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0. Introduction

J.C. Becker and D.H. Gottlieb have introduced an extremely useful generalization of the concept of homotopy called otopy
(see for instance [3,4,7]). The main advantage of using otopies is that otopy relates maps with not necessarily the same
domain (the local maps of Definition 1.1). Furthermore, otopy theory turns out to be fruitful in equivariant degree theory
(see [2,6]).

Our main result is the following theorem: the inclusion of the space of proper gradient local maps into the space of all
proper local maps induces a bijection between the sets of connected components of these spaces i.e. between the respective
otopy classes of local maps. We expected this result to be true (see [1, Remark 2.2]), but were not able to prove at that
moment due to many technical difficulties. The result may be regarded as a version of Parusiński’s Theorem (see [9] for
details) and as a special (simplest) case of the following conjecture: the above inclusion is a (weak) homotopy equivalence.

It is worth pointing out that the advantage of using proper local maps instead of all local maps is that the space of
proper local maps is a “very nice” metrizable space. In fact, it is homeomorphic to the space of based continuous maps of
the n-sphere into itself.

However, the proof of our main result is more difficult compared to that concerning all local maps presented in [1].
The paper is arranged as follows. Section 1 presents some preliminaries from otopy theory for local maps. Section 2

contains a discussion of our result with some comments. This result is proved in Section 4. In Section 3 we introduce
canonical, elementary and standard maps. Sections 5, 6 and 7 contain proofs of key lemmas needed in Section 4. Finally,
Appendix A presents three technical facts used in Section 5.

* Corresponding author.
E-mail addresses: pb@mat.ug.edu.pl (P. Bartłomiejczyk), piotrnp@wp.pl (P. Nowak-Przygodzki).
URL: http://pb.mat.ug.edu.pl (P. Bartłomiejczyk).

1 The second author was supported by the Ministry of Science and Higher Education, Poland, grant No. NN201373236.
0166-8641/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.topol.2012.04.014

http://dx.doi.org/10.1016/j.topol.2012.04.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
mailto:pb@mat.ug.edu.pl
mailto:piotrnp@wp.pl
http://pb.mat.ug.edu.pl
http://dx.doi.org/10.1016/j.topol.2012.04.014


P. Bartłomiejczyk, P. Nowak-Przygodzki / Topology and its Applications 159 (2012) 2570–2579 2571

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 1. Domain of the otopy and its zeros.

1. Preliminaries

The notation A � B means that A is a compact subset of B .

Definition 1.1. A continuous map f : U → R
n is called a local map if

• U is an open subset of Rn ,
• f −1(0) � U .

We will often write such maps as pairs ( f , U ), pointing out their domains.

The set-theoretic union of two local maps f and g with disjoint domains will be denoted by f � g . Recall that a local
map ( f , U ) is called gradient if there is a C1-function ϕ : U → R such that f = ∇ϕ . The function ϕ is called the potential
of f . A local map is proper if preimages of compact subsets are compact. In the sequel, we will also use the following
equivalent characterization of proper local maps: for every sequence {xk} ⊂ U with no accumulation point in U we have
limk→∞ ‖ f (xk)‖ = ∞.

We will consider the set of all local maps, denoted by F(n), and the following subsets:

F∇(n) := {
f ∈ F(n)

∣∣ f is gradient
}
,

P(n) := {
f ∈ F(n)

∣∣ f is proper
}
,

P∇(n) := F∇(n) ∩P(n).

Immediately from the above definitions we obtain the following commutative diagram of inclusions:

P∇(n) P(n)

F∇(n) F(n)

(1.1)

Let I = [0,1].

Definition 1.2. A continuous map h : Ω → R
n is called an otopy if

• Ω is an open subset of Rn × I ,
• h−1(0) �Ω ,

see Fig. 1.

Given an otopy (h,Ω) we can define for each t ∈ I sets Ωt = {x ∈ R
n | (x, t) ∈ Ω} and maps ht : Ωt → R

n with ht(x) =
h(x, t). Note that from the above ht may be the empty map.

Definition 1.3. If (h,Ω) is an otopy, we say that (h0,Ω0) and (h1,Ω1) are otopic (written h0 ∼ h1 or (h0,Ω0) ∼ (h1,Ω1)).

Remark 1. Of course, otopy gives an equivalence relation on F(n). The set of otopy classes of local maps will be denoted by
F [n]. Observe that if ( f , U ) is a local map and V is an open subset of U such that f −1(0) ⊂ V , then ( f , U ) and ( f |V , V )

are otopic. In particular, if f −1(0) = ∅ then ( f , U ) is otopic to the empty map.
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Apart from the usual otopies, we will consider otopies that satisfy some additional conditions, namely:

• gradient i.e. h(x, t) = ∇xχ(x, t) for some not necessarily continuous function χ such that χt is C1 for each t ∈ I ,
• proper i.e. h is proper,
• proper gradient.

The sets of respective otopy classes in F∇(n), P(n), P∇(n) will be denoted by F∇[n], P[n], P∇[n]. We will abbreviate proper
gradient otopic to pg-otopic.

Remark 2. In [1] we use the stronger definition of the gradient otopy. However, it is easy to see that the results of [1]
are not affected if in [1] we replace the stronger definition with the above weaker one. Moreover, the replacement of the
definition is mainly motivated by the following expectation: paths in P∇(n) should bijectively correspond to proper gradient
otopies (see below for the definition of topology in P∇(n)).

Let Σn = Rn ∪ {∗} denote the one-point compactification of R
n . It is a pointed space with base point ∗. We will write

M∗Σn for the set of pointed continuous maps from Σn to Σn . With every map f ∈ M∗Σn one associates a proper local
map ( f � f −1(Rn), f −1(Rn)). Conversely, if ( f , U ) ∈P(n), then the map f + : Σn → Σn given by

f +(x) =
{

f (x) if x ∈ U ,

∗ otherwise,

is continuous. Using this observation we see that the map

μ : P(n) → M∗Σn,

μ
(
( f , U )

) = f +

is a bijection. Since M∗Σn is equipped with the supremum metric, P(n) also has the metric structure induced by the
pullback.

2. Main result

The diagram (1.1) induces the following commutative diagram of maps between sets of otopy classes (all the maps are
induced by inclusions).

P∇[n] a−−−−→ P[n]
b

⏐⏐	
⏐⏐	c

F∇[n] d−−−−→ F[n]
(2.1)

Let us formulate the main result of this paper.

Theorem A. All the maps in the diagram (2.1) are bijections.

Remark 3. It is worth pointing out that our result includes a version of Parusiński’s Theorem: the maps a and d are
bijections. However, our proof makes no appeal to the original proof of Parusiński.

It is clear from the topological degree theory [e.g. 5, Ch. II and Ch. IV] that all the maps in the following commutative
diagram are bijections.

M∗[Σn]

deg

P[n]
deg

F[n]

deg

Z

Consequently, the map c in the diagram (2.1) is bijective. But in [1] we proved that deg : F∇[n] → Z is a bijection, so it is
clear from diagram (2.2)
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F[n]
deg

F∇[n] deg
Z P[n]

deg

P∇[n]
deg

(2.2)

that all the solid arrows represent bijections. Therefore the true difficulty in proving Theorem A lies in the following:

Theorem B. deg :P∇[n] → Z is bijective.

We will see that, in fact, only injectivity causes a problem.

3. Canonical, elementary and standard maps

We shall consider the open unit ball B := {x ∈ R
n | ∑

i x2
i < 1} and the open unit cube C := {x ∈ R

n | maxi |xi | < 1}.

Let |ci| = 1 for i = 1, . . . ,n. If ϕ(x) =
∑n

i=1 ci x2
i

1−∑n
i=1 x2

i
, then ∇ϕ : B → R

n is called ball-canonical and if ϕ(x) = ∑n
i=1

ci x2
i

1−x2
i

, then

∇ϕ : C → R
n is called cube-canonical. We say that two maps ball-canonical and cube-canonical are of the same type if both

of them have the same sequence of coefficients {ci}n
1. Moreover, if ϕ(x) = ∑n

i=1
x2

i

1−x2
i

, then ∇ϕ : C → R
n is called plus-

elementary and if ϕ(x) = −x2
1

1−x2
1

+ ∑n
i=2

x2
i

1−x2
i

, then ∇ϕ is called minus-elementary. The center of domains of all above maps is

the origin of Rn , but in the sequel we will use the same terminology for translations of the these maps to any point. Note
that such translations are evidently proper gradient otopies. Finally, for l ∈ N a finite disjoint union of l plus-elementary
(resp. minus-elementary) maps is called l-standard (resp. (−l)-standard).

4. Proof of Theorem B

The proof of Theorem B is based on the following lemmas, which will be proved in the next three sections. In fact, it is
easy to see that Theorem B is an immediate consequence of Corollary 4.5.

Lemma 4.1. Any proper gradient local map is pg-otopic to a finite disjoint union of ball-canonical maps.

Lemma 4.2. Any ball-canonical map is pg-otopic to cube-canonical one of the same type.

Lemma 4.3. Any two cube-canonical maps with different coefficients at only one position annihilate i.e. their union is pg-otopic to the
empty map.

Corollary 4.4. Any cube-canonical map is pg-otopic to some elementary map.

Proof. Let ϕ be cube-canonical and 1 < k � n. By Lemma 4.3 ∇ϕ is pg-otopic to ∇ϕ � ∇ψ � ∇ξ , where ∇ψ and ∇ξ are
also cube-canonical, ψ has only the first coefficient and ξ has only the first and k-th coefficient different from those of ϕ .
Since ∇ϕ and ∇ψ also annihilate, ∇ϕ is pg-otopic to ∇ξ . That means that using a proper gradient otopy we are able to
replace a given cube-canonical map with one having coefficients changed on exactly two positions: first and k-th. Repeating
the above procedure it is possible in the end to obtain an elementary map. �
Corollary 4.5. For each l ∈ Z any proper gradient local map of degree l is pg-otopic to an l-standard map.

Proof. Let ∇ϕ ∈ P∇(n) with deg∇ϕ = l. By Lemma 4.1 ∇ϕ is pg-otopic to a finite union of ball-canonical maps. From
Lemma 4.2 we can replace all of them with cube-canonical maps. Similarly, by Corollary 4.4 we can replace cube-canonical
maps with elementary maps. Finally by Lemma 4.3 pairs of elementary maps of different signs annihilate, so we obtain an
l-standard map. �
5. Proof of Lemma 4.1

Let ( f , U ) ∈ P∇(n) with f = ∇ϕ . The proof will be divided into 5 steps. Each of them represents a proper gradient
otopy. In the first we replace the initial potential by a Morse function. Next, in the Step 2, we replace the Morse function
by a locally quadratic potential. Step 3 shows how to blow up the domain U to obtain big enough neighborhoods of critical
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points. In Step 4 we restrict the domain to the disjoint union of unit balls. Finally, Step 5 transforms matrices in the formulas
to the diagonal form.

Step 1. We deform the potential ϕ to a Morse function ϕM . By density of the Morse functions and openness of the proper
vector fields (see [8]) we can choose a Morse function ϕM such that the straight-line homotopy of potentials (1 − t)ϕ + tϕM

induces a proper gradient homotopy.

Step 2. Let us denote by Br(p) the open r-ball around p and let Br := Br(0).
We deform the potential ϕM to some potential ψ satisfying

• Crit(ϕM) = Crit(ψ),
• there is ε > 0 such that for each p ∈ Crit(ψ) the map ψ is a nondegenerate quadratic form around p i.e.

ψ�Bε (p)(x) = (x − p)T Ap(x − p)

for some nondegenerate symmetric matrix A p ,
• Bε(p) ∩ Bε(q) = ∅ for p �= q,
• cl Bε(p) ⊂ U

via homotopy being proper on gradients.
Let x = 0 be a critical point of ϕM . We have

ϕM(x) = 1

2
xT H0ϕM x + R(x),

where R(x) is C2-function such that R(x) = o(‖x‖2). Note that it implies that ‖∇R(x)‖ = o(‖x‖).
There exists a C∞-function η : [0,∞) → [0,1] satisfying

• η(x) :=
{

1 if x ∈ [0,1],
0 if x � 2,

• |η′(x)| < 2 for all x ∈ [0,∞).

Define λ : Rn → R by the formula λ(x) := η(‖x‖/ε). Observe that ‖∇λ(x)‖ < 2/ε for x ∈R
n . Set

χ(x, t) := 1

2
xT H0ϕM x + (

1 − tλ(x)
)

R(x)

for (x, t) ∈ U × I . Obviously, the homotopy χ does not change ϕM outside B2ε . Finally, set ψ(x) := χ(x,1). We will show
that there is ε > 0 such that x = 0 is the only zero of ∇ψ in B2ε . Let c := min‖x‖=1 ‖H0ϕm‖. We choose ε > 0 such that
in B2ε ,

• |R(x)| < c
16 ‖x‖2,

• ‖∇R(x)‖ < c
4 ‖x‖.

Then for x ∈ B2ε ,

∥∥∇ψ(x)
∥∥ = ∥∥H0ϕM(x) + ∇(

1 − λ(x)
) · R(x) + (

1 − λ(x)
) · ∇R(x)

∥∥
� c · ‖x‖ − 2

ε

c

8
ε‖x‖ − c

4
‖x‖ = c

2
‖x‖

which is our claim.
Above we have defined χ in case of one critical point (x = 0). Of course, we can define χ in the similar way near each

point of Crit(ϕM).

Step 3. If ε from Step 2 is less than 1 we define

• Ωt := 1
(1−t)+tε U ,

• α(x, t) := ψ[((1 − t) + tε)x].
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Fig. 2. Function gρ .

Observe that for p ∈ Crit(ψ),

α1(x) = ψ(εx) =
(

x − p

ε

)T

A′
p

(
x − p

ε

)

on B1(p/ε), where A′
p = ε2 A p .

Step 4. We construct a proper gradient otopy ∇xβ between ∇α1 = ∇β0 and ∇β1, where β1 is defined not on the whole U ,
but only on unit balls around critical points of α1. Let g1 : [0,1) → [1,∞) be given by g1(x) = 1

1−x2 . Consider the family of
auxiliary functions gρ : [0,1] → [1,∞) indexed by the real parameter ρ ∈ [0,1) and uniquely determined by the conditions
(see Fig. 2)

• gρ�[0,ρ] ≡ g1�[0,ρ] ,
• gρ is a quadratic polynomial on [ρ,1],
• gρ is C1-function such that g′

ρ(1) = 0.

We define otopy (∇xβ,Ω) by

• Ωt :=
{

U if t ∈ [0,1),⋃
p∈Crit(α1) B1(p) if t = 1,

• β(x, t) :=
{

gt(‖x − p‖) · α1(x) if t ∈ [0,1] and x ∈ B1(p),

gt(1) · α1(x) otherwise.

Observe that

• β0 = α1,

• β1(x) = 1
1−‖x−p‖2 (x − p)T A′

p(x − p) for x ∈ B1(p),

• (∇xβ,Ω) is proper by Corollary A.2 applied to each ball B1(p) and the family of functions gρ .

Step 5. It is enough to consider one fixed ball centered at p = 0. Let us define otopy (∇xγ ,Ω) by

• Ω := B1 × I ,

• γ (x, t) := 1
1−‖x‖2 (x)T At(x), where At is a path in GLn(R) ∩ Symm(n) connecting A to some diagonal matrix with ±1 on

the diagonal.

Observe that (∇xγ ,Ω) is proper by Corollary A.3. �
6. Proof of Lemma 4.2

Suppose that ∇ϕ is ball-canonical (see Section 3). There is no loss of generality in assuming that the potential ϕ : B → R

has the form

ϕ(x, y) :=
∑m

i=1 x2
i − ∑l

j=1 y2
j

1 − ∑m
i=1 x2

i − ∑l
j=1 y2

j

,

where m + l = n. Set

http://mostwiedzy.pl
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Fig. 3. Transformation of the domain Ωt .

S(x, y, t) := 1 − t
m∑

i=1

x2
i − t

l∑
j=1

y2
j ,

Fi(x, y, t) := S(x, y, t) − (1 − t)x2
i for 1 � i �m,

G j(x, y, t) := S(x, y, t) − (1 − t)y2
j for 1 � j � l.

Define

• Ω := {(x, y, t) | t ∈ I, Fi > 0, G j > 0 for all i, j},

• χ(x, y, t) := ∑m
i=1

x2
i

F i
− ∑l

j=1
y2

j
G j

.

Observe that

χ0(x, y) =
m∑

i=1

x2
i

1 − x2
i

−
l∑

j=1

y2
j

1 − y2
j

and χ1 = ϕ.

The otopy (∇xχ,Ω) connects the cube-canonical χ0 with the ball-canonical χ1.

Example. Let m = l = 1. Then

• Ωt = {(x, y) | 1 − x2 − ty2 > 0, 1 − tx2 − y2 > 0},

• χ(x, y, t) = x2

1−x2−ty2 − y2

1−tx2−y2 .

So χ0(x, y) = x2

1−x2 − y2

1−y2 (cube-canonical) and χ1(x, y) = x2−y2

1−x2−y2 (ball-canonical), see Fig. 3.

What is left is to show that (∇xχ,Ω) is proper i.e. if the sequence {(wk, tk)} ⊂ Ω has no accumulation point in Ω , then
‖∇xχ(wk, tk)‖ → ∞. So assume that {(wk, tk)} ⊂ Ω has no accumulation point in Ω . In particular,

min
i, j

{
Fi(wk, tk), G j(wk, tk)

} → 0 with k → ∞.

Note that the proof will be completed by showing the following claim.

Claim. If mini, j{Fi, G j}� 1/2, then

∥∥∇xχ(wk, tk)
∥∥ � 1

2(m + 1)(l + 1)
· 1

mini, j{Fi, G j} .

We first observe that if mini, j{Fi, G j} � 1/2, then

∀ j y2
j <

1 �⇒ x2
r := max

{
x2

i

}
� 1

. (6.1)

2(m + 1)l i 2(m + 1)
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Conversely, suppose that

∀ j y2
j <

1

2(m + 1)l
and ∀i x2

i <
1

2(m + 1)
.

Then
∑

i x2
i + ∑

j y2
j < 1/2 and hence, by the definition of Fi and G j , Fi > 1/2 and G j > 1/2 for all i, j, contrary to our

assumption.
Similarly,

∀i x2
i <

1

2(l + 1)m
�⇒ y2

s := max
j

{
y2

j

}
� 1

2(l + 1)
. (6.2)

Let us compute

∂χ

∂xr
= 2xr

(∑
i

tx2
i

F 2
i

−
∑

j

ty2
j

G2
j

+ S

F 2
r

)
:= 2xr Ar,

∂χ

∂ ys
= 2ys

(∑
i

tx2
i

F 2
i

−
∑

j

ty2
j

G2
j

− S

G2
s

)
:= 2ys Bs.

Now we only need to consider the following three cases (by (6.1) and (6.2) at least one of them holds). Since |xi |, |y j| � 1,
we will use the inequalities |xi | � x2

i and |y j| � y2
j .

Case 1. ∀ j y2
j < 1

2(m+1)l By (6.1) x2
r := maxi{x2

i }� 1
2(m+1)

and so x2
r >

∑
j y2

j , which implies Fr := mini, j{Fi, G j}. This gives

∑
i

tx2
i

F 2
i

−
∑

j

ty2
j

G2
j

�
∑

i

tx2
i

F 2
i

− tx2
r

F 2
r
� 0

and hence finally∣∣∣∣ ∂χ∂xr

∣∣∣∣ = |2xr ||Ar |� 1

m + 1
· S

F 2
r
� 1

m + 1
· 1

mini, j{Fi, G j} .

Case 2. ∀i x2
i < 1

2(l+1)m Analogous reasoning shows that

∣∣∣∣ ∂χ

∂ ys

∣∣∣∣� 1

l + 1
· 1

mini, j{Fi, G j} .

Case 3. ∃r,s x2
r := maxi{x2

i }� 1
2(l+1)m and y2

s := max j{y2
j }� 1

2(m+1)l By definition,

Ar − Bs = S

F 2
r

+ S

G2
s
� 1

Fr
+ 1

Gs
� 1

mini, j{Fi, G j} .

Hence max{|Ar |, |Bs|}� 1
2 mini, j{Fi ,G j} and, in consequence,

max

{∣∣∣∣ ∂χ∂xr

∣∣∣∣,
∣∣∣∣ ∂χ

∂ ys

∣∣∣∣
}

= max
{

2|xr ||Ar |,2|ys||Bs|
}

� 1

2(m + 1)(l + 1)
· 1

mini, j{Fi, G j} .

Combining all the above cases we immediately get our claim. �
7. Proof of Lemma 4.3

To simplify notation we restrict ourselves to showing Lemma 4.3 for two elementary maps of different signs. Further-
more, the otopy parameter t will run the interval [−1,1] instead of the usual [0,1] to get nice formulas. Let us define the
domain
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Fig. 4. Annihilation of elementary maps on potentials.

• Ωt :=
{ {(x, t) | 0 < |x1| < 2, |xi | < 1 for i > 1} if t = −1,

{(x, t) | |x1| < 1 − t, |xi | < 1 for i > 1} if t ∈ (−1,1],
• Ω := ⋃

t∈[−1,1] Ωt .

and the otopy potential (see Fig. 4),

χ(x, t) :=

⎧⎪⎪⎨
⎪⎪⎩

−(x1−t)2

1−(x1−t)2 + ∑
i>1

x2
i

1−x2
i

+ sgn (t + 1) t2

1−t2 for −1 + t < x1 � 0,

(x1−t)2

1−(x1−t)2 + ∑
i>1

x2
i

1−x2
i

− sgn (t + 1) t2

1−t2 for 0 � x1 < 1 − t.

Note that Ω1 = ∅. It is easy to see that (∇xχ,Ω) is a proper gradient otopy. �
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Appendix A

For a matrix A, let μ(A) := min‖x‖=1 ‖Ax‖. Note that if A ∈ GLn(R), then μ(A) > 0. Let us denote by Symm(n) the set of
n × n real symmetric matrices.

Proposition A.1. If

• A ∈ Symm(n),

• g ∈ C1([0,1),R+) with g′ � 0,

• ϕ : B1 → R is given by ϕ(x) := g(‖x‖) · xT Ax,

then ‖∇ϕ(x)‖ � 2g(‖x‖)μ(A)‖x‖.

Proof. Since

∇ϕ(x) = g′(‖x‖) · xT Ax

‖x‖ · x + g
(‖x‖) · 2Ax := w1 + w2,

we have

w1 · w2 = 2g′(‖x‖)g
(‖x‖) (xT Ax)2

‖x‖ � 0.

Hence
∥∥∇ϕ(x)

∥∥ � ‖w2‖ � 2g
(‖x‖)μ(A)‖x‖. �

Corollary A.2. Let A ∈ GLn(R) ∩ Symm(n). Assume that we have a family of functions {gρ}ρ∈I such that

• gρ ∈ C1([0,1),R+),
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• g′
ρ � 0,

• lim ρ→1
x→1

gρ(x) = ∞.

Let ϕρ : B1 →R be given by ϕρ(x) := gρ(‖x‖) · xT Ax. Then

lim
ρ→1

‖x‖→1

∥∥∇ϕρ(x)
∥∥ = ∞.

Corollary A.3. If

• A : I → GLn(R) ∩ Symm(n) is continuous,
• Ω := B1 × I ,
• χ : Ω →R is given by χ(x, t) := 1

1−‖x‖2 xT At x,

then (∇xχ,Ω) is a proper gradient otopy.

Proof. Assume that a sequence {(xn, tn)} ⊂ Ω has no accumulation points in Ω (i.e. ‖xn‖ → 1). Let μ := mint∈I μ(At). Of
course, μ > 0. There is no loss of generality in assuming that ‖xn‖ � 1/2. By Proposition A.1

∥∥∇xχ(xn, tn)
∥∥ � 1

1 − ‖xn‖2
μ(Atn ) �

1

1 − ‖xn‖2
μ → ∞,

which completes the proof. �
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