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Abstract
Despite the abundance of available cell lines, nearly 70% of all recombinant therapeutic proteins today are produced in Chi-
nese hamster ovary (CHO) cells. The impact of protein overproduction on the secretion of exosomes by CHO cells has been 
investigated here. Increased secretion of extracellular vesicles (EVs) by protein overexpressing CHO cells was demonstrated 
with protein content assay, nanoparticle tracking analysis, and capillary electrophoresis. Our results revealed that a protein 
overproduction might induce EVs secretion, which might be accompanied by the sequestration and loading of overexpressed 
proteins into the exosomes. These findings are of vital importance for the manufacturing of therapeutics in CHO expres-
sion systems due to the risk of product loss during downstream processing of culture medium as well as the application 
of exosomes as nanocarriers of therapeutic proteins. The study indicates also the importance of culturing process control.
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Introduction

Chinese hamster ovary (CHO) cells are the most widely 
used as an expression system for recombinant therapeutic 
protein (RTP) production, and nearly 70% of RTPs are 
currently generated by CHO cells, especially monoclo-
nal antibodies (mAbs). Almost all (close to 90%) com-
mercially available mAbs were produced in CHO cells, 

corresponding to a market value of $107 billion [1, 2]. 
The popularity of the usage of CHO cells for RTP produc-
tion is based on their unique advantages, i.e., a variety of 
post-translational modifications of the produced proteins 
in CHO are highly similar to those in human cells; well-
proven genetic tools are available to optimize CHO cells; 
low risk of propagation of human viruses due to the ham-
ster origin. Moreover, CHO cells are accessible to culture 
and grow well in suspension and as an adherent culture 
with a shorter generation time than human cells. Their 
tolerance to oxygen, carbon dioxide levels, temperature, 
and pH variations makes them suitable cells for large-scale 
culture. Furthermore, CHO can be cultivated in animal-
free, protein-free, serum-free medium (SFM), decreasing 
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the risk of contamination by animal-origin viruses or pro-
teins of biopharmaceutical products. High recombinant 
protein yields and specific productivity cause CHO cells 
to be used to produce about 50 biotherapeutics already 
approved in the USA and EU [3–5].

Extracellular vesicles (EVs) are small lipid bilayer extra-
cellular particles derived from cytoplasmic or endosomal 
membranes and are produced and secreted by a wide variety 
of different cells, including CHO cells. EVs carry a cargo of 
important cellular biomolecules, including proteins, nucleic 
acids, lipids, metabolites, and organelles. Cells use EVs to 
mediate intercellular communications and send stress sig-
nals and small RNAs to alter the expression and expel toxic 
accumulated products [6, 7].

The EVs, secreted by CHO cells, have recently been char-
acterized. A single CHO cell was estimated to produce up 
to about 200 EVs (nano- and microvesicles) per day [8]. 
The analysis showed that exosomes produced by CHO cells 
are composed of more than 1300 proteins and hundreds 
of non-coding RNAs [9]. An intense exchange of cellular 
material between cells during culturing and adjustment of 
the EVs’ composition depending on the cell growth phase 
indicate their vital role in cell-to-cell communication which 
seemed to be underestimated in bioprocessing. Han and 
Rhee reported inhibition of CHO cell apoptosis by CHO-
derived EVs [10]. The authors indicated that EVs might be 
used as growth promotors to increase the viability of cells 
and bioprocess productivity without safety concerns. The 
concept was adopted by Takagi et al. [11]. The group pro-
posed repeated batch culture of CHO cells with the reuse of 
an EVs-rich fraction of culturing medium. The vesicles in 
reused fraction were <220 nm and were CD81 positive. The 
utility of CHO cells’ exosomes has recently been demon-
strated by Seras-Franzoso and coworkers [12]. The authors 
used CHO DG44 and HEK293 cell lines as expression sys-
tems for the production of enzymes related to lysosomal 
storage disorders (LSDs). Both investigated enzymes (alpha-
galactosidase A and N-sulfoglucosamine sulfohydrolase) 
were found to be secreted through EVs. The isolated vesicles 
were parenterally administered to animal models of LSDs, 
delivering therapeutic effects and advantageous pharmacoki-
netics as compared to conventional therapy.

The aim of the presented work was to investigate the 
impact of transfection on EVs production by CHO cells. 
It was verified whether the type of overproduced protein 
influences the intensity of EVs secretion as well as the phys-
icochemical properties of vesicles. To verify these hypoth-
eses, plasmids encoding butyrylcholinesterase (BChE) and 
β-galactosidase (β-Gal) were used which enabled us to verify 
if the secretion of overproduced enzymes is EVs-dependent. 
A side goal of the study was to demonstrate the applicability 
of the capillary electrophoresis technique (CE) to monitor 
the EVs isolation process from eukaryotic cell cultures.

Materials and methods

Materials

BIS-Tris propane (BTP), glycine (Gly), sodium dodecyl sul-
fate (SDS), phosphate-buffered saline (PBS), bovine serum 
albumin (BSA), sodium chloride, Tween 20, and tris (hydrox-
ymethyl) aminomethane (Tris) were obtained from Merck 
(Darmstadt, Germany). Sodium hydroxide was purchased 
from Avantor (Gliwice, Poland). All chemicals were of ana-
lytical grade. Deionized water was obtained with the Basic 5 
water purification system (Hydrolab, Wislina, Poland).

ExpiCHO™ Expression System was obtained from 
Thermo Fisher Scientific (Waltham, MA, USA).

The 4 mg mL−1 stock solution of 2-nitrophenyl β-d-
galactopyranoside (ONPG; Merck) was prepared in 0.1 M 
phosphate buffer (pH 6.8; Merck). To obtain the ONPG 
reagent solution, the ONPG stock solution was mixed with 
0.1 M MgCl2 (Merck) aqueous solution and 0.1 M phos-
phate buffer solution in the volumetric ratio of 66:3:201, 
respectively.

The SDS-PAGE buffer (25 mM Tris, 192 mM glycine, 
0.1% m/v SDS), transfer buffer (25 mM Tris, 192 mM gly-
cine), and TBST buffer (Tris Buffered Saline; 20 mM Tris 
7.5 pH, 150 mM NaCl, 0.1% v/v Tween 20) were prepared 
in deionized water and used in western blot experiments.

Expression vector

pCMV Sport-βgal vector encoding β-Gal was purchased 
from Thermo Fisher Scientific. pTracerBCHE vector 
expressing the C-terminal truncated form of BChE was con-
structed by using cloning techniques. An insert encoding 
BChE was amplified by polymerase chain reaction (PCR) 
method using template EX-A0103-M51 (GeneCopoeia, Inc) 
and specific primers: forward NBCHECHO-5′-ATA​GAT​
ATC​AAT​ATG​CAT​AGC​AAA​GTC​ACA​ATC and revers 
CCHOBCHEHIS-5′-ATA​GAT​ATC​TTA​GTG​ATG​GTG​ATG​
GTG​ATG​GAC​TTT​TGG​AAA​AAA​TGA​TGT​CCA​GAA​TCG​
. The insert was cloned into the EcoRV restriction site of the 
expression vector pTracer-CMV/Bsd (Thermo Fisher Sci-
entific) and introduced into E. coli Stellar™ (Takara Bio, 
Japan).

Cells culturing and transfection

Chinese hamster ovary (CHO) cells were maintained in 
ExpiCHO™ Expression Medium (Thermo Fisher Scien-
tific, USA) at 37°C with a humidified atmosphere of 8% v/v 
CO2 on an orbital shaker at 125 rpm. Cells were transfected 
with appropriate plasmid DNA after reaching 6 × 106 cells/
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mL cells’ density. The plasmid DNA and ExpiFectamine™ 
CHO Reagent were diluted separately with OptiPRO™ 
medium (Thermo Fisher Scientific, Lithuania) according to 
the manufacturer’s instructions, connected into one mixture, 
and incubated for 5 min at room temperature (RT). After 
this time, ExpiFectamine™ CHO/plasmid complexes were 
added to the cells. The cells were cultured according to the 
standard protocol for 8 days. Subsequently, the cultures were 
centrifuged at 8000 g, 4°C, for 10 min, and the supernatants 
were kept for the next analyses.

Isolation of vesicles

The culturing media was centrifuged for 30 min at 3000 g 
at the temperature of 4 °C. 10 mL of collected supernatant 
was ultrafiltrated down to 0.5 mL with Vivaspin 20 concen-
trator (100 kDa MWCO, PES, Sartorius) according to the 
vendor’s recommendations. The retentate was fractionated 
into 25 fractions, 0.5 mL each, with qEVoriginal 35 nm Gen 
2 (IZON) SEC column. The elution was conducted with PBS 
solution. The obtained fractions were stored at 4 °C.

Protein assay

Total protein content assay was conducted with Pierce BCA 
Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, 
USA) according to vendors’ recommendations. Bovine 
serum albumin (BSA) was used for calibration. The samples 
and standards were mixed with 6% m/m SDS solution in a 9 
to 1 volumetric ratio. The measurements were performed in 
96-well plates using an Infinite M200 plate reader (Tecan, 
Mannedorf, Switzerland).

Nanoparticles tracking analysis (NTA)

NTA analysis was performed with the Nanosight NS300 
instrument (Malvern Instruments, UK) and controlled with 
the NTA software (version 3.2 Dev Build 3.2.16, Malvern 
Instruments, UK). Samples were diluted in PBS to obtain 
around 40–100 particles per frame. A 305-nm laser and an 
sCMOS camera (camera level = 15–16; detection threshold 
= 5; focus = 180–220; flow rate = 100) were used to track 
particles. Each sample was analyzed twice. The single analy-
sis included 5 films (60 s each).

Capillary electrophoresis (CE)

The CE experiments were performed with PACE MDQ plus 
system (Sciex, Framingham, MA, USA) equipped with a 
photodiode array detector and controlled with 32 Karat 
software (version 10.2, Sciex). Separation was conducted 
in uncoated silica capillaries (50 μm i.d. × 30.2 cm of total 
length; Polymicro Technologies, West Yorkshire, UK). The 

background electrolyte was composed of 50 mM BTP and 
75 mM Gly (pH 9.5). The sample was injected hydrodynam-
ically (5 s, 3.45 kPa). The electrophoresis was carried out 
at 10 kV (25 °C) and the separation process was monitored 
at 200 and 230 nm. Capillary conditioning was described 
elsewhere [13].

Transmission electron microscopy (TEM)

TEM analysis was performed with Tecnai G2 T12 Spirit 
BioTwin microscope (FEI Company, Hillsboro, OR, USA). 
Before the analysis, the isolates (5 μL) were deposed on the 
formvar support on a copper mesh (200 mesh, Agar Scien-
tific, Stansted, UK), contrasted with a 1% m/v uranyl acetate, 
and left for drying.

β‑Galactosidase activity assay

270 μL of ONPG reagent solution was mixed with 30 μL 
of a sample. The absorbance was measured with an Infinite 
M200 plate reader (Tecan) at 420 nm wavelength in a time 
interval of 1 min. The β-galactosidase activity was deter-
mined as an increment of absorbance in time.

Measurement of BChE activity by Ellman’s assay

BChE activity of each SEC fraction was determined spec-
trophotometrically by modified Ellman’s method [14] using 
BTC (S-butyrylthiocholine iodide) as a substrate. The assay 
was performed in 96-well microtiter plates in a final reaction 
volume of 200 μL of 100 mM phosphate buffer (pH 7.4) with 
a final concentration of 0.5 mM DTNB (5,5′-Dithiobis(2-
nitrobenzoic acid) and 5 mM BTC as described previously 
[15]. The absorbance was monitored at 412 nm by repeated 
measurements at 1-min intervals for 10 min by a microplate 
reader spectrophotometer (Tecan Infinite M200 Pro, Tecan 
Group Ltd., Männedorf, Switzerland) at 25 °C.

Western blot

The SEC fractions were concentrated with Amicon ® Ultra 
10K (Merck) concentrator. The total protein concentration 
of samples was measured with a DC protein assay (Bio-
Rad, Hercules, CA, USA). On each lane of the 12% m/v 
SDS-PAGE gel, 30 mg of total protein amount from certain 
fractions was loaded. The proteins were separated at 100V 
for 90 min. Next, the proteins were blotted onto a PVDF 
membrane by using a wet transfer system at 100 V for 1 h. 
The membrane was blocked with TBST buffer with 3% m/v 
skim milk for 1 h at 4°C. The proteins were detected using 
the primary rabbit monoclonal antibodies: anti-Hsp70, anti-
TSG101, anti-CD63 (Abcam, Trumpington, UK), and the 
secondary antibodies anti-rabbit IgG horseradish peroxidase 
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conjugate (Bio-Rad, USA). The signals were measured in 
the ChemiDoc Touch Imaging system (Bio-Rad, USA) with 
a Clarity Western ECL Substrate chemiluminescence kit 
(Bio-Rad, USA).

Results

Isolation and characterization of EVs

The isolation of EVs was performed according to the pro-
cedure described in the “Isolation of vesicles” section. The 
culturing medium was centrifuged, the supernatant was 
preconcentrated, and the retentate was separated with SEC 
columns obtained from IZON. According to column speci-
fication, fractions 7th–9th were expected to contain vesicles. 
Indeed, the BCA (bicinchoninic acid) protein assay revealed 

the presence of proteins in fractions 7th–9th (Fig. 1A). These 
fractions were also rich in particles (Fig. 1B and C) with a 
modal size of about 100 nm and particle size distribution 
ranging from 40 to 270 nm (Fig. 1B and  S1). The size dis-
tribution of EVs in all analyzed isolates was found similar 
(Figs. 1B and S1). TEM analysis confirmed the presence of 
vesicles in all analyzed fractions (8th fractions from each 
sample type; Figs. 1D and S1). No morphological differ-
ences between samples were observed. WB analysis has 
finally confirmed the presence of exosomal markers HSP70, 
TSG101, and CD63 whose concentration peaked in frac-
tions 7th–9th (Fig. 1E and F). Attention should be paid that 
the culturing medium was serum-free (“Cells culturing and 
transfection” section). Thus, we have not screened the frac-
tions with WB for negative markers presence.

Significant amounts of proteins were detected in frac-
tions from the 10th to 25th (Fig. 1A) but these fractions were 

Fig. 1   The analysis of frac-
tions obtained with SEC from 
the culturing medium of CHO 
cells transfected with vectors 
overexpressing BChE (black 
bars); β-Gal (grqy bars) and 
untransfected control; (light gray 
bars). (A) Total protein concen-
tration assay of SEC fractions (at 
least four measurements in two 
independent experiments were 
performed per bar; the results 
were shown as an average ± 
standard deviation). The bottom 
graph shows the enlarged view 
of the 6th–12th fractions. (B) 
Particle size distribution of 8th 
fraction obtained from β-Gal-
overproducing cell cultures 
measured with NTA. (C) Particle 
concentration in selected fractions 
was measured with NTA (at 
least two measurements in two 
independent experiments were 
performed per bar; the results 
were shown as an average ± 
standard deviation). (D) TEM 
image of 8th fraction obtained 
from β-Gal-overproducing cells 
cultures (scale bar = 200 nm). 
(E, F) Exosome protein markers, 
HSP 70, TSG101, CD63 detec-
tion with western blotting in 
SEC fractions from the culturing 
medium of BChE- (E) and β-Gal-
overproducing (F) cells
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devoid of nanoparticles (Fig. 1C). This observation is also 
in line with column characteristics as later eluting fractions 
are assumed to contain soluble proteins and other molecular 
components of the samples.

Similar conclusions were drawn from CE analy-
ses. Characteristic low-efficient signals (N < 20,000 
plates/m) were detected in fractions 8th and 9th and 
were not present in later eluting fractions (Fig. 2A and 
B) [13, 16–19]. Such signals are typically generated by 
EVs in CE. Numerous signals, which might be assigned 
to proteomic and low-molecular sample matrix compo-
nents, were detected in later eluting fractions (especially 
fractions 18th–25th; Fig. 2A). The CE analysis of later 
eluting fractions might provide information on the effi-
ciency and yield of products secreted by CHO cells to 
the culturing medium. However, it was out of the scope 
of the presented work. Nevertheless, the sensitivity of 
CE with UV detection was sufficient to detect EVs in 
isolates obtained from culturing media of CHO cells 
transfected with genes encoding BChE and β-Gal.

Both proteins and particles were found in fractions from 
7th to 9th in all analyzed samples which indicates that vesi-
cles were secreted by transfected and untransfected CHO 
cells. All three techniques (BCA, NTA, and CE) showed that 
the overproduction of β-Gal and BChE proteins increased 
the secretion of EVs by the CHO cells (Figs. 1 and S2). 
Increased secretion of EVs by these cells was accompanied 
by increased secretion of soluble proteins and other molecu-
lar components of the sample (Fig. 1A).

EVs cargo

Increased secretion of EVs by transfected CHO cells made 
us verify whether translated proteins are loaded into vesi-
cles. While the increased secretion of EVs was observed 
in the case of cells transfected with genes encoding BChE 
and β-Gal, the enzymatic activity in all obtained SEC frac-
tions was assessed according to the procedures described in 
the “β-Galactosidase activity assay” and “Measurement of 
BChE activity by Ellman’s assay” sections.

Fig. 2   The CE analysis of frac-
tions obtained with SEC from 
the culturing media of CHO 
cells overexpressing β-Gal. Fig-
ure B shows an enlarged view 
of A. Experimental conditions 
were provided in the “Capillary 
electrophoresis (CE)” section

Fig. 3   The enzymatic activity of BChE (A) and β-Gal (B) in certain 
SEC fractions of media harvested from CHO cell culture transfected 
with the corresponding protein-expressing vectors. EVs fractions: 
7th–9th, the enzymatic activity of the secreted proteins in fractions: 

13th–22nd. The results were presented as an average ± standard devia-
tion obtained in two independent experiments. Experimental con-
ditions were provided in the “β-Galactosidase activity assay” and 
“Measurement of BChE activity by Ellman’s assay” sections
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The assays showed high enzymatic activity of later elut-
ing fractions (12th–23rd) obtained from culturing media of 
cells expressing BChE and cells translating β-Gal (Fig. 3A 
and B, respectively) which confirmed the effectiveness of 
the transfection process and the overproduction of the pro-
tein. However, cholinesterase activity in EVs-rich fractions 
(7th–9th) was found negligible and accounted for <0.5% of 
summary enzymatic activity measured in all SEC fractions 
(Fig. 3A). Interestingly, a significant β-Gal activity (7.2 ± 
0.7% of total activity measured in all fractions) was found 
in fractions 7th–9th. The measured activity correlated with 
the EVs content in these fractions.

Discussion

EVs are released by cells to the extracellular environment 
to mediate intercellular communication. These nanocarri-
ers transport proteins, lipids, nucleic acids, and metabolites 
from parental cells, reflecting the nature of the donor cell 
and its physiological state [20].

EVs in the culture are in constant turnover, being secreted 
and uptaken by cultured cells [1]. EV exchange allows a 
culture of cells to share protein and RNA that can regulate 
cellular processes in the whole culture as in individual cells. 
Recent studies have reported that exosomes regulate many 
biological processes, including apoptosis, inflammation, and 
differentiation [10, 21]. Moreover, exosome composition, 
production, and secretion can be affected by the external 
stimuli, including stress conditions such as heat shock, oxi-
dative stress, chemotherapy, irradiation, hypoxia, and hypo-
thermia. One of them is a cellular stress response (CSR) 
that is triggered upon recombinant protein synthesis. The 
high-level scale recombinant proteins overexpression may 
impact host cell metabolism, increase energy production, 
and improve secretory capacity, leading to a rise of reactive 
oxygen species and promoting cellular and oxidative stress 
or the unfolded protein response (UPR) [6, 20, 22, 23].

Several studies have reported that exosomal proteins are 
loaded through various sorting mechanisms. It was reported 
that the composition of the exosomal cargo and proteins tar-
geting EVs is regulated by their post-translational modifica-
tions (PTM) [24]. Multiple mechanisms involved in exosome 
biogenesis have been identified. In the classical pathway, 
exosomes are formed within the endosomal system from 
intraluminal vesicles (ILVs) in late endosomes/multivesicu-
lar bodies (MVBs). ILV biogenesis and secretion are driven 
by the ESCRT proteins machinery with SNARE and other 
proteins. MVBs are specialized endosomal compartments 
that sequester proteins, lipids, and potential exosome car-
goes delivered from the trans-Golgi network and the cyto-
sol. MVBs with intraluminal vesicles get transported to the 
plasma membrane, fuse with the cell membrane, and release 

the internal ILVs into the external environment as secreted 
exosomes [6, 25].

In the presented study, CHO cells were grown in a serum-
free medium which eliminated the risk of isolates contami-
nation with EVs of animal origin. Therefore, isolated EVs 
were derived from CHO cells. The characterization con-
firmed that the isolates obtained in the presented study con-
tained mainly exosomes. Most particles detected with NTA 
featured size in the range of 40–200 nm, which was con-
firmed with TEM analysis (Figs. 1B and D and S1). Moreo-
ver, the abundance of several exosome-specific markers was 
demonstrated (Fig. 1E and F) [20]. Bigger particles (>200 
nm) detected with NTA and TEM suggest that isolates also 
contained microvesicles (Figs. 1B and D and S1). However, 
the same data shows that microvesicles were in the minority, 
and their content was estimated at <5%.

This work presents the overexpression of β-Gal and BChE 
proteins in CHO cells from the expression vectors. BChE 
is a member of the hydrolase that catalyzes the hydroly-
sis of choline and non-choline esters. BChE exhibits broad 
substrate specificity and is involved in the detoxification of 
poisons, including organophosphate nerve agents and pes-
ticides, and the metabolism of drugs such as cocaine and 
heroin. BChE functions as a natural scavenger, like a sponge, 
and traps toxic compounds present in the plasma, either 
hydrolyzing or binding them permanently, preventing them 
from reaching AChE present in peripheral nerve connec-
tions or the central nervous system, before they cause neu-
rological damage. The main source of the purified BChE is 
human plasma (Cohn fraction IV), but the amount of protein 
that can be obtained in this way is insufficient for the needs. 
Various attempts have been made to develop more efficient 
BChE production technologies based on genetic engineer-
ing technologies. Attempts have been made to overproduce 
BChE in various expression systems in vitro or as transgenic 
plants and animals [26]. In 1997, a recombinant BChE was 
obtained in the CHO cell line [27]. Here, the BChE pro-
tein and its overexpression in CHO cells have been studied 
because the protein overproduction is at high yield, the post-
translational modifications are well characterized, and the 
method of enzyme detection is very simple and sensitive 
[14]. Even a small amount of the enzyme could be detected 
in exosomes. β-Gal expressing vector, pCMV·SPORT-βgal, 
is a positive control for monitoring expression in eukaryotic 
cells. The plasmid contains the reporter gene β-galactosidase 
(β-gal) from E. coli cloned into plasmid pCMV·SPORT1.

The results indicate that protein overexpression can 
trigger CSR and increase exosome production. Interest-
ingly, during BChE overproduction, exosome secretion 
is enhanced, but only trace BChE activity was observed 
in the exosome fractions. These findings are in line with 
the report of Liao and coworkers [28]. The authors dem-
onstrated no correlation between acetylocholinesterase 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Protein overproduction alters exosome secretion in Chinese hamster ovary cells﻿	

1 3

activity in isolates obtained from various cell lines and 
particle count. It has also been shown that the enzymatic 
activity was predominantly associated with soluble frac-
tion obtained during centrifugation. Noteworthy is the 
fact that other groups reported both cholinesterase activ-
ity and the detection of scant enzymes in EVs isolates 
obtained from numerous cell lines [29, 30]. However, it 
might be assigned to the contamination of the isolates 
with soluble enzymes or co-isolation of the cholinest-
erase as a part of EVs corona [31]. For instance, BChE 
was detected in isolates obtained from only two cell lines 
among sixty taken into assay [30].

β-Gal overproduction in CHO cells also resulted in 
increased secretion of EVs. Contrary to BChE overpro-
duction, the isolates obtained from cells overproducing 
β-Gal featured significant enzymatic activity (Fig. 3B). 
The secretion of α-galactosidase A (α-Gal) with EVs has 
already been presented by Seras-Franzoso and co-authors 
[12]. The similarity of α- and β-Gal implies an analo-
gous secretory pathway, distinct from BChE. Attention 
should be paid that α- and β-Gal are lysosomal enzymes 
(also cytosolic). The involvement of lysosomes in MVB 
formation might explain the sequestration of β-Gal into 
exosomes which was not observed in the case of BChE 
overproduction.

It was estimated that 7.2 ± 0.7% of β-Gal, secreted by 
CHO cells, was carried by EVs. This fact might be uti-
lized for therapeutic protein encapsulation into exosomes 
[12]. The application of exosomes as nanocarriers might 
be beneficial for the stability and targeted delivery of 
incorporated protein. It has been shown that cytokines 
carried by EVs featured superior stability as compared to 
free cytokines and released cellular response after vesicle 
internalization [32]. Genetic engineering methods might 
also be used for the expression of surface receptors for 
bioactive compounds bounding [33]. On the other hand, 
EVs-mediated secretion of therapeutic proteins, expressed 
in CHO (and probably other) cell lines, should be consid-
ered due to the risk of loss during downstream processing 
of culturing media. The discussed case indicates also the 
importance of culturing process control. The presented 
work addresses this need, demonstrating the potential of 
the CE technique in the monitoring of culturing media 
composition. Good agreement between BCA, NTA, and 
CE results of analysis of SEC fractions was observed 
(Figs. 1 and 2). It should be emphasized that CE was 
able to provide qualitative and quantitative information 
on analyzed fractions. As a result, not only the relative 
content of EVs in certain fractions could be assessed, but 
also the purity of the isolates. Furthermore, despite it not 
being investigated in presented work, it might be assumed 
that the method can be used for simultaneous qualitative 

and quantitative analysis of proteins (e.g., secreted by the 
transfected cells).

Conclusion

Optimization of the production of biological drugs is fun-
damental in a view of product quality, process yield, and 
the economical balance of the manufacturing trial. The 
presented work refers to these issues showing the increased 
secretion of EVs by the cells employed to overproduc-
tion of model enzymes of therapeutic significance. Based 
on the presented results, the EVs-mediated secretion of 
produced protein should be verified and recovery of pro-
duced protein from vesicles should be considered during 
downstream processing of culturing medium. Moreover, 
the encapsulation process might be utilized for targeted 
therapeutics production, better control of manufactured 
EVs-based therapeutics potency and improvement of phar-
macokinetics of biological drugs. Nevertheless, the secre-
tion of EVs by cultured cells might be monitored using 
commonly used methods (protein content tests or particle 
counting techniques) as well as alternative techniques like 
the presented CE. The latter was shown to not only assess 
the relative content in certain isolates but also provide 
information on the purity of the isolates.
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