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with semi-definite programming, the randomness obtained from random number generators based on dimension
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role of an assumption about the trace of the measurement operators and a way to avoid it. The method is also
generalized to systems of arbitrary dimension and for a more general form of dimension witnesses than in our
previous paper. Finally, we introduce a procedure of dimension witness reduction, which can be used to obtain
from an existing witness a new one with a higher amount of certifiable randomness. The presented methods find
an application for experiments [J. Ahrens, P. Badziag, M. Pawlowski, M. Zukowski, and M. Bourennane, Phys.
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I. INTRODUCTION

Nowadays information is one of the most important
resources. However, it is very difficult to develop a re-
liable pseudo-random-number-generation (PRNG) method.
Although there exist tests [1] that allow us to check whether
a sequence of numbers conforms to a particular probability
distribution, we can never be sure of its security without
the knowledge of how the sequence was generated. If we
know the pseudo-random-generating algorithm and the ini-
tial seed (or some sequence of generated numbers), then
we can predict every sequence of numbers that will ever
be obtained. All classical PRNGs have this significant [2]
drawback.

On the other hand, quantum physics confuses philosophers
with randomness on its deepest level. This randomness
is unavoidable. We know that certain processes must be
intrinsically random, or we would have to abandon some ideas
that are fundamental to all physical theories. In this way the
idea of the quantum randomness certification emerged [3]. If
we want to be sure that a device does really produce random
numbers, we perform a Bell experiment [4], which is a kind of
self-testing. It works independently of the internal construction
of the device used: if a value obtained in the experiment attains
a certain threshold, we are sure that the generated results
are indeed random, even if the device has been prepared
by a malevolent party. The amount of the obtained secure
randomness is precisely quantified by means of min-entropy
[5–8]. This approach, in which we do not trust the vendor
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of our devices and draw conclusions only from the observed
results, is called the device-independent (DI) approach [9].

Still, Bell experiments are very difficult to perform, since
they require a high degree of precision and extremely high de-
tection efficiencies. Now, suppose we send a state from one part
of the device to another. Then we do not have any nonlocality,
which is crucial for this method of certification. It was shown
that, if we can bound the dimension of the communicated
system, we still may use the prepare and measure scheme
and certify the randomness [10]. Since we have to know
something about the construction of the device, this approach is
called the semi-device-independent (SDI) approach [11,12]. It
offers a good compromise between security and experimental
feasibility. In this framework, analogs of Bell inequalities,
called dimension witnesses [10,13–16], are used.

Before we proceed we should stress that what we call ran-
dom number generation is in fact a randomness expansion, the
process that starts with some amount of initial randomness and
uses it to obtain more of it. The presented self-testing procedure
of the device also requires some amount of randomness (in
order to choose the measurement settings in rounds of testing
experiments). Strictly speaking, all quantum random number
generators that use Bell inequalities or dimension witnesses to
certify the randomness are randomness expanders.

In our previous paper [17] we have investigated the relation
between random number expansion protocols based on corre-
lations occurring in the Bell scenario and on protocols relying
on the prepare and measure scheme. In this paper we develop
these ideas. We clarify the methods from our previous paper
and give a tighter lower bound on randomness. Using these
methods we obtain better dimension witnesses, in particular,
the one based on the Braunstein-Caves Bell inequality [18].
We also extend the applicability of our methods to arbitrary
dimensions.
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A. Motivation

Suppose we are a developer of a random number generating
device. Since consumers do not trust us, we are interested in
finding a way of certification for our device. As mentioned
above, a common method for the certification of quantum
random number generators that are based on measurements of
entangled particles is to estimate the value of a certain Bell
inequality that is attained in this device. Still, it is too difficult
to observe a loophole-free violation of Bell inequality. Thus
we prefer prepare and measure protocols.

Both for prepare and measure protocols in SDI, and for
correlation protocols in DI, we would like to define a value
that measures how reliable is its particular realization. For this
value we take the expectation value of the relevant dimension
witness or Bell inequality, respectively, attained in the relevant
protocol. This value is called a security parameter.

It is possible to consider several relations. One may ask
whether, having a protocol of one type, we can relate it to
some protocol of another type, in such a way that for the same
value of their security parameters the min-entropy certified in
one of them is upper or lower bounded by min-entropy certified
by the other one.

One may start with a protocol based on a Bell inequality and
construct out of it a prepare and measure protocol certifying
a reasonable amount of min-entropy. This is useful since
there are many randomness expansion protocols based on Bell
inequalities [3,8] and it is easy to obtain new ones [19].

Another situation is when we begin with some SDI protocol
and want to lower bound the certified randomness using
efficient numerical methods from [20,21] that work in the
device-independent approach. We present a way to obtain a
new Bell inequality with the property that the DI protocol using
it certifies at most as much randomness as the SDI protocol.

As mentioned above, SDI protocols are much easier to
implement than the protocols based on entanglement. For this
reason it is useful to have a method that allows us to develop
devices of the first kind with the help of the well-established
knowledge about the devices of the second type.

B. Organization of this paper

The organization of this paper is as follows. In Sec. I A
we present a scenario in which we are working. Next, in
Sec. II we give basic information about Bell inequalities and
dimension witnesses and recapitulate a heuristic method of
obtaining a dimension witness from a Bell inequality [17].
Then, in Sec. III we precisely state the conditions when the
randomness certified by the violation of a Bell inequality
lower bounds the randomness certified by a certain value of
dimension witness in the semi-device-independent scenario,
and we investigate properties of a certain class of dimension
witnesses and introduce a procedure of dimension witness
reduction, which can be used to obtain from an existing witness
a new one with a higher amount of certifiable randomness.
In Sec. IV we give examples of application of the presented
methods.

A short overview of Bell inequalities and dimension
witnesses is given in Secs. II A and II B. In particular, Sec. II B
states a set of useful properties of dimension witnesses in the
case when we restrict our considerations to Hilbert spaces of

dimension 2. The reader interested in obtaining new dimension
witnesses should refer to methods from Sec. II C.

If the general problem of finding relaxation of the set of
probabilities occurring in SDI is of interest, the reader should
refer to Sec. III A. The following subsections are restricted
to particular cases of SDI scenarios. Section III B considers
Hilbert spaces of dimension 2 and a class of dimension
witnesses called binary zero summing, while Sec. III C refers
to the even more restricted case of so-called symmetric
dimension witnesses. These additional assumptions about the
problem allow us to obtain a better semidefinite programming
(SDP) relaxation and, as shown in Sec. III D, to simplify the
experimental setup.

Section IV contains a set of ready to use robust prepare and
measure SDI randomness expansion protocols and illustrates
the methods developed in preceding sections.

II. BELL INEQUALITIES VERSUS DIMENSION
WITNESSES

Let us recall some basic facts about Bell inequalities and
dimension witnesses. These facts are stated in a formal way
in subsections below, whereas here we give a short intuitive
overview.

A Bell experiment involves at least two separated parties
that share some quantum state and perform subsequent mea-
surements with different settings without any communication
between them. After a series of such measurements, the
collected data are used to estimate the joint probabilities of
the outcomes conditioned on the settings. A Bell operator is
a linear combination of these probabilities. A Bell inequality
gives a limit of the expectation value of the Bell operator
allowed by the classical physics.

Dimension witnesses refer to a scenario with two parties,
Alice and Bob. In each round they get some random inputs, x

and y. Afterward Alice sends a message to Bob. The message
can either be a sequence of bits or a quantum state. When
Bob receives this message, he performs some measurement
and obtains a result b. After a series of such rounds the
values of conditional probabilities P (b|x,y) are estimated. A
dimension witness states a maximal value of a certain linear
combination of these probabilities that can be obtained with a
given dimension of the communicated message.

A. Bell inequalities

We define for a DI protocol the following:
Definition 1. Let A, B, X, and Y be sets.
Probability distribution in the DI scheme is a conditional

probability distribution P(A,B|X,Y ) such that

∀a∈A∀b∈B∀x∈X∀y∈Y P (a,b|x,y) = Tr
(
ρMa

x Mb
y

)
,

where {{Ma
x }a∈A}x∈X and {{Mb

y }b∈B}y∈Y are sets of positive-
operator valued measures (POVMs) on a Hilbert space H, ρ

is a density matrix on H, and

∀a∈A∀b∈B∀x∈X∀y∈Y

[
Ma

x ,Mb
y

] = 0 if x �= y. (1)

We denote this probability by

P[ρ,
{{

Ma
x

}
a∈A

}
x∈X,

{{
Mb

y

}
b∈B

}
y∈Y ].
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If A = B = {0,1}, then P(A,B|X,Y ) is called binary.
The set of all DI probability distributions for given A, B,

X, and Y is denoted by P(A,B|X,Y ).
This definition formalizes the intuition that all bipartite

quantum probability distributions are realized by a physical
scenario in that Alice and Bob share some quantum state and
perform independent measurements on it.

Let us take two sets, X and Y , that label the measurement
settings of Alice and Bob in the DI scheme, and two sets, A

and B, that label their respective outcomes.
A Bell inequality is a linear function defined, in particular,

for probability distributions P(A,B|X,Y ). It is of the form

I (A,B,X,Y,{αa,b,x,y},CI )[P(A,B|X,Y )]

≡ =
∑
a∈A

∑
b∈B

∑
x∈X

∑
y∈Y

αa,b,x,yP (a,b|x,y) + CI , (2)

where αa,b,x,y,CI ∈ R. We omit P if it is obvious which
probability distribution is considered.

The constant term CI in a Bell inequality does not change
its properties. Still, we retain this general form, both for Bell
inequalities and dimension witnesses, in the next section. In
the following sections this allows us to keep the same maximal
expected value when performing a transformation leading
from one expression to another.

A particular form of Bell inequality is the following
correlation form:

Î (X,Y,{αx,y},ĈI )[P({0,1},{0,1}|X,Y )]

≡ =
∑
x∈X

∑
y∈Y

α̂x,yC(x,y) + ĈI , (3)

with α̂x,y,ĈI ∈ R, and

C(x,y) = P (0,0|x,y) − P (0,1|x,y) − P (1,0|x,y)

+P (1,1|x,y).

Obviously, the form (2) conforms to the form (3) if and
only if α0,0,x,y = α1,1,x,y = −α0,1,x,y = −α1,0,x,y = α̂x,y , and
P(A,B|X,Y ) is binary.

For given A, B, X, Y , x0 ∈ X, y0 ∈ Y , a Bell inequality I ,
and s ∈ R we define the following terms:

Pguess(P(A,B|X,Y ),x0,y0)

≡ max
a∈A,b∈B

P (a,b|x0,y0),

H∞(P(A,B|X,Y ),x0,y0)

≡ − log2[Pguess(P(A,B|X,Y ),x0,y0)],

H cert
∞ (I,x0,y0,s)

≡ min
P(A,B|X,Y )∈P(A,B|X,Y )

H∞(P(A,B|X,Y ),x0,y0),

subject to I [P(A,B|X,Y )] � s.

The expression H∞(P(A,B|X,Y ),x0,y0) is called min-
entropy, and H cert

∞ (I,x0,y0,s) is the min-entropy certified by
the value s of I .

B. Dimension witnesses

For a SDI scheme, we have the following definition of the
allowed probability distribution.

Definition 2. Let B̄, X̄, and Ȳ be sets, and let H be a Hilbert
space of a finite dimension d.

A probability distribution in the SDI scheme is a conditional
probability distribution Pd (B̄|X̄,Ȳ ) such that for b ∈ B̄, x ∈
X̄, and y ∈ Ȳ we have P (b|x,y) = Tr(ρxM

b
y ), where {ρx}x∈X̄

is a set of density matrices on H, and {Mb
y }b∈B̄ are POVMs on

H for all y ∈ Ȳ .
We say that Pd is realized by sets {ρx}x∈X̄ and

{{Mb
y }b∈B̄}y∈Ȳ , and we denote it

Pd

[{ρx}x∈X̄,
{{

Mb
y

}
b∈B̄

}
y∈Ȳ

]
.

If B̄ = {0,1}, then Pd (B̄|X̄,Ȳ ) is called a binary probability
distribution.

The set of all SDI probability distributions for given d, B̄, X̄,
and Ȳ is denoted by Pd (B̄|X̄,Ȳ ). The set of all SDI probability
distributions with restrictions that d = 2, B̄ = {0,1}, and
∀b∈{0,1}∀y∈Ȳ Tr Mb

y = 1 is denoted by P (P )(X̄,Ȳ ).
Roughly speaking, a probability distribution in the SDI is

realized by a setup in that Alice prepares and sends states to
Bob, who, after receiving, performs on it some measurement.

Let X̄ and Ȳ be sets labeling the settings of Alice and Bob,
in the SDI scheme, and let B̄ be a set of the outcomes that Bob
can obtain.

Dimension witnesses are linear functions of probability
distributions of the form

W (B̄,X̄,Ȳ ,{βb,x,y},CW )[Pd (B̄|X̄,Ȳ )]

≡ =
∑
b∈B̄

∑
x∈X̄

∑
y∈Ȳ

βb,x,yP (b|x,y) + CW, (4)

where βb,x,y,CW ∈ R, and d � 2.
If B̄ = {0,1}, then the dimension witness is called binary.

If ∀b∈B̄∀y∈Ȳ

∑
x∈X̄ βb,x,y = 0, then the dimension witness is

called zero summing.
For given B̄, X̄, Ȳ , x0 ∈ X̄, y0 ∈ Ȳ , a dimension witness

W , s ∈ R, and d � 2 we define the following terms:

Pguess(Pd (B̄|X̄,Ȳ ),x0,y0) ≡ max
b∈B̄

P (b|x0,y0), (5a)

H∞(Pd (B̄|X̄,Ȳ ),x0,y0)≡− log2[Pguess(Pd (B̄|X̄,Ȳ ),x0,y0)],

P cert
guess(W,x0,y0,s,d)≡ max

Pd (B̄|X̄,Ȳ )∈Pd(B̄|X̄,Ȳ )
max
b∈B̄

P (b|x0,y0),

subject to W [Pd (B̄|X̄,Ȳ )] � s,

(5b)

H cert
∞ (W,x0,y0,s,d) ≡ − log2[P cert

guess(W,x0,y0,s,d)],

P cert(P )
guess (W,x0,y0,s) ≡ max

P2(B̄|X̄,Ȳ )∈P (P )(X̄,Ȳ )
max
b∈B̄

P (b|x0,y0),

subject to W [P2(B̄|X̄,Ȳ )] � s.

(5c)

The expression H∞(Pd (B̄|X̄,Ȳ ),x0,y0) is called min-
entropy, and H cert

∞ (W,x0,y0,s) is the min-entropy certified by
the value s of W (for the dimension d).
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The meaning of these equations is as follows. Equation
(5a) expresses the probability that the eavesdropper correctly
guesses a single outcome generated on the side of Bob. The
strategy used in eavesdropping is to guess the most probable
result for a given distribution of outcomes Pd (B̄|X̄,Ȳ ).
Equation (5b) refers to the maximal guessing with all possible
probability distributions of outcomes being in accordance
with the observed security parameter. Equation (5c) gives this
probability with a further restriction to the case with dimension
2 and projective measurements.

The following lemma summarizes some properties of
dimension witnesses.

Lemma 1. Let H be a Hilbert space of dimension 2, and
let W be a binary dimension witness defined by certain X̄, Ȳ ,
{βb,x,y}, and CW .

Let {ρx}x∈X̄ ≡ S be a set of states on H, and let
{{M0

y ,M1
y }}y∈Y ≡ M be a set of binary POVMs on H. Let

s ≡ W [P2(S,M)].
Then, the following implications hold:
(1) If ∀y∈Ȳ

∑
x β0,x,y = ∑

x β1,x,y , then there exists a
set of binary POVMs on H, M̃ ≡ {{M̃0

y ,M̃1
y }}y , such that

∀y,b Tr M̃b
y = 1, and W [P2(S,M̃)] = s.

(2) If
∑

b,x,y βb,x,y = 0, and ∀y,b Tr Mb
y = 1, then for S̃ =

{1 − ρx}x∈X̄, which is a set of states on H, W [P2(S̃,M)] =
−s.

(3) If ∀y,b Tr Mb
y = 1, then there exists a set of projective

measurements, M̃ ≡ {{�0
y,�

1
y}}y∈Ȳ with ∀b∈B̄,y∈Ȳ Tr

(
�b

y

) =
1, such that W [P2(S,M̃)] � s.

Proof. (1) Let us take y ∈ Ȳ . Let cy = 1
2 [1 − Tr(M0

y )],
M̃0

y = M0
y + cy1, and M̃1

y = M1
y − cy1. Obviously,

M̃0
y + M̃1

y = M0
y + M1

y = 1.

Now, we prove that ∀y,bM̃
b
y � 0. There exists an orthonormal

basis {| 0y〉,| 1y〉} in that

M0
y = v0| 0y〉〈0y | + v1| 1y〉〈1y |

and

M1
y = (1 − v0)| 0y〉〈0y | + (1 − v1)| 1y〉〈1y |,

where v0,v1 ∈ [0,1]. We have cy = 1
2 (1 − v0 − v1), and 1 =

| 0y〉〈0y | + | 1y〉〈1y |. Thus,

M̃0
y = 1

2 (1 + v0 − v1)| 0〉〈0 | + 1
2 (1 − v0 + v1)| 1〉〈1 |.

Since 1 + v0 − v1 � 0 and 1 − v0 + v1 � 0, we have M̃0
y � 0,

and Tr M̃0
y = 1. Similarly, we check that M̃1

y � 0 and Tr M̃1
y =

1.
Repeating this construction for all y ∈ Ȳ , we obtain a set

of POVMs, M̃ ≡ {{M̃0
y ,M̃1

y }}y∈Ȳ .
We have

Tr
(
ρxM̃

b
y

) = P (b|x,y) + (−1)bcy,

and thus

W [Pd (S,M̃)] =
∑
b,x,y

βb,x,y Tr
(
ρxM̃

b
y

)

= s +
∑

y

cy

(∑
x

β0,x,y −
∑

x

β1,x,y

)
= s.

(2) We have

W [P2(S̃,M)] =
∑
b,x,y

βb,x,y Tr
[
(1 − ρx)Mb

y

]

=
∑
b,x,y

βb,x,y[1 − P (b|x,y)]

=
∑
b,x,y

βb,x,y −
∑
b,x,y

βb,x,yP (b|x,y) = −s.

(3) For any y ∈ Ȳ we have

M0
y = λy | 0y〉〈0y | + (1 − λy)| 1y〉〈1y |

and

M1
y = (1 − λy)| 0y〉〈0y | + λy | 1y〉〈1y |,

for a certain basis {| 0y〉,| 1y〉}, λy ∈ [0,1].
Let us define sy ≡ ∑

b,x βb,x,yP (b|x,y). Denote∑
x

(β0,x,y Tr (ρx | 0y〉〈0y |) + β1,x,y Tr(ρx | 1y〉〈1y |))

by sy,0 and similarly∑
x

(β0,x,y Tr(ρx | 1y〉〈1y |) + β1,x,y Tr(ρx | 0y〉〈0y |))

by sy,1.
We have s = ∑

y sy , and

sy = λysy,0 + (1 − λy)sy,1.

If sy,0 � sy,1, then we take M̃0
y ≡ | 0y〉〈0y | and M̃1

y ≡
| 1y〉〈1y |, otherwise we take M̃0

y ≡ | 1y〉〈1y | and M̃1
y ≡

| 0y〉〈0y |. For M̃ = {{M̃0
y ,M̃0

y }}y∈Ȳ it is easy to see that

W [P2(S,M̃)] =
∑

y

max(sy,0,sy,1) �
∑

y

sy = s.

�
The first statement in this lemma says that in dimension 2

the condition that all measurement operators have trace 1 is
not restrictive with regard to the set of values that is possible to
attain. The second statement gives sufficient conditions under
which an operation of negation of all states gives the same
value of a dimension witness but with opposite sign. The third
statement, which may be used to complement the first one,
shows that under certain conditions it is not restrictive to use
only projective measurements in the case when the values that
can be attained are considered.

C. A heuristic method for obtaining a dimension witness
from a Bell inequality

Consider the following Bell experiment. Suppose we are
given a Bell inequality of the form (2). Alice and Bob share
an entangled state. Alice chooses a measurement setting x ∈
X and obtains an outcome a ∈ A. For each setting x and
result a, we assign a conditional probability P (a|x). Alice’s
measurement prepares some state at Bob’s side. Next, Bob
chooses a measurement setting y ∈ Y and obtains an outcome
b ∈ B. The probability that Bob gets b, knowing both the
setting and the result of Alice, is P (b|a,x,y).
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We rewrite1 the joint conditional probability of a given
pair of results for a given pair of settings as P (a,b|x,y) =
P (b|a,x,y)P (a|x). Thus, defining x̄ ≡ (a,x), the initial Bell
inequality is transformed to the form of a dimension witness
[see Eq. (4)], with βb,x̄,y ≡ βb,(a,x),y ≡ αa,b,x,yP (a|x). We
have B̄ = B, X̄ = A × X, and Ȳ = Y .

The fact that it is possible to transform a Bell inequality
into the form of a dimension witness leads us to some heuristic
method to achieve an SDI protocol that certifies a reasonable
amount of randomness, once we have a DI protocol. We get
the SDI protocol if, instead of measuring on her side, Alice
gets “the outcome” as a part of her input with the probability
distribution P (a|x). Thus, we obtain a pair (a,x) that we use
as an index of the state to be sent. This way, the device on the
side of Alice prepares one of the |X̄| = |A| · |X| states ρ(a,x).
Bob still has |Ȳ | = |Y | measurement settings.

III. LOWER BOUNDS FOR DIMENSION WITNESSES VIA
SEMIDEFINITE PROGRAMS

This section develops the method of studying the properties
of SDI protocols with their semidefinite programming relax-
ations.

In Sec. III A we construct a sequence of devices that shows
that the randomness certified by an SDI protocol can be lower
bounded by the randomness certified in a certain DI protocol
minus log2 d.

Then, in Sec. III B, the properties of binary zero-summing
dimension witnesses are investigated. Recall that a dimension
witness of the form given by Eq. (4) is called zero summing if

∀b∈B̄∀y∈Ȳ

∑
x∈X̄

βb,x,y = 0

and binary if B̄ = {0,1}. The reason to examine them is that
it is possible to obtain tighter semidefinite relaxations for this
class of dimension witnesses.

Finally, in Sec. III D, we show how to transform a
symmetric dimension witness to a reduced one.

A. Conversion from a dimension witness to a Bell operator

We consider a device D0 that we get from an untrusted
vendor, consisting of two black boxes. Its only parameter
that we can verify is the dimension of the message sent from
one part of it to the another one. We assume that the device
cannot communicate with the world outside the laboratory.
The black box on Alice’s side has buttons with labels x ∈ X̄

and emits one of the quantum states of the dimension d from
the set of states {ρx}x∈X̄. These are unknown to us and are of
arbitrary, possibly mixed, form. The black box on Bob’s side
has buttons with labels y ∈ Ȳ and, after receiving the qubit
from Alice’s black box, it performs one of the measurements
given by POVMs from the set {{Mb

y }b∈B̄}y∈Ȳ . We do not
know how the measurements are performed. This description
is a semi-device-independent one, since we know only the
dimension d.

1We are using here the no-signaling principle.

Suppose we are given a dimension witness W [of the form
(4)] that achieves in the experiments on the device D0 the
expected value W0. We denote the conditional probability of
obtaining the outcome b, when the chosen settings are x and
y, by PD0(b|x,y).

The device D0 is not trusted, but it is possible to consider
another device, D1, that consists of two parts, with buttons
labeled by x ∈ X̄ and y ∈ Ȳ on Alice’s side and on Bob’s
side, respectively. The parts are sharing a maximally entangled
state of the dimension d. The part on Alice’s side performs
some measurement, depending on the chosen input x. This
measurement projects Alice’s part of the singlet on the state
ρx that is the same as the relevant state from the device D0. If
the projection succeeded, which happens with the probability
1
d

, then the device returns a = 0 and changes the state on
Alice’s side into the state ρx , otherwise it returns a = 1. Since
the shared state is a singlet, this measurement prepares the
same d-dimensional state on Bob’s side. Then he performs
the same POVM {Mb

y }b∈B̄ as the device D0 and returns the
outcome b ∈ B̄.

The probability that Alice gets the outcome a with the
setting x and simultaneously Bob gets the outcome b with the
setting y is denoted by PD1(a,b|x,y). It is easy to see that
PD0(b|x,y) = dPD1(0,b|x,y).

Now let us consider another device, D2. It has the same
interface as D1, but the conditions on the internal working
are relaxed; viz., we do not assume anything about the
performed measurements, and Alice’s and Bob’s parts are
allowed to share any, possibly entangled, state ρ of an arbitrary
dimension. The probability of obtaining the outcomes a and
b with a given pair of settings x and y for Alice and Bob,
respectively, is denoted by PD2(a,b|x,y). We apply a constraint
∀x∈XPD2(0|x) = 1

d
, where PD2(a|x) is the probability of

getting the outcome a by Alice with the setting x with the
device D2.

Obviously, all the conditional probability distributions that
can be obtained by the device D1 (and thus also by the
device D0) can also be obtained by this device. Note that
this description is fully device independent and that there are
semidefinite programs in the Navascues-Pironio-Acin (NPA)
hierarchy [20,21] that efficiently approximate the probability
distributions of the device D2.

Since the device D2 is a relaxed version of the initial device
D0, if both of them have the same value of the relevant security
parameters, then the certified amount of min-entropy generated
by the device D2 gives a lower bound of the min-entropy
certified to be generated by the device D0.

We recapitulate the above results in the following theorem
Theorem 1. Let B = B̄, X = X̄, and Y = Ȳ be sets. Let

us take s ∈ R, d � 2, a Bell inequality I of the form (2), and
a dimension witness W of the form (4), satisfying βb,x,y =
dα0,b,x,y , α1,b,x,y = 0, and CI = CW .

Let Pd,SDI(s) be a subset of Pd (B̄|X̄,Ȳ ) with d � 2 (see
definition 2) that satisfies W = s.

Let PDI(s) be a set of all probability distributions
defined by P (b|x,y) ≡ dP (0,b|x,y), where P(A,B|X,Y )
is a device-independent probability distribution such that
I [P(A,B|X,Y )] = s, with A = {0,1}.

Then Pd,SDI(s) ⊆ PDI(s).

022322-5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


MIRONOWICZ, LI, AND PAWŁOWSKI PHYSICAL REVIEW A 90, 022322 (2014)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.96  0.97  0.98  0.99  1

m
in

-e
nt

ro
py

 [b
its

]

p

d = 2, x0 = 3, y0 = 1
d = 2, x0 = 5, y0 = 2
d = 3, x0 = 3, y0 = 1
d = 3, x0 = 5, y0 = 2
d = 4, x0 = 3, y0 = 1
d = 4, x0 = 5, y0 = 2

FIG. 1. (Color online) Lower bounds via SDP on the certified
randomness for a dimension witness obtained from the CGLMP
inequality [see Eq. (15) in Sec. IV] using the methods from Sec. III A
for different values of the dimension d .

The theorem says that if a Bell inequality and a dimension
witness are related in the given way then we can use the set of
probabilities allowed with the former in the DI as a relaxation
of the set of probabilities allowed with the latter in the SDI.

Figure 1 shows an example of the application of theorem 1.
In this way we obtain a way to get a relation between Bell

inequalities and dimension witnesses with the property that
the amount of randomness certified by a Bell inequality lower
bounds the amount of randomness certified by the relevant
dimension witness. One of the key features of the set PDI

is that it can be efficiently approximated using semidefinite
programming with the NPA hierarchy.

From the definition of PDI(B|X,Y ), namely, using
P (b|x,y) = dP (0,b|x,y), we get that the certified min-
entropy of the SDI protocol is lower bounded by the one of the
DI protocol minus log2 d. A notable property of the method is
that we obtain a bound for any dimension of the communicated
system changing only a value of the linear bound.

B. Binary zero-summing dimension witnesses

Let us start with a binary zero-summing dimension witness
W = W ({0,1},X̄,Ȳ ,{βb,x,y},CW ) that is used to certify the
randomness generated by measuring the state x0 ∈ X̄ with the
measurement setting y0 ∈ Ȳ . Let {ρx}x∈X̄ and {{M0

y ,M1
y }}y∈Ȳ

be the states and measurements that maximize the guessing
probability [see Eq. (5a)] of the generated bits by the untrusted
vendor.

First note that the value of such a dimension witness does
not change if, for arbitrary y ∈ Ȳ , the measurement is changed
to {M0

y + c1,M1
y − c1}, where c is such that the spectrum

of the operators remains in the range [0,1]. Thus, since the
potential adversary is interested in increasing the probability
of a particular outcome of the measurement y0 as much as
possible,2 the form of these measurements that maximizes his

2Recall that y0 is the setting Bob used to generate the randomness.

guessing probability is the following:[
1 0

0 1 − δ

]
,

[
0 0

0 δ

]
. (6)

Let us note that by lemma 1(1) and 1(3) it is not restrictive
for the vendor to use only projectors of trace 1 for the
measurements different than y0.

The strategy of using a measurement of the form (6) for
the setting y0 and projectors of trace 1 for all remaining
measurements is equivalent to using the following mixed
strategy. In δ cases, a projective measurement of trace 1 is
used for the measurement y0 (we call this strategy P), and
in 1 − δ cases the outcome is deterministic—this is referred
to hereafter as a deterministic strategy, or simply D. For the
remaining measurements the same projective measurements
of trace 1 are used in both cases.

The guessing probability for the strategy D is 1 and for the
strategy P is p, and thus the average guessing probability is

(1 − δ) + δp. (7)

In the case of a zero-summing dimension witness with
the deterministic strategy, measurements with the setting y0

give no contribution to the value of the witness. Thus the
certification of the randomness with the dimension witness

W = W ({0,1},X̄,Ȳ ,{βb,x,y},CW )

when the vendor of the device uses the mixed strategy that
is, after applying a certain affine transformation [see Eq. (7)],
equivalent to the certification with a dimension witness

W(δ,y0)({0,1},X̄,Ȳ ,{β̃b,x,y},CW ),

with β̃b,x,y defined in Eq. (8), and the strategy P, where the
guessing probability of Eve is given by Eq. (7).

Since the vendor may choose any δ ∈ [0,1] that allows us to
observe the required value of the dimension witness W when
calculating the lower bound on the certified min-entropy, the
worst case should be considered for a particular situation.

In this way, we have proven the following:
Lemma 2. Let W = W ({0,1},X̄,Ȳ ,{βb,x,y},CW ) be a bi-

nary zero-summing dimension witness, x0 ∈ X̄, and y0 ∈ Ȳ .
Let W(δ,y0) = W(δ,y0)({0,1},X̄,Ȳ ,{β̃b,x,y},CW ) be a dimension
witness, where

β̃b,x,y =
{
βb,x,y if y �= y0

δβb,x,y if y = y0
. (8)

Then

P cert
guess(W,x0,y0,s,2)

= max
δ∈[0,1]

[
(1 − δ) + δP cert(P )

guess (W(δ,y0),x0,y0,s)
]
,

where P cert
guess(W,x0,y0,s,2) and P cert(P )

guess (W,x0,y0,s) are defined
in Eqs. (5b) and (5c).

The consequence of restricting the vendor to dimension 2
and measurements of trace 1 is that the following holds for all
x ∈ X̄ and y ∈ Ȳ and for any b ∈ {0,1}:

Tr
(¬ρxM

¬b
y

) = Tr
[
(1 − ρx)

(
1 − Mb

y

)]
= 1 − Tr

(
Mb

y

) + Tr
(
ρxM

b
y

)
= Tr

(
ρxM

b
y

) = P (b|x,y), (9)
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FIG. 2. (Color online) Lower bounds via SDP on min-entropy certified by different Bell inequalities for different levels of noise. Several
situations are considered. This illustrates the relations summarized in lemma III B. Reduced Bell inequalities refer to lower bounds on reduced
symmetric dimension witnesses (see Sec. III C) for strategy P (see Sec. III B). We observe that using reduced dimension witnesses provides
an advantage in terms of certifiable randomness. Recall that by theorem III A and a remark below it, the lower bound for the randomness of
a dimension witness is given by the randomness of the Bell inequality minus log2 d . This plot refers to the case with d = 2, and thus these
methods that give values below log2 2 = 1 are not feasible for the given value of p. The reduced Bell operators are given by formulas (19),
(22), (24), and (26), while Bell operators that may be used for lower bounding the randomness full symmetric dimension witnesses are given
by formulas (18), (23), (25), and (29). These refer to T 2 (2a), T 3 (2b), BC3 (2c), and modCHSH (2d) cases, respectively.

where ¬ρx ≡ 1 − ρx . This relation allows us to refine the
relaxation given in Sec. III A.

Let us consider a device D1′ that models the strategy P
by sharing the singlet state, projecting on states {ρx}x∈X̄ on
the side of Alice, and measuring on the side of Bob with
measurements of trace 1, {{M0

y ,M1
y }}y∈Ȳ . In contrast to the

device D1, if the projection on a state ρx for any x ∈ X̄ fails,
then the prepared state is ¬ρx . It is easy to see that, by Eq. (9),
the probabilities obtained in this device are constrained by the
following relation:

P (a,b|x,y) = P (¬a,¬b|x,y), (10)

for all a,b ∈ {0,1}, x ∈ X, and y ∈ Y . A further relaxation,
analogous to the one leading from the device D1 to the device
D2, allows us to obtain a device D2′, satisfying the relation

(10), that can be modeled by a semidefinite program in the
device-independent scheme.

In this way we have proven the following theorem
Theorem 2. Let X = X̄ and Y = Ȳ be sets. Let us take

s ∈ R, a Bell inequality I of the form (2), and a binary zero-
summing dimension witness W of the form (4), satisfying
βb,x,y = α0,b,x,y = α1,¬b,x,y .

Let P (P )
SDI(s) be a subset of P (P )(X̄,Ȳ ) (see definition 2)

containing those probabilities P2({0,1}|X̄,Ȳ ) that satisfies
W [P2] = s.

Let PDI,cond(s) be a set of probability distributions
defined by P (b|x,y) ≡ P (0,b|x,y) + P (1,¬b|x,y), where
P(A,B|X,Y ) is a device-independent probability distri-
bution that satisfies I [P(A,B|X,Y )] = s and the relation
(10).

Then P (P )
SDI(s) ⊆ PDI,cond(s).
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FIG. 3. (Color online) Numerical lower bounds via SDP and upper bounds on the randomness certified for strategy P (see Sec. III B), for
both reduced (see Sec. III C) and full certificates and different Bell operators and dimension witnesses. Here we observe even more advantage
for the reduced versions. The plots refer to the cases of T 2 (3a), T 3 (3b), BC3 (3c), and modCHSH (3d), respectively.

Similarly to theorem 1, this theorem shows how to use the
set of probabilities allowed in the DI as a relaxation of the
relevant set in the SDI, this time in a more restricted case.

It is straightforward to check that the following lemma
holds:

Lemma 3. Let a,b ∈ {0,1}, and let us assume that

P (a,b|x,y) + P (a,¬b|x,y) = P (a|x,y) = P (a|x),

P (a,b|x,y) + P (¬a,b|x,y) = P (b|x,y) = P (b|y),

i.e., the no-signaling principle, and that the outcomes of
Bob are binary, namely,

P (b|a,x,y) + P (¬b|a,x,y) = 1. (11)

Then we have the following implications:
(1) If P (a,b|x,y) = P (¬a,¬b|x,y) holds, then we have

P (a|x) = 1
2 and P (b|a,x,y) + P (b|¬a,x,y) = 1.

(2) If P (b|a,x,y) + P (b|¬a,x,y) = 1 holds, then we have
P (b|a,x,y) = P (¬b|¬a,x,y).

(3) If P (a|x) = 1
2 and P (b|a,x,y) = P (¬b|¬a,x,y) hold,

then we have P (a,b|x,y) = P (¬a,¬b|x,y).

From this lemma we get that the condition P (a,b|x,y) =
P (¬a,¬b|x,y) is more restrictive than P (a|x) = 1

2 . From this,
we conjecture that for any s

P(P )
SDI(s) ⊆ PDI,cond(s) ⊆ PDI(s),

where the sets are defined in theorems 1 and 2. Thus theorem
2 refines the results of theorem 1 for the case of binary zero-
summing dimension witnesses.

Figures 2 and 3 show examples of lower and upper bounds
for min-entropy certified when the untrusted vendor uses
the strategy P. Figures 4 and 5 show lower bounds for the
certified min-entropy in the case when the untrusted vendor
uses the mixed strategy. All lower bounds are calculated
via semidefinite programs with the NPA hierarchy, using
the interior point method with the SeDuMi solver [22,23].
The upper bounds have been obtained by finding explicit
representations of states and measurements. This optimization
has been carried over pure states and projective measurements
and is not guarantied to reach global minima, in contrast to the
semidefinite programming method.

022322-8

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


PROPERTIES OF DIMENSION WITNESSES AND THEIR . . . PHYSICAL REVIEW A 90, 022322 (2014)

 0.9  0.91  0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99

p

 0.8

 0.85

 0.9

 0.95

 1

δ

 0

 0.2

 0.4

 0.6

 0.8

 1

(a)

 0.9  0.91  0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99

p

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

δ

 0

 0.2

 0.4

 0.6

 0.8

 1

(b)

 0.9  0.91  0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99

p

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

δ

 0

 0.2

 0.4

 0.6

 0.8

 1

(c)

 0.9  0.91  0.92  0.93  0.94  0.95  0.96  0.97  0.98  0.99

p

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

δ

 0

 0.2

 0.4

 0.6

 0.8

 1

(d)

FIG. 4. (Color online) Lower bounds via SDP on the certified randomness in the semi-device-independent scenario for the reduced
dimension witnesses (see Sec. III C) when the untrusted vendor uses the mixed strategy with different values of the parameter δ (see Sec. III B).
If a certain value of a dimension witness is impossible to achieve with a given δ, then, since the eavesdropper cannot mislead us this way, we
use the value 1. The cases of T 2 (4a), T 3 (4b), BC3 (4c), and modCHSH (4d) are shown on these plots.

Interestingly, in all protocols considered in Fig. 5, it is
optimal for the adversary to use δ = 1; i.e., using the mixed
strategy gives no gain compared to the strategy P.

C. Symmetric dimension witnesses

Let us introduce the following definition:
Definition 3. A dimension witness W of the form (4) with

the set of Alice’s settings X̄ of even size, and B̄ = {0,1}, is
symmetric, if there exists a surjective automorphism φ : X̄ →
X̄ with φ(x) �= x and βb,x,y = −βb,φ(x),y = −β¬b,x,y .

For a set χ̄ ⊂ X̄ we define

Wχ̄ ≡
∑

b∈{0,1}

∑
x∈χ̄

∑
y∈Ȳ

βb,x,yP (b|x,y).

A set χ̄ ⊂ X̄ satisfying χ̄ ∩ φ(χ̄ ) = ∅ and χ̄ ∪ φ(χ̄ ) = X̄ is
called a half of X̄.

If a set χ̄ is a half, then Wχ̄ is called a dimension witness
reduced with respect to χ . φ and χ may be omitted if it is
obvious which automorphism or set is considered.

It is easy to see that every symmetric dimension witness is
also a binary zero-summing dimension witness.

If a dimension witness is symmetric, then there is a way to
reduce the size of X̄, while the obtained dimension witness can

certify at least the same amount of randomness as the initial
one.

The following theorem is an immediate result of theorem 2
and lemma 1(2):

Theorem 3. For a SDI protocol using the strategy P with
a symmetric dimension witness that attains the value of the
security parameter s on a Hilbert space of dimension 2 and
certifies the randomness r , the same value can still be attained
and certifies at least the same randomness, if we impose
an additional condition that ρx = 1 − ρφ(x), which implies
P (b|x,y) = P (¬b|φ(x),y).

Simply speaking this theorem says that symmetric dimen-
sion witnesses possess some kind of degree of freedom that
does not increase the range of values that can be attained but
allows an adversary to “distribute” the value of the witness
among the states in such a way that misleads about the
reliability of the device. The proposed method shows a way to
remove this freedom.

D. Obtaining and reducing a symmetric dimension witness

It is possible to use a known Bell inequality to obtain a
new dimension witness. Examples of such protocols, T 2, T 3,
BC3, and modCHSH, are described below in Sec. IV.
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FIG. 5. (Color online) Lower bounds via SDP on the certified randomness for both reduced and symmetric dimension witnesses (see
Sec. III C) when the untrusted vendor uses the mixed strategy with the worst case value of the parameter δ (see Sec. III B), which is 1 in all
cases. The plots shows the cases referring to T 2 (5a), T 3 (5b), BC3 (5c), and modCHSH (5d).

From a Bell inequality of the form∑
x,y

α̇x,y

{
1

2p0,x

[P (0,0|x,y) − P (0,1|x,y)]

+ 1

2p1,x

[P (1,1|x,y) − P (1,0|x,y)]

}
(12)

(where p0,x + p1,x = 1), using the method from Sec. II C, we
obtain a symmetric dimension witness of the form (4), with
β0,x,y = α̇x,y and β1,x,y = −α̇x,y . For the new SDI protocol,
we assume that a is chosen randomly by Alice, with the
distribution P (a|x) ≡ pa,x .

Note that Bell inequalities in the correlation form [see
Eq. (3)] are a special case of the inequalities of the form
(12) with pa,x = 1

2 and α̇x,y = ᾱx,y , which means that it is
always possible to obtain a symmetric dimension witness from
a correlation-based Bell inequality. Then C(x,y) turns into

W ′(x,y) ≡ 1
2 [P (0|(0,x),y) + P (1|(1,x),y)

−P (1|(0,x),y) − P (0|(1,x),y)]

= P (0|(0,x),y) − P (0|(1,x),y). (13)

It is easy to see that a dimension witness which is a linear
combination of expressions (13) is symmetric.

We define φ((a,x)) ≡ (¬a,x) and χ ≡ {(0,x) : x ∈ X} ⊆
{0,1} × X. The condition P (b|(a,x),y) = P (¬b|(¬a,x),y)
allows us to take

W (x,y) ≡ 2P (0|(0,x),y) − 1 ≡ 2P (0|x,y) − 1, (14)

instead of W ′(x,y) from Eq. (13), which is an example of the
reduction.

Note that using the method of reduction of a symmetric
dimension witness the number of states used by Alice is
reduced twice without loss of ability to certify both the
randomness and the dimension.

On the other hand every symmetric dimension witness is
a linear combination of expressions D(x,y) ≡ P (0|x,y) −
P (1|x,y) that refers in the DI scenario to the expression
2P (0,0|x,y) − 2P (0,1|x,y). Assuming that the dimension of
the Hilbert space is 2, and the eavesdropper uses the strategy
P, we get from Eq. (10) that 2P (0,0|x,y) − 2P (0,1|x,y) =
C(x,y). Thus, there is a one-to-one relation between symmet-
ric dimension witnesses and correlation Bell inequalities.
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IV. EXAMPLES OF APPLICATION

In this section we give five examples of applications of the
methods presented above. Four of them—B, C, D, and E—
concern Bell inequalities in the correlation form and symmetric
dimension witnesses.

All figures are plotted with respect to a relative parameter
p. The value p = 1 refers to the case when the maximal
value of the relevant Bell inequality or dimension witness is

achieved. Values p < 1 relate to the situation with noise, when
the attained value is equal to the maximum multiplied by p.

A. CGLMP

In the first example we start with the CGLMP inequality
introduced in [24], in which Both Alice and Bob have
two measurement settings with three outcomes and use the
following Bell operator:

P (0,0|1,1) − P (0,2|1,1) + P (0,0|1,2) − P (0,2|1,2) − P (1,0|1,1) + P (1,1|1,1) − P (1,0|1,2) + P (1,1|1,2)

− P (2,1|1,1) + P (2,2|1,1) − P (2,1|1,2) + P (2,2|1,2) − P (0,0|2,1) + P (0,1|2,1) + P (0,0|2,2) − P (0,2|2,2)

− P (1,1|2,1) + P (1,2|2,1) − P (1,0|2,2) + P (1,1|2,2) + P (2,0|2,1) − P (2,2|2,1) − P (2,1|2,2) + P (2,2|2,2).

Using the heuristic method from Sec. II C we obtain the following dimension witness:

P (0|1,1) − P (2|1,1) + P (0|1,2) − P (2|1,2) − P (0|2,1) + P (1|2,1) − P (0|2,2) + P (1|2,2)

− P (1|3,1) + P (2|3,1) − P (1|3,2) + P (2|3,2) − P (0|4,1) + P (1|4,1) + P (0|4,2) − P (2|4,2)

− P (1|5,1) + P (2|5,1) − P (0|5,2) + P (1|5,2) + P (0|6,1) − P (2|6,1) − P (1|6,2) + P (2|6,2). (15)

Applying the method from Sec. III A, we get the following expression, which may be used in a semidefinite program:

P (0,0|1,1) − P (0,2|1,1) + P (0,0|1,2) − P (0,2|1,2) − P (0,0|2,1) + P (0,1|2,1) − P (0,0|2,2) + P (0,1|2,2)

− P (0,1|3,1) + P (0,2|3,1) − P (0,1|3,2) + P (0,2|3,2) − P (0,0|4,1) + P (0,1|4,1) + P (0,0|4,2) − P (0,2|4,2)

− P (0,1|5,1) + P (0,2|5,1) − P (0,0|5,2) + P (0,1|5,2) + P (0,0|6,1) − P (0,2|6,1) − P (0,1|6,2) + P (0,2|6,2).

The certified randomness for CGLMP is shown in Fig. 1.

B. T2

A simple Bell inequality is obtained from the symmetric
dimension witness of the two-to-one quantum random access
code (QRAC) used in [13,15]. It has the following form:

W ′(1,1) + W ′(1,2) + W ′(2,1) − W ′(2,2), (16)

where W ′ is defined in Eq. (13) and δ = 1. The reduced form
of this dimension witness is

W (1,1) + W (1,2) + W (2,1) − W (2,2), (17)

where W is defined by Eq. (14) and δ = 1. Robustness of the
reduced version has been already investigated in [17], in Fig. 4.
The randomness certified by these two dimension witnesses
is lower bounded by the values obtained with the following
two Bell inequalities. For the dimension witness defined in
Eq. (16), we use a Bell inequality:

1
2 [C(1,1) + C(1,2) + C(2,1) − C(2,2)

+C(3,1) + C(3,2) + C(4,1) − C(4,2)], (18)

and for the dimension witness from Eq. (17)

T 2 ≡ C(1,1) + C(1,2) + C(2,1) − C(2,2). (19)

The operator defined in Eq. (19) is exactly the CHSH Bell
operator [25]. Lower bounds for this case are shown in
Figs. 2(a), 3(a), 4(a), and 5(a).

The reduced witness (17) has recently been experimentally
realized [26]. The values obtained in this experiment refer to
p = 0.974 (5.51 in the scaling used there) and p = 0.984

(5.56), concluded therein to certify 0.0595 and 0.082 bits
of randomness, respectively. If the reduction had not been
performed, then only 0.0567 and 0.0305 would have been
certified.

C. T3

The third example starts with a dimension witness based on
the three-to-one quantum random access code (QRAC) [13,27]
and relates it, and its reduced version, to two Bell inequalities,
where the second one is T 3 introduced in [28].

In the three-to-one QRAC Alice encodes three bits by
sending one of the 23 states to Bob, who tries to guess one
of them, performing one of three measurements. The average
success probability of correctly guessing an arbitrarily chosen
bit is directly related to the value of the following dimension
witness:

∑
x∈X̄,y∈Ȳ

(−1)xy P (0|x,y), (20)

where X̄ = {000, . . . ,111}, Ȳ = {0,1,2}. Its maximal value
attainable with qubits is 4

√
3.

Taking φ(x) = ¬x (negation is meant here as bitwise),
X̄ = {00,01,10,11}, and Ȳ = Ȳ , we get the following reduced
dimension witness:

P (0|00,0) + P (0|01,0) + P (0|10,0) + P (0|11,0)

+P (0|00,1) + P (0|00,2) + P (0|01,1) − P (0|01,2)

−P (0|10,1) + P (0|10,2) − P (0|11,1) − P (0|11,2). (21)
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From this dimension witness, using the method from Sec. III C,
we get the following Bell operator:

C(1,1) + C(2,1) + C(3,1) + C(4,1)

+C(1,2) + C(1,3) + C(2,2) − C(2,3)

−C(3,2) + C(3,3) − C(4,2) − C(4,3). (22)

If we do not reduce the dimension witness and use the formula
(20) directly, we get the following Bell operator:

T 3′ ≡ 1
2 [C(1,1) − C(5,1) + C(2,1) − C(6,1)

+C(3,1) − C(7,1) + C(4,1) − C(8,1)

+C(1,2) − C(5,2) + C(1,3) − C(5,3)

+C(2,2) − C(6,2) − C(2,3) + C(6,3)

−C(3,2) + C(7,2) + C(3,3) − C(7,3)

−C(4,2) + C(8,2) − C(4,3) + C(8,3)]. (23)

The Bell operator defined in Eq. (22) is the one used in
[17,19,28].

It is possible to calculate a lower bound on the certified
min-entropy, H cert

∞ (T 3,x0,y0,s,d), with x0 = 1, y0 = 1 using
theorem 2, i.e., via a semidefinite relaxation with a minimiza-
tion on a higher level over δ ∈ [0,1].

Figure 2(b) shows the min entropies certified with the
Bell inequality T 3 for different additional conditions. In
Fig. 3(b) lower bounds on the certified min-entropy obtained
by theorem 1 from the NPA hierarchy with additional condi-
tion P (a,b|x,y) = P (¬a,¬b|x,y) are plotted. These values
assume that the untrusted vendor uses the strategy P (see
Sec. III B). Figures 4(b) and 5(b) contain the relevant data
for the mixed strategy.

D. BC3

In this example we start with a well known Braunstein-
Caves inequality [denoted BC3, it is a Bell inequality in the
form (3)] with three settings for each of the two parties and
convert it to a symmetric dimension witness with six prepared
states. After reduction, we will obtain a dimension witness with
three states and show that the lower-bounding Bell inequality
is identical to the original BC3.

BC3 inequality is of the form

BC3 ≡ C(1,1) + C(1,2) + C(2,2)

+C(2,3) + C(3,3) − C(3,1), (24)

with δ = 1. For BC3 we have x,y ∈ {1,2,3}. Thus we obtain
a symmetric dimension witness with six states prepared by
Alice and three measurements performed by Bob.

The explicit form of this symmetric dimension witness is

P (0|(0,1),1) − P (0|(1,1),1) + P (0|(0,1),2)

− P (0|(1,1),2) + P (0|(0,2),2) − P (0|(1,2),2)

+ P (0|(0,2),3) − P (0|(1,2),3) + P (0|(0,3),3)

− P (0|(1,3),3) − P (0|(0,3),1) + P (0|(1,3),1).

Using the method for symmetric dimension witnesses from
Sec. III C, this may be transformed into a dimension witness

with three states. We define φ[(a,x)] ≡ (¬a,x) and χ ≡
{(0,x) : x ∈ X} ⊆ {0,1} × X.

The explicit form of this reduced dimension witness is

2 [P (0|1,1) + P (0|1,2) + P (0|2,2)

+P (0|2,3) + P (0|3,3) − P (0|3,1)] − 4.

Now, using theorem 2, we go from this reduced dimension
witness back to the Bell inequality that gives a lower-
bounding relation. Assuming P (a,b|x,y) = P (¬a,¬b|x,y),
we get that the lower-bounding Bell inequality is exactly the
initial Braunstein-Caves inequality. If we use a full dimension
witness, then the Bell inequality used in lower bounding with
theorem 2 is

1
2 [C(1,1) + C(1,2) + C(2,2) + C(2,3)

+ C(3,3) − C(3,1) + C(4,1) + C(4,2)

+ C(5,2) + C(5,3) + C(6,3) − C(6,1)], (25)

where (0,1) ≡ 1, (0,2) ≡ 2, (0,3) ≡ 3, (1,1) ≡ 4, (1,2) ≡ 5,
and (1,3) ≡ 6.

In Fig. 2(c), the min entropies certified with the Bell
inequality BC3 with different additional conditions are plot-
ted. Figure 3(c) shows lower bounds on the min-entropy
certified in this SDI protocol, obtained by theorem 1 from
the NPA hierarchy with additional condition P (a,b|x,y) =
P (¬a,¬b|x,y). These values assume that the untrusted vendor
uses the strategy P (see Sec. III B). Plots relevant to the mixed
strategy are shown in Figs. 4(c) and 5(c).

E. modCHSH

In [19] the following Bell operator is investigated:

modCHSH ≡C(1,2) + C(1,3) + C(2,1) + C(2,2) − C(2,3).

(26)

This Bell operator is similar in form to the dimension witness
introduced in [14]. Since the relevant Bell inequality is very
robust in certifying the randomness, the dimension witness
with randomness lower bounded by it may also be expected to
be robust. Assuming P (a|x) = 1

2 , we turn it into the following
dimension witness:

W ′(1,2) + W ′(1,3) + W ′(2,1) + W ′(2,2) − W ′(2,3). (27)

Since this dimension witness is symmetric, we follow the steps
which lead from the expression (13) to the expression (14), to
obtain the following reduced dimension witness:

W (1,2) + W (1,3) + W (2,1) + W (2,2) − W (2,3). (28)

If we start with the dimension witness defined in Eq. (27), and
do not use the symmetry, we get the following lower-bounding
Bell inequality:

1
2 [C(1,2) + C(1,3) + C(2,1) + C(2,2) − C(2,3)

+ C(3,2) + C(3,3) + C(4,1) + C(4,2) − C(4,3)]. (29)

The dimension witness from Eq. (27) lower bounds the
dimension witness from Eq. (28), and thus both are lower
bounded (in the sense of theorem 1 and the conjecture
below it) by the Bell inequality from Eq. (29), but only the
second dimension witness is proved to be lower bounded by
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modCHSH [see Eq. (26)]. Lower bounds for this set of DI and
SDI protocols are shown in Figs. 2(d), 3(d), 4(d), and 5(d).

V. CONCLUSIONS

In this paper we explained in more detail the ideas
from our previous paper [17]. In particular all steps of the
proof of theorem 1 were provided. A tighter bound, using
condition P (a,b|x,y) = P (¬a,¬b|x,y) in the DI scheme,
has been introduced. We have presented a new method of
dimension witness reduction, and a clear distinction between
reduced and full dimension witnesses has been made. Reduced
dimension witnesses have been shown to be able to certify
more randomness. Min entropies of several protocols, that had
not been considered previously in [17], were evaluated.

Recently a new method that allows us to lower bound the
randomness obtained in a SDI scheme directly, using semidef-
inite programming, has been introduced in [29]. However,

the complexity of their algorithm increases significantly with
the dimension of Hilbert space, while in our case the same
computation provides a bound for all dimensions.

It remains an open question, what are the conditions on a
dimension witness under which the adversary has no gain in
using the mixed strategy rather than P.
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