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Abstract 

Industry 4.0 offers a comprehensive, interlinked, and holistic approach to manufacturing. It connects physical with digital and 
allows for better collaboration and access across departments, partners, vendors, product, and people. Consequently, it involves 
complex designing of highly specialized state of the art technologies. Thus, companies face formidable challenges in the adoption 
of these new technologies. In this paper, critical components of Industry 4.0, their significance and challenges as identified in the 
literature are presented. Furthermore, a test case framework for the implementation of Industry 4.0 is proposed. The system covers 
four layers: decision support, data processing, data acquisition and transmission and sensors. Condition monitoring data from 
machines and shop floor are captured, stored, organized and visualized in real time. Knowledge representation technique of 
SOEKS/DDNA is used for doing the semantic analysis of the data, Virtual Engineering Object (VEO), Virtual Engineering Process 
(VEP) and Virtual Engineering Factory (VEF) are used for creating virtual engineering objects, process and factory respectively, 
Python and its utility Bokeh is used for visualization. The proposed Industry 4.0 framework will make it possible to gather and 
analyze data across machines, processes and resources supporting faster, flexible, and more efficient control and production of 
higher-quality goods at reduced costs.  
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1. Introduction to Industry 4.0 

Industrie 4.0 is also called Industry 4.0 which implies the beginning of the Fourth Industrial Revolution [1, 2] was 
initially introduced in 2011 in Germany. The first three industrial revolutions took around two centuries, and are the 
result of, firstly, the introduction of water and steam-powered mechanical manufacturing facilities; secondly, the 
application of electrically-powered mass production technologies through the division of labour; and thirdly, the use 
of electronics and information technology (IT) to support further automation of manufacturing [3]. The concept of the 
latest technological revolution, which is based on the concepts and technologies that include the Internet of things 
(IoT), the Internet of services (IoS) and cyber-physical systems (CPS) [4], based on communication via Internet that 
allows a continuous interaction and exchange of information not only between humans (C2C) and human and machine 
(C2M) but also between the machines themselves (M2M)[5].  

Moreover, the idea of Industry 4.0 allows mass customization at a lower cost, higher quality, and faster processing. 
It is a vision where smart products, smart equipment and resources interact autonomously for dynamic optimization. 
However, for most enterprises, the methodology to adapt and implement Industry 4.0 is not transparent. In this article, 
a generic Industry 4.0 framework is explained for testing out new technologies and creating a new approach to 
production. 

The structure of this paper is as follows in section 2, critical components of Industry 4.0 as identified in the literature 
and their significance and implementation challenges are outlined. Section 3 presents a framework for the 
implementation of industry 4.0. A case study is presented in section 4 in which whole body vibrations (WBV) and 
Hand Arm Vibration (HAV) coming out of a machine are monitored and analyzed in real time. In section 5, results of 
virtualization and visualization are shown. In the final section, the conclusions drawn from this research are discussed.  

2. Critical Components of Industry 4.0 

Industry 4.0 represents the automation technologies in the manufacturing industry, and it mainly includes enabling 
technologies such as the cyber-physical systems (CPS), Internet of Things (IoT) and cloud computing[6, 7]. According 
to German Trade and Invest (GTAI) (2014), Industry 4.0 represents the technological evolution from embedded 
systems to cyber-physical systems. Industry 4.0 is a research area of keen interest for industry and the academic world. 
Many experiments for the application of Industry 4.0 are carried out in a wide range of areas like Health care and 
social applications, Smart cities, Power System, Children keeper service, water distribution systems, Fire handling, 
Autonomous vehicle, Health Care, Communication and transportation [8].  

 In Industry 4.0, embedded systems, semantic machine-to-machine communication, IoT and CPS technologies are 
integrating the virtual space with the physical world; also, a new generation of industrial systems, such as smart 
factories, is emerging to deal with the complexity of production in the cyber-physical environment [9]. To achieve the 
functionality mentioned above, Industry 4.0 involves highly specialized areas of technology, the critical factors and 
the subfactors of these areas identified in the literature[10] are presented in table 1: 

 
Table 1. Critical Factors and Sub Factors of Industry 4.0 and their significance 

 
Factors Sub Factors Description 

IoT, IoS and related 
technologies 

RFID, Sensors, Actuators, GPS, etc. IoT utilizes artificial intelligence techniques to create smart 
things or smart objects. Smart devices are capable of integrating 
tools, organizations, and information systems for data sharing 
and exchange; real-time monitoring; and using anything, 
anywhere, anytime communication to sense, capture, measure 
and transfer data [11-13]. 

Connectivity and Networks, WSN, M2M 
Data Exchange 
People and Services 

CPS and CPPS Integration of computational algorithm and 
physical components 

CPS is the core foundation of Industry 4.0; it presents a higher 
level of integration and coordination between physical and 
computational elements [14, 15]. Smart and Connected Communities (S&CC) 

Virtual Objects 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2019.09.370&domain=pdf
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1. Introduction to Industry 4.0 

Industrie 4.0 is also called Industry 4.0 which implies the beginning of the Fourth Industrial Revolution [1, 2] was 
initially introduced in 2011 in Germany. The first three industrial revolutions took around two centuries, and are the 
result of, firstly, the introduction of water and steam-powered mechanical manufacturing facilities; secondly, the 
application of electrically-powered mass production technologies through the division of labour; and thirdly, the use 
of electronics and information technology (IT) to support further automation of manufacturing [3]. The concept of the 
latest technological revolution, which is based on the concepts and technologies that include the Internet of things 
(IoT), the Internet of services (IoS) and cyber-physical systems (CPS) [4], based on communication via Internet that 
allows a continuous interaction and exchange of information not only between humans (C2C) and human and machine 
(C2M) but also between the machines themselves (M2M)[5].  

Moreover, the idea of Industry 4.0 allows mass customization at a lower cost, higher quality, and faster processing. 
It is a vision where smart products, smart equipment and resources interact autonomously for dynamic optimization. 
However, for most enterprises, the methodology to adapt and implement Industry 4.0 is not transparent. In this article, 
a generic Industry 4.0 framework is explained for testing out new technologies and creating a new approach to 
production. 

The structure of this paper is as follows in section 2, critical components of Industry 4.0 as identified in the literature 
and their significance and implementation challenges are outlined. Section 3 presents a framework for the 
implementation of industry 4.0. A case study is presented in section 4 in which whole body vibrations (WBV) and 
Hand Arm Vibration (HAV) coming out of a machine are monitored and analyzed in real time. In section 5, results of 
virtualization and visualization are shown. In the final section, the conclusions drawn from this research are discussed.  

2. Critical Components of Industry 4.0 

Industry 4.0 represents the automation technologies in the manufacturing industry, and it mainly includes enabling 
technologies such as the cyber-physical systems (CPS), Internet of Things (IoT) and cloud computing[6, 7]. According 
to German Trade and Invest (GTAI) (2014), Industry 4.0 represents the technological evolution from embedded 
systems to cyber-physical systems. Industry 4.0 is a research area of keen interest for industry and the academic world. 
Many experiments for the application of Industry 4.0 are carried out in a wide range of areas like Health care and 
social applications, Smart cities, Power System, Children keeper service, water distribution systems, Fire handling, 
Autonomous vehicle, Health Care, Communication and transportation [8].  

 In Industry 4.0, embedded systems, semantic machine-to-machine communication, IoT and CPS technologies are 
integrating the virtual space with the physical world; also, a new generation of industrial systems, such as smart 
factories, is emerging to deal with the complexity of production in the cyber-physical environment [9]. To achieve the 
functionality mentioned above, Industry 4.0 involves highly specialized areas of technology, the critical factors and 
the subfactors of these areas identified in the literature[10] are presented in table 1: 

 
Table 1. Critical Factors and Sub Factors of Industry 4.0 and their significance 

 
Factors Sub Factors Description 

IoT, IoS and related 
technologies 

RFID, Sensors, Actuators, GPS, etc. IoT utilizes artificial intelligence techniques to create smart 
things or smart objects. Smart devices are capable of integrating 
tools, organizations, and information systems for data sharing 
and exchange; real-time monitoring; and using anything, 
anywhere, anytime communication to sense, capture, measure 
and transfer data [11-13]. 

Connectivity and Networks, WSN, M2M 
Data Exchange 
People and Services 

CPS and CPPS Integration of computational algorithm and 
physical components 

CPS is the core foundation of Industry 4.0; it presents a higher 
level of integration and coordination between physical and 
computational elements [14, 15]. Smart and Connected Communities (S&CC) 

Virtual Objects 
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Big Data and Analytics Volume Data is often referred to as the raw material of the digital 
revolution. With a vast number of things connected to the 
Internet, a massive amount of real-time data will be automatically 
produced by connected things [16]. Unprocessed data may not 
provide meaningful value to decision-making in a cyber-physical 
production network unless these data are adequately analyzed 
and utilized for manufacturing decisions [17].  

Veracity 
Variety 
Velocity 
Validity 
Volatility 
Cloud Computing 
Visualization 

Cyber Security Application Security A responsive, agile network is made possible only by open data 
sharing from all participants in the manufacturing network, 
which creates a significant hurdle; it will likely be challenging to 
strike a balance between allowing transparency for data and 
maintaining security. Organizations may thus want to consider 
ways to secure that information to prevent unauthorized users 
from accessing it across the network. They would also likely need 
to remain disciplined about maintaining those safeguards across 
all supporting processes[18]. 

Information Security 
Network Security 
Disaster Recovery/Continuity Planning 
Operational Security 
End User Security 

System Integration Horizontal Integration Vertical flow refers to company activities development and 
execution, including essential elements such as the 
organizational structure, human factor, departments 
relationships, technological and management level. In a 
complementary way, the horizontal flow includes external 
relations, establishes supplier and customer networks integration, 
information and management systems and others [19]. 

Vertical Integration 
End-to-end Integration 

Others Augmented reality An Industry 4.0 manufacturing environment is intelligent which 
requires more advanced technologies such as Autonomous 
Robots, Augmented reality, Simulation and Additive 
manufacturing [11]. Industry 4.0 utilizes artificial intelligence 
techniques and IoT to create smart things or smart objects. 
Arsénio et al. (2014) [12] propose to create the Internet of 
Intelligent Things by bringing artificial intelligence into things 
and communication networks [13]. Researchers have projected 
that future IoT systems would have characteristics such as self-
configuration, self-optimization, self-protection and self-healing 
[20]. Smart objects will become more intelligent context-aware 
with more significant memory, processing, and reasoning 
capabilities[13]. 

Autonomous Robots 
Additive Manufacturing 
Simulation 
Standardization 

2.1 Challenges of adopting Industry 4.0 

• In CPS, physical entities, their virtual models and software components are deeply intertwined, each 
operating on different spatial and temporal scales, and interacting with each other in a myriad of ways that 
change with context [8].  

• To analyze massive amounts of data generated from both IoT applications and ICT systems, data science and 
data analytics techniques should be developed and employed. Building practical applications in which big 
data from a verity of heterogeneous sources are integrated can be a challenging task [8, 21]. 

• The small and medium enterprises have not fully transformed the manual operation and data collection to the 
auto-collecting methods due to limitations of connection ability of legacy machinery [22]. 

• Conventional machines still play a significant role in factories as they guarantee production quality and 
efficiency. However, their communication with the whole Industry 4.0 system is not optimized. Upgrading 
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these old machines is costly and time-consuming, and causes a risk of productivity loss due to incompatibility 
and downtime [23]. 

• Smart devices enable ubiquitous computing. However, there are significant challenges at various levels, for 
Smart devices to have the capability of integrating devices, organizations, and information systems for data 
sharing and exchange; real-time monitoring; and using anything, anywhere, anytime communication to sense, 
capture, measure and transfer data [10, 21]. 

Thus, from the literature review, it was observed that one of the most critical challenges that companies encounter 
in implanting Industry 4.0 is to synchronize the conventional and legacy machine that can be compatible with the 
digital environment. Secondly, a mechanism is needed to create virtual models for these machines, and finally, a 
methodology is required to visualize the data coming out tools, devices and machines to make effective decision 
making. 

3. A framework to implement industry 4.0 

The main focus of this work is to contribute to the Industry 4.0 concept by proposing a model that entails the rapid 
transfer of new knowledge into industrial processes and products. In our work, we focus on the development of 
knowledge-based models engineering objects and processes. The proposed conceptual framework is divided into four 
stages: Stage 1-Data Collection platform, Stage 2-Data preparation and healing, Stage3-Semantic Analysis and Stage 
4 - Real-time visualization as shown in Fig. 1. 

The proposed architecture for a digital factory can help to create horizontal integration a strategic level, enable 
vertical integration and networked design and provide end-to-end integration across the entire value chain of the 
business process level. 
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Intelligent Things by bringing artificial intelligence into things 
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[20]. Smart objects will become more intelligent context-aware 
with more significant memory, processing, and reasoning 
capabilities[13]. 
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2.1 Challenges of adopting Industry 4.0 

• In CPS, physical entities, their virtual models and software components are deeply intertwined, each 
operating on different spatial and temporal scales, and interacting with each other in a myriad of ways that 
change with context [8].  

• To analyze massive amounts of data generated from both IoT applications and ICT systems, data science and 
data analytics techniques should be developed and employed. Building practical applications in which big 
data from a verity of heterogeneous sources are integrated can be a challenging task [8, 21]. 

• The small and medium enterprises have not fully transformed the manual operation and data collection to the 
auto-collecting methods due to limitations of connection ability of legacy machinery [22]. 

• Conventional machines still play a significant role in factories as they guarantee production quality and 
efficiency. However, their communication with the whole Industry 4.0 system is not optimized. Upgrading 
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these old machines is costly and time-consuming, and causes a risk of productivity loss due to incompatibility 
and downtime [23]. 

• Smart devices enable ubiquitous computing. However, there are significant challenges at various levels, for 
Smart devices to have the capability of integrating devices, organizations, and information systems for data 
sharing and exchange; real-time monitoring; and using anything, anywhere, anytime communication to sense, 
capture, measure and transfer data [10, 21]. 

Thus, from the literature review, it was observed that one of the most critical challenges that companies encounter 
in implanting Industry 4.0 is to synchronize the conventional and legacy machine that can be compatible with the 
digital environment. Secondly, a mechanism is needed to create virtual models for these machines, and finally, a 
methodology is required to visualize the data coming out tools, devices and machines to make effective decision 
making. 

3. A framework to implement industry 4.0 

The main focus of this work is to contribute to the Industry 4.0 concept by proposing a model that entails the rapid 
transfer of new knowledge into industrial processes and products. In our work, we focus on the development of 
knowledge-based models engineering objects and processes. The proposed conceptual framework is divided into four 
stages: Stage 1-Data Collection platform, Stage 2-Data preparation and healing, Stage3-Semantic Analysis and Stage 
4 - Real-time visualization as shown in Fig. 1. 

The proposed architecture for a digital factory can help to create horizontal integration a strategic level, enable 
vertical integration and networked design and provide end-to-end integration across the entire value chain of the 
business process level. 
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Fig. 1. Stages of the proposed framework 
3.1 Stage 1-Data Collection Platform 
 
In the proposed framework real-time data is collected through agents such as Sensors, RFID, Camera and Operator 

via a wireless network, for measuring product state, process and environment conditions. 
  
3.2 Stage 2-Data preparation and healing 
 
Once the data is collected, it is essential to prepare it for its exploitation. First of all, there is a necessity of some 

filtering, as not all the raw data is useful. Secondly, the outliers and any other fragment of data that are considered 
noise are eliminated here. 

At the object level, data is arranged in a structured format of SOEKS to create VEO a specialized form of CPS. As 
an engineering process involves various process parameters along with many resources. Thus, at the process level 
information along with VEOs create VEP, a specialized form of Cyber-Physical Production System (CPPS)[22, 24]. 
At the next level VEF, which is an encapsulation of all the VEOs and VEPs is developed. Finally, the collection of 
VEOs, VEPs and VEF forms Factory Experience or Manufacturing DNA, through which exception information can 
be extracted [23]. 

The knowledge representation technique of Set of experience knowledge structure (SOEKS)-Decisional DNA 
(DDNA) [25, 26] is used for developing VEO and VEP models [27]. 

 
3.3 Stage 3-Semantic Analysis 
 
The semantic enhanced intelligent factory model agglutinates the entire reasoning process. The semantization 

process starts with an IN/OUT module that synchronizes the information to be enriched with the communication layer 
messages/serialized-responses maintained between the server and the client. As mentioned in the previous section the 
semantic reasoner adopted is VEO, VEP and VEF. 

 
3.3.1 Virtual Engineering Object (VEO) - Virtual Engineering Process (VEP) – Virtual Engineering Factory (VEF) 
 

The concept of VEP and VEO can be assimilated with Industry 4.0 [24]. In a manufacturing environment, a 
collection of components/tools/objects constitutes a process. Following this pattern, the virtual representation of 
artifacts in the form of VEO and the process as VEP is developed.  

 
Virtual Engineering Objects (VEO)  
 

A VEO is a knowledge representation of an engineering artifact comprising experience models, domain and 
functionality along with a physical attachment to the virtual object in its conceptualization. VEO is developed on the 
concept of a cradle-to-grave approach, which means that the contextual information and decision making regarding 
an engineering object right from its inception until its useful life is stored or linked in it. A VEO can encapsulate 
knowledge and experience of every critical feature related to an engineering object. It can be achieved by gathering 
information from following six different aspects of an object viz — characteristics, Functionality, Requirements, 
Connections, Present State and Experience [22, 23]. 

 
Virtual Engineering Process (VEP) 
 

Virtual engineering process (VEP) is a knowledge representation of the manufacturing process/process-planning 
of artifact having all shop floor level information regarding required operations; their sequence and resources needed 
to manufacture it. VEP deals with the selection of necessary manufacturing operations and determination of their 
sequences, as well as the selection of manufacturing resources to “transform” a design model into a physical 
component economically and competitively. In addition to this, for VEP, information of all the VEO’s of the resource 
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associated with the process is also linked. Therefore, to encapsulate knowledge of the areas mentioned above, the VEP 
is designed having the following three main elements or modules (i) Operations, (ii) Resources, and (iii) Experience. 

Virtual Engineering Factory (VEF) 
A VEF is a knowledge representation of a manufacturing factory by a collection of experience of integrated 

equipment and human resources, whose function is to perform one or more processing and assembly operations on a 
starting raw material, part, or set of parts. Different modules from which VEF gathers factory experience are (i) 
Loading/Unloading, (ii) Transportation, (iii) Storage, (iv) Quality Control, and (v) Experience[22]. 

 
3.4 Stage 4 - Real-time visualization. 
 
Visual techniques are increasingly used for exploratory analysis and to quickly identify patterns in industrial 

processes. As Visual Analytics is suited for complex real-world problems with large amounts of data, they fit perfectly 
in this field. The proposed framework contains a Visual Analytics module that offers a graphical output to the 
semantically enhanced information stored in the architecture. 

In our approach, we propose a flexible dashboard system instead of a single universal visualization. The diversity 
of problems that can appear in a manufacturing environment is too high to create a unique type of visualization. It is 
better to build an interactive tool that can create customized visualizations. The user can visualize in real time different 
variables, graphs and charts, and compose its visualization configuration. 

The visualization module is based on Bokeh, which is a Python interactive visualization library that targets modern 
web browsers. Its goal is to provide elegant, concise construction of novel graphics, but also deliver this capability 
with high-performance interactivity over very large or streaming datasets [28]. 

4. Case Study 

4.1 Problem Statement 
 
To develop a virtual manufacturing environment in which real-time data communication, monitoring, semantic 

analysis and visualization of KPI (like vibrations, noise, temperature, pressure, tool life) in real time over a network 
is done. The framework will be capable of facilitating effective decision making both at the planning stage as well as 
at the operations stage. 

 
4.2 Methodology 
 
A case study is designed specifically to capture vibrational data coming from machines, monitor it, analyze it and 

finally visualize it in real time. Whole Body Vibrations (WBV) and Hand-Arm Vibrations (HAV) data are collected 
from various sensors, measuring vibrations in X, Y and Z axis for Vibration analysis and diagnostic in accordance 
Australian Standard AS 2670.1-2001.  

WBV measurements were conducted using a VI-400 Pro, hand-held real-time vibration analyzer from Quest 
Technologies as shown in Fig. 2(a).  Vibration acceleration measurements were conducted in four axes simultaneously 
between the frequency range of 0.5 Hz to 80 Hz. Three of these axes were recorded using a seat pad sensor with the 
operator sitting on it (see figure 2(b)); transverse (X), longitudinal (Y) and vertical (Z). 

HAV measurements were conducted using a tri-axial ICP accelerometer fixed to an H-shaped adaptor that fitted 
between the operator’s fingers and the handle of the machine tool being tested. Vibration acceleration measurements 
were conducted in three orthogonal directions using the frequency range between 5 and 1500 Hz. Third-octave 
vibration spectra were communicated using a proprietary occupational vibration analyzer.  

Total number and type of these data sensors may vary according to different machining conditions. The purpose of 
choosing the sensors mentioned above is to demonstrate the practical applicability of the proposed concept. Some of 
the salient features of the case study implementation are: 
• Using CPS-like devices to support data capture coming from sensors recording vibration activities of the machines.  
• Standardising data representation. 
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Fig. 1. Stages of the proposed framework 
3.1 Stage 1-Data Collection Platform 
 
In the proposed framework real-time data is collected through agents such as Sensors, RFID, Camera and Operator 

via a wireless network, for measuring product state, process and environment conditions. 
  
3.2 Stage 2-Data preparation and healing 
 
Once the data is collected, it is essential to prepare it for its exploitation. First of all, there is a necessity of some 

filtering, as not all the raw data is useful. Secondly, the outliers and any other fragment of data that are considered 
noise are eliminated here. 

At the object level, data is arranged in a structured format of SOEKS to create VEO a specialized form of CPS. As 
an engineering process involves various process parameters along with many resources. Thus, at the process level 
information along with VEOs create VEP, a specialized form of Cyber-Physical Production System (CPPS)[22, 24]. 
At the next level VEF, which is an encapsulation of all the VEOs and VEPs is developed. Finally, the collection of 
VEOs, VEPs and VEF forms Factory Experience or Manufacturing DNA, through which exception information can 
be extracted [23]. 

The knowledge representation technique of Set of experience knowledge structure (SOEKS)-Decisional DNA 
(DDNA) [25, 26] is used for developing VEO and VEP models [27]. 

 
3.3 Stage 3-Semantic Analysis 
 
The semantic enhanced intelligent factory model agglutinates the entire reasoning process. The semantization 

process starts with an IN/OUT module that synchronizes the information to be enriched with the communication layer 
messages/serialized-responses maintained between the server and the client. As mentioned in the previous section the 
semantic reasoner adopted is VEO, VEP and VEF. 

 
3.3.1 Virtual Engineering Object (VEO) - Virtual Engineering Process (VEP) – Virtual Engineering Factory (VEF) 
 

The concept of VEP and VEO can be assimilated with Industry 4.0 [24]. In a manufacturing environment, a 
collection of components/tools/objects constitutes a process. Following this pattern, the virtual representation of 
artifacts in the form of VEO and the process as VEP is developed.  

 
Virtual Engineering Objects (VEO)  
 

A VEO is a knowledge representation of an engineering artifact comprising experience models, domain and 
functionality along with a physical attachment to the virtual object in its conceptualization. VEO is developed on the 
concept of a cradle-to-grave approach, which means that the contextual information and decision making regarding 
an engineering object right from its inception until its useful life is stored or linked in it. A VEO can encapsulate 
knowledge and experience of every critical feature related to an engineering object. It can be achieved by gathering 
information from following six different aspects of an object viz — characteristics, Functionality, Requirements, 
Connections, Present State and Experience [22, 23]. 

 
Virtual Engineering Process (VEP) 
 

Virtual engineering process (VEP) is a knowledge representation of the manufacturing process/process-planning 
of artifact having all shop floor level information regarding required operations; their sequence and resources needed 
to manufacture it. VEP deals with the selection of necessary manufacturing operations and determination of their 
sequences, as well as the selection of manufacturing resources to “transform” a design model into a physical 
component economically and competitively. In addition to this, for VEP, information of all the VEO’s of the resource 
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associated with the process is also linked. Therefore, to encapsulate knowledge of the areas mentioned above, the VEP 
is designed having the following three main elements or modules (i) Operations, (ii) Resources, and (iii) Experience. 

Virtual Engineering Factory (VEF) 
A VEF is a knowledge representation of a manufacturing factory by a collection of experience of integrated 

equipment and human resources, whose function is to perform one or more processing and assembly operations on a 
starting raw material, part, or set of parts. Different modules from which VEF gathers factory experience are (i) 
Loading/Unloading, (ii) Transportation, (iii) Storage, (iv) Quality Control, and (v) Experience[22]. 

 
3.4 Stage 4 - Real-time visualization. 
 
Visual techniques are increasingly used for exploratory analysis and to quickly identify patterns in industrial 

processes. As Visual Analytics is suited for complex real-world problems with large amounts of data, they fit perfectly 
in this field. The proposed framework contains a Visual Analytics module that offers a graphical output to the 
semantically enhanced information stored in the architecture. 

In our approach, we propose a flexible dashboard system instead of a single universal visualization. The diversity 
of problems that can appear in a manufacturing environment is too high to create a unique type of visualization. It is 
better to build an interactive tool that can create customized visualizations. The user can visualize in real time different 
variables, graphs and charts, and compose its visualization configuration. 

The visualization module is based on Bokeh, which is a Python interactive visualization library that targets modern 
web browsers. Its goal is to provide elegant, concise construction of novel graphics, but also deliver this capability 
with high-performance interactivity over very large or streaming datasets [28]. 

4. Case Study 

4.1 Problem Statement 
 
To develop a virtual manufacturing environment in which real-time data communication, monitoring, semantic 

analysis and visualization of KPI (like vibrations, noise, temperature, pressure, tool life) in real time over a network 
is done. The framework will be capable of facilitating effective decision making both at the planning stage as well as 
at the operations stage. 

 
4.2 Methodology 
 
A case study is designed specifically to capture vibrational data coming from machines, monitor it, analyze it and 

finally visualize it in real time. Whole Body Vibrations (WBV) and Hand-Arm Vibrations (HAV) data are collected 
from various sensors, measuring vibrations in X, Y and Z axis for Vibration analysis and diagnostic in accordance 
Australian Standard AS 2670.1-2001.  

WBV measurements were conducted using a VI-400 Pro, hand-held real-time vibration analyzer from Quest 
Technologies as shown in Fig. 2(a).  Vibration acceleration measurements were conducted in four axes simultaneously 
between the frequency range of 0.5 Hz to 80 Hz. Three of these axes were recorded using a seat pad sensor with the 
operator sitting on it (see figure 2(b)); transverse (X), longitudinal (Y) and vertical (Z). 

HAV measurements were conducted using a tri-axial ICP accelerometer fixed to an H-shaped adaptor that fitted 
between the operator’s fingers and the handle of the machine tool being tested. Vibration acceleration measurements 
were conducted in three orthogonal directions using the frequency range between 5 and 1500 Hz. Third-octave 
vibration spectra were communicated using a proprietary occupational vibration analyzer.  

Total number and type of these data sensors may vary according to different machining conditions. The purpose of 
choosing the sensors mentioned above is to demonstrate the practical applicability of the proposed concept. Some of 
the salient features of the case study implementation are: 
• Using CPS-like devices to support data capture coming from sensors recording vibration activities of the machines.  
• Standardising data representation. 
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• Converting machine data stored in the database as SOEKS Structure. 
• Using SOEKS to create VEO, VEP and VEF according to their format. 
• Plotting streaming data in the client using visualization API based on BOKEH. 

 

 
Fig. 2. Location of sensors capturing vibrations 

5. Results 

5.1 Data capture and visualization 
 
As illustrated in Fig.3(a) and Fig. 3(b), information is continuously being pushed from machines. The principal 

role of the model is to manage the incoming data and to store the information efficiently. Storing streaming data is 
useful for the evaluation of machine performance and its maintenance. Any significant change to the status of the 
monitored machine can be detected. The change is defined as a dramatic variation (high and low as shown in Fig.3(a) 
and Fig. 3(b)) in machine health value, a maintenance action or a change in the working regime. During the life cycle 
of a machine, these streaming data will be accumulated and used to construct the time-machine history of the particular 
asset. This current time-machine record will be used for peer-to-peer comparison between assets. Once the asset is 

2(a) 2(b) 
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failed or replaced, its relative time-machine record will change status from active to historical and will be used as 
similarity identification and synthesis reference. 

 
Fig. 3(a). Real-Time Data Visualization and Analysis of WBV in X, Y and Z directions. 

 

 
Fig. 3(b). Real-Time Data Visualization and Analysis of HAV 

 
5.2 Performing semantics on the SOEKS similarity identification 

 
Data coming from sensors is captured and arranged in the SOEKS format to represent formal decisions taken while 

operating the machine. To compare the current machine behavior, the similarity with each past SOEKS of the machine 
is calculated. The similarity index is calculated by Euclidian distance between the variables. 

Fig.4 shows the similarity index calculated for each SOEKS in the repository with the query SOEKS. The SOEKS 
marked with a red dot indicates the most similar SOE. Once the patterns are matched, the future behavior of the 
monitored system can be predicted more accurately. 

Fig. 4. Similarity identification for each SOEKS 
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• Converting machine data stored in the database as SOEKS Structure. 
• Using SOEKS to create VEO, VEP and VEF according to their format. 
• Plotting streaming data in the client using visualization API based on BOKEH. 
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role of the model is to manage the incoming data and to store the information efficiently. Storing streaming data is 
useful for the evaluation of machine performance and its maintenance. Any significant change to the status of the 
monitored machine can be detected. The change is defined as a dramatic variation (high and low as shown in Fig.3(a) 
and Fig. 3(b)) in machine health value, a maintenance action or a change in the working regime. During the life cycle 
of a machine, these streaming data will be accumulated and used to construct the time-machine history of the particular 
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similarity identification and synthesis reference. 
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operating the machine. To compare the current machine behavior, the similarity with each past SOEKS of the machine 
is calculated. The similarity index is calculated by Euclidian distance between the variables. 

Fig.4 shows the similarity index calculated for each SOEKS in the repository with the query SOEKS. The SOEKS 
marked with a red dot indicates the most similar SOE. Once the patterns are matched, the future behavior of the 
monitored system can be predicted more accurately. 
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6. Conclusion 

In this article, firstly the concept of Industry 4.0 is explained; secondly, the critical factors of Industry 4.0 along 
with the subfactors and their significance are outlined. Moreover, the major challenges in the implementation of 
Industry 4.0 are identified. Thirdly, a general purpose Industry 4.0 framework is presented, which provides the 
mechanism right from the capture of data to its real-time visualization. Finally, a case study is presented based on the 
proposed framework, in which machine data is acquired, analyzed and visualized in real time. Moreover, Virtual 
copies of engineering objects, process, and factory in the form of VEO, VEP and VEP are developed. 

Thus it can be concluded; if all the data from products, processes and factory are collected into a database, they can 
be searched, correlated and visualized with algorithms. Engineers can then discovery trends and patterns that reveal 
the “how” and “why” of decreases in the forecast. The quality team can pinpoint variances that require further 
investigation, identify where problems occur during a process. This approach has complete traceability right down to 
the specific parts and their serial number. The root cause of anomalies can be tracked down. 

This work is an implementation of Industry 4.0 through a pilot initiative is limited to a single area, and IT systems 
support only a few processes. In the future, a full Industry 4.0 structure covering the entire product life cycle, flexible 
enough for adapting the dynamic industrial changes can be developed. 
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6. Conclusion 

In this article, firstly the concept of Industry 4.0 is explained; secondly, the critical factors of Industry 4.0 along 
with the subfactors and their significance are outlined. Moreover, the major challenges in the implementation of 
Industry 4.0 are identified. Thirdly, a general purpose Industry 4.0 framework is presented, which provides the 
mechanism right from the capture of data to its real-time visualization. Finally, a case study is presented based on the 
proposed framework, in which machine data is acquired, analyzed and visualized in real time. Moreover, Virtual 
copies of engineering objects, process, and factory in the form of VEO, VEP and VEP are developed. 

Thus it can be concluded; if all the data from products, processes and factory are collected into a database, they can 
be searched, correlated and visualized with algorithms. Engineers can then discovery trends and patterns that reveal 
the “how” and “why” of decreases in the forecast. The quality team can pinpoint variances that require further 
investigation, identify where problems occur during a process. This approach has complete traceability right down to 
the specific parts and their serial number. The root cause of anomalies can be tracked down. 

This work is an implementation of Industry 4.0 through a pilot initiative is limited to a single area, and IT systems 
support only a few processes. In the future, a full Industry 4.0 structure covering the entire product life cycle, flexible 
enough for adapting the dynamic industrial changes can be developed. 
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