
C2T0

2peV0
; D ¼ 0:

A discontinuity always forms in acoustically active flows with D> 0 at
the distance zsh, and does not form at all if K� �1.

In this study, the sawtooth like signals are considered. Once a
discontinuity has formed at a transducer, it spreads without
destruction independently of acoustical activity of a flow. This is
important difference with respect to the case of initially harmonic
excitation that may lead to formation of a discontinuity at some
distance from a transducer. The signal remains triangular with var-
iable amplitude and duration (in the case of an impulse). The con-
clusions relate to a flow without mechanical and thermal losses,
and electrical resistivity. Equation (3.2) supplemented by the terms
responsible for viscous and thermal damping, takes the leading-
order form

@V
@Z
� e
C2

V
@V
@s
� a
2C3ðZDþ 1Þq0

@2V
@s2
¼ 0; (4.2)

FIG. 6. The case D> 0 and fast magnetosound perturbations (top row) and slow magnetosound perturbations (bottom row). The amplitude of velocity in the triangular impulse
at large distances from a transducer, Dz� 1. Left panels: 0 � b < 2/c; right panels: 2/c < b.
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where a is responsible for attenuation of sound due to the bulk and
shear viscosity, thermal conduction, and finite electrical conductivity

a ¼ C4 þ C2ð6c20 � C2
AÞ � 3c20ðc20 þ C2

AÞ
3c20ð2C2 � c20 � C2

AÞ
gþ C2ðC2 � C2

AÞ
c20ð2C2 � c20 � C2

AÞ
n

þ C2 � C2
A

2C2 � c20 � C2
A

1
CV
� 1
Cp

� �
jþ C2 � c20

2C2 � c20 � C2
A

q0

l0r
:

The quantities g, n, and j designate shear viscosity, bulk viscosity, and
thermal conductivity, respectively, and CV, Cp is the heat capacities
under constant volume and pressure; r is the electrical conductivity of
a fluid (the reciprocal of electrical resistivity). If D¼ 0, Eq. (4.2) rear-
ranges to the Burgers equation which may be solved exactly.8,19,21

Equation (4.2) contains a variable with the distance from a transducer
damping factor by @

2V
@s2 tending to zero if D> 0. Hence, the conclusions

of this study are longer valid in acoustically active flows since the non-
linear effects increasingly prevail over attenuation. If the effective
Reynolds number of a flow is initially high, Re ¼ V0CT0

a � 1, it holds
high at any distance from a transducer and a flow is mostly governed
by nonlinearity. With a high degree of accuracy, the conclusions are
valid in the equilibrium flow withD< 0 when nonlinear effects remain
stronger than attenuation, that is, at distances from a transducer satis-

fying inequality z � 1
D ln

Re�1
e

� �
; which in turn demands the large ini-

tial Reynolds number.
This study considers ideal MHD flow of the planar geometry

with constant equilibrium magnetic strength forming a constant angle
h with the wave vector, and weak distortions associated with nonisen-
tropicity of wave perturbations over their characteristic duration.
There is no restriction concerning strength of the magnetic field in
this study, and hence, on the plasma-b. Features of waves with discon-
tinuities are studied as functions of h and plasma-b. The results may
be addressed to different kinds of the function L(p, q), and to low
plasma parameter b (for example, a cold plasma in the inner magneto-
sphere), or finite plasma-b (for example, a rarefied plasma of the outer
magnetosphere affected by a weak magnetic field). It is assumed that
L(p0, q0)¼ 0. This is justified by the weakness of deviation from adia-
baticity. Otherwise, the background thermodynamic parameters vary,
and the mathematical description becomes fairly difficult.

This paper brings out some new interesting features of dynamics
of initially sawtooth periodic and impulsive signals in a plasma.
Particularly, in equilibrium flows, the magnitude of an impulse tends
to zero, but its duration tends to some limit at large distances from a
transducer. The amplitude of periodic velocity in acoustically active
flow tends to a limit that does not depend on initial magnitude, but on
the equilibrium magnetic strength, angle between the magnetic
strength, and the wave vector, b-plasma, and a kind of heating-cooling
function. So there is an autowave form, with amplitude that is fully
prescribed by the plasma and is independent from the initial condi-
tions. Chin et al. have analyzed the evolution of the sinusoidal signal
numerically for some parameters of a flow and established the station-
ary asymptotic solution in thermoconducting active flow analytically
(approximately, in the form of the shock wave, despite thermal con-
ductivity preventing formation of the exact sawtooth). Its amplitude is
given by Eq. (3.2) from Ref. 9 and coincides with Eq. (3.6) for weak
thermal conduction, having in mind that l1¼�CD, and k¼CT0.
Equation (3.5) describes not only the asymptotic solution at large

distances, but at any distance, and refers to the periodic sawtooth sig-
nal at a transducer. The particular case

2eV0

DC2T0
¼ 1

leads to a periodic waveform with the amplitude vA¼V0 that is inde-
pendent of z.

The character of propagation of periodic or impulsive perturba-
tions may be useful in the analysis of plasma parameters and processes
within, which are difficult or even impossible for direct measurement.
This is so-called seismological techniques that could be applied in
remote prediction of plasma’s features, in particular, in coronal
plasma. The idea of making use of wave parameters in the detection of
properties of the medium is rapidly developing and promising.25
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