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Abstract We study the convergence of iterates of quadratic stochastic operators that
are mean monotonic. They are defined on the convex set of probability measures
concentrated on aweakly compact order interval S = [0, f ]of afixedBanach lattice F .
We study their regularity and identify the limits of trajectories either as the “infimum”
or “supremum” of the support of initial distributions.
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1 Introduction

The theory of quadratic stochastic operators (q.s.o.) is rooted in works of Bernstein
(cf. [8,9]). Their importance was rediscovered in 1950s by S. Ulam. His seminal
report [28] prompted for many theoretical publications (cf. [4–7,11,12,16,20,21,29]),
monographs (cf. [13,23]) and computer supported mathematical projects (cf. [3,14,
15]) aiming to develop a unified theory illustrating (asymptotic) properties of q.s.o..
This subject has been intensively studied in mathematics and biology for almost three
decades. In spite of that important questions have remained unsolved and the task is
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far from being completed. The asymptotic behavior of real or abstract mathematical
models of biological systems, consisting with three or more biotypes, is not fully
understood. We anticipate that q.s.o. will play in future an important role in genetics,
population dynamics, social sciences as well as in other areas. Mathematically they
perfectly suit tomodel the evolution of statistical configurations of all kinds of biotypes
(genome, phenotypes e.t.c.) both for finite or continuous populations. The reader is
referred to [13,17] for a comprehensive and updated review of the topic. The list
of very recent articles and online presentations is long. Let us only mention [18,19,
25,26], where the notion of quadratic stochastic operators is put into abstract vector
(Banach) spaces with specific order or norm structures. In [24] the author studies
nonhomogeneous Markov chains on ordered Banach spaces which are strongly linked
to some picture of quadratic stochastic operators. Namely, as it has been proved in [7],
generated by a quadratic stochastic operator V the so-called associatedMarkov chains
may be efficiently used to determine the behavior of V

n .
There has been much interest in recent years in self-organizing search methods

in the q.s.o. field. Recently Ganikhodjaev, Saburov and Muhitdinov (see [15]) have
generalized the notion of q.s.o. to bilinear forms on σ -additive measures on [0, 1].
In particular, points of the unit interval [0, 1] serve to code (continuum valued) traits
attributed to each individual from a considered population. As usual children inherit
their traits from (two) parents,whomate randomly. The paper [15] drops theMendelian
paradigm and introduces trends (however, only in a one-dimensional direction), which
are steady in time. The authors proved in [15] regularity in the case when there is no
mutation and an inherited trait comes (randomly) from one of its parents. In this paper
we propose further extensions. In particular, we obtain regularity under essentially
weaker constraints. Moreover, our methods applied to theorems and examples from
[15] simplify existing proofs.

Instead of one particular trait we propose to characterize an individual by infinite
dimensional set of parameters, encoded by vectors from an order interval S = [0, f ]
in a fixed real Banach lattice (F, ‖ · ‖,≤). Let us very briefly recall basic notions
necessary to formulate our results (regarding the theory of Banach lattices and other
facts from functional analysis the reader is referred to [2] or [27]). A Banach space
(F, ‖ · ‖) equipped with a partial order ≤ is a Banach lattice if the lattice operations
(the infimum x ∧ y and the supremum x ∨ y) are well defined in F , satisfy axioms
of Riesz spaces and are compatible with the norm topology (cf. [2], pp. 4, 5, 181 or
[27], pp. 47–52). In particular, ‖y‖ ≤ ‖x‖ whenever |y| ≤ |x | in F . The modulus
in F is defined as |x | = x ∨ (−x), and therefore ‖|x |‖ = ‖x‖ for all x ∈ F . The
positive cone F+ = {x ∈ F : 0 ≤ x} is a (weakly) closed subset of F (cf. [27],
Proposition 5.2). Let us mention that for all x, y ∈ F we have x ∨ y = x+y+|x−y|

2 ,

and x ∧ y = x+y−|x−y|
2 . The order interval, with endpoints a ≤ b ∈ F , is defined

as Ia,b = [a, b] = {x ∈ F : a ≤ x ≤ b}. If a = 0 and f ∈ F+, we simply write
I f in place of I0, f = [0, f ]. In the case F = R, with ordinary modulus | · |, order
intervals are classical segments [a, b] = {x ∈ R: a ≤ x ≤ b}. It is well known that
order intervals in Banach lattices are always bounded, convex and (weakly) closed.
However, they are not weakly compact in general. Classical spaces (L p(μ), ‖·‖p) and
(C(K ), ‖·‖sup) are important examples of Banach lattices. It follows from theBanach–
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Alaoglu theorem that order intervals are weakly compact if F is reflexive. In particular,
if F = L p(μ), where 1 < p < ∞ (using different arguments also in L1(μ)), then
order intervals are weakly compact. However, this does not hold for C(K ) or L∞(μ).
We recall that the weak topology on a Banach space (F, ‖ · ‖) is the smallest topology
T so that all norm continuous linear functionals ξ ∈ F ′ are T continuous. The weak
topology is denoted by Tw and it is a locally convex topology generated by the basis
consisting of neighborhoods Uξ1,...,ξn ,ε = {u ∈ F : |ξ j (u)| < ε, j = 1, . . . , n} of the
zero vector 0 ∈ F , where n ∈ N, ξ1, . . . , ξn ∈ F ′, and ε > 0. The net xα converges
weakly to x in F if and only if for every fixed ξ ∈ F ′ we have limα ξ(xα) = ξ(x).
Weak compactness plays in the category of Banach lattices an important role (cf. [2],
chapter 4.2).

In this paper we shall deal with order intervals (phase spaces) S ⊂ F , which are
assumed to be compact and metrizable for the weak topology (in particular, by the
Mazur theorem they are norm separable). Hence the weak and norm Borel structures
on S coincide. We denote the Borel σ field in S by B. As usual δx stands for the
Dirac measure at x ∈ S. Compactness of S implies (cf. §6 in [10]) that the convex
set P(S) of all probability measures μ, on the measurable space (S,B), is compact
(metrizable) for the weak measure convergence.We recall that a sequence of probabil-
ity measuresμn ∈ P(S) converges toμ ∈ P(S) in the weak convergence of measures
if limn→∞

∫
S f dμn → ∫

S f dμ holds for all Tw continuous (bounded) functions
f : S → R. Then we write μn ⇒ μ. In order not to overexploit the term “weak”
(especially in two different contexts) we shall use the notion of the Fortet–Mourier
norm. We recall that given a finite Borel (signed) measure μ on S, the Fortet–Mourier
norm is defined as ‖μ‖FM = sup{| ∫ f dμ|: 0 ≤ f ≤ 1 and Lip f ≤ 1} (cf. [22], p.
48). As the reader may guess, given a continuous function f : S → R

Lip f = sup

{ | f (x) − f (y)|
�S(x, y)

: x �= y ∈ S

}

,

where �S is a fixed metric on S compatible with the relative weak topology Tw|S on
the set S (the choice of a specific metric �S is not crucial). It is well known (see [22],
p. 49, theorem 1.46) that on the space P(S) the convergence μn ⇒ μ holds if and
only if ‖μn − μ‖FM → 0.

By bar(μ) we denote the barycenter of μ, as long as it exists. We understand it as
the Pettis integral

∫
F zdμ(z); i.e. ξ(bar(μ)) = ξ(

∫
F zdμ(z)) = ∫

F ξ(z)dμ(z) for all
ξ ∈ F ′. Clearly bar(μ) is well defined if the topological support supp(μ) is weakly
compact (cf. [1], pp. 10–12).

We denote i(μ) = inf supp(μ), s(μ) = sup supp(μ) and I (μ) = [i(μ), s(μ)] as
long as all is well defined. For this, let us suppose that F has an order continuous norm
(cf. [2], pp. 185–186) and supp(μ) is contained in an order interval Ia,b = [a, b] ⊆ F+.
Clearly, rn = x1 ∧ · · · ∧ xn ∈ Ia,b, if x j ∈ supp(μ), n = 1, 2, . . .. Hence ‖rn‖ ≥ ‖a‖
is bounded from below. Using induction method and the property of norm order
continuity (cf. [2], Theorem 4.9, p. 186) we may construct a sequence (x j ) j≥1 such
that limn→∞ rn = r ∈ [a, b] exists and the norm ‖r‖ is as small as possible (we can
take a dense sequence x j ∈ supp(μ) actually). Notice that r ≤ x for all x ∈ supp(μ).
If v ≤ x for all x ∈ supp(μ), then v ≤ x j for all j , hence v ≤ rn for all n and finally
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v ≤ r . In particular, r = i(μ) does exist (however not necessarily r ∈ supp(μ)).
Similarly we obtain the existence of s(μ).

2 Basics on quadratic stochastic operators

Given a weakly compact metrizable set S ⊆ F , let P = {P(x, y, ·)}x,y∈S be a family
of set functions (defined on the measurable space (S,B), where B stands for the Borel
σ -field) satisfying:

(2.1) P(x, y, ·) = P(y, x, ·) ∈ P(S) for all x, y ∈ S,
(2.2) S × S � (x, y) → P(x, y, A) ∈ [0, 1] is measurable for every fixed A ∈ B.
Then the system P = {P(x, y, ·)}x,y∈S is called a quadratic transition probability

function. If moreover it satisfies

(2.3) S × S � (x, y) → P(x, y, ·) ∈ P(S) is continuous, where S × S is endowed
with the weak × weak topology and in P(S) we have the Fortet–Mourier norm
‖ · ‖FM,

then such a quadratic transition function is called Feller [clearly the condition (2.3)
implies (2.2)].

Let us mention briefly, that quadratic transition functions can be used to define
perhaps the simplest class of nonlinear Markov processes {ξk}k≥0. We will not dwell
on this subject but rather focus only on the evolution and weak limits of distributions
P(ξk ∈ ·). However, the problem of behavior of trajectories ξk(ω), or the rate of
convergence, remains untouched.

Any measurable quadratic transition probability function P may be uplifted to a
bilinear mapping of P(S). Namely, define

P(S) × P(S) � (μ, ν) → Q(μ, ν)(·) =
∫

S

∫

S
P(x, y, ·)dμ(x)dν(y) ∈ P(S).

Definition 2.1 A quadratic stochastic operator (generated by the family P) is defined
as V(μ) = Q(μ,μ). It is called Feller if the quadratic transition probability function
P is Feller [i.e. when (2.3) holds].

It is not hard to prove (cf. [4,7]) that ‖V(μ) − V(ν)‖TV ≤ 2‖μ − ν‖TV for all
μ, ν ∈ P(S), so V is a continuous transformation for the total variation norm ‖ · ‖TV
topology.Moreover, if it is Feller, thenV is continuous onP(S) for the Fortet–Mourier
norm; i.e.

lim
n→∞ V(μn) = V

(
lim
n→∞ μn

)
in the norm ‖ · ‖FM,

as long as μn ∈ P(S) converges in the norm ‖ · ‖FM Indeed, let ‖μn − μ‖FM → 0
and g: S → R be weakly continuous. Then

∫

S
g(z)V(μn)(dz) =

∫

S

∫

S

∫

S
g(z)P(x, y, dz)dμn(x)dμn(y).
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By (2.3) the function S × S � (x, y) → ∫
S g(z)P(x, y, dz) is weakly continuous. It

is well known that convergence in the Fortet–Mourier norm is preserved if we bring
it to direct products. In other words if ‖μn − μ‖FM → 0 and ‖νn − ν‖FM → 0 then
‖μn ⊗ νn − μ ⊗ ν‖FM → 0. Thus

lim
n→∞

∫

S

∫

S

∫

S
g(z)P(x, y, dz)dμn(x)dμn(y) =

∫

S

∫

S

∫

S
g(z)P(x, y, dz)dμ(x)dμ(y)

=
∫

S
g(z)

∫

S

∫

S
P(x, y, dz)dμ(x)dμ(y) =

∫

S
g(z)V(μ)(dz).

The natural notion of regularity, in the context of q.s.o., was introduced very early
(see [17,23]). We adopt it for the Fortet–Mourier topology.

Definition 2.2 We say that a q.s.o. V:P(S) × P(S) → P(S) is weakly regular if

lim
n→∞ ‖V

n(μ) − L(μ)‖FM = 0

for every μ ∈ P(S), where the limit measure L(μ) ∈ P(S). If there exists a unique
measure μ∗ ∈ P(S) such that

lim
n→∞ ‖V

n(μ) − μ∗‖FM = 0

for all μ ∈ P(S), then a q.s.o. V is called weak mixing.

Depending on the (topological) point of view different modes of convergence are
distinguished. To connect our results with other contemporary studies we recall (cf.
[4,7]) the following notions:

Definition 2.3 We say that a q.s.o. V:P(S) × P(S) → P(S) is strongly regular if

lim
n→∞ ‖V

n(μ) − L(μ)‖TV = 0

for every μ ∈ P(S), where the limit measure L(μ) ∈ P(S). If there exists a unique
measure μ∗ ∈ P(S) such that

lim
n→∞ ‖V

n(μ) − μ∗‖TV = 0

for all μ ∈ P(S), then a q.s.o. V is called strong mixing.

The uniform convergence give us:

Definition 2.4 We say that a q.s.o. V:P(S) × P(S) → P(S) is uniformly regular
if
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lim
n→∞ sup

μ∈P(S)

‖V
n(μ) − L(μ)‖TV = 0.

If there exists a unique measure μ∗ ∈ P(S) such that

lim
n→∞ sup

μ∈P(S)

‖V
n(μ) − μ∗‖TV = 0,

then a q.s.o. V is called norm mixing.

Strong and norm mixing q.s.o. and their geometric structure have been recently
described in [4,5,7]. Theweakmixing is studied in [6]. However, Bartoszek et al. [6] is
restricted to kernel quadratic stochastic operators. In particular, P(x, y, ·) are assumed
to be absolutely continuous with respect to the Lebesgue measure and additionally∫
zP(x, y, dz) = x+y

2 for all x, y (roughly speaking—the offspring is on average the
mean of the parents). Such operators are called centred kernel q.s.o. On the other hand,
the models considered in [6] generally apply to unbounded phase spaces. Their weak
limit of V

n( f ) may be (depending on f ) both discrete (Dirac δ) or other probability
measures, depending to what extent the CLT works. Mathematical methods used in
their proofs come from the theory of characteristic functions, making it difficult to
obtain closed form statements about the limits. In our paper we focus solely on weak
regularity, assuming bounded domains and we look what happens if the evolution has
a trend. In particular, our quadratic transition probabilities are not centred. We may
consider our approach as generalizations of [15] and complementary to [6].

If for all x, y ∈ S the measure P(x, y, ·) is a convex combination of δx , δy , then
the q.s.o. V is called Volterra. Clearly the Volterra q.s.o. can only model the mutation
free evolution. The Mendelian situation occurs when P(x, y, ·) = 0.5δx + 0.5δy . We
notice that in the last case V(μ) = μ for all μ ∈ P(S).

Following [15], when S = [0, 1] and F = R, Volterra q.s.o. are called Lebesgue
q.s.o. It has been proved (see Theorem 4.6 in [15]) that any Lebesgue q.s.o. such that
P(x, y, ·) = pδx∧y(·) + (1 − p)δx∨y(·), with P(x, x, ·) = δx (·) is weakly regular,
and the iterates V

n(μ) converge to δi(μ), if 0.5 < p ≤ 1 or respectively to δs(μ) if
0 ≤ p < 0.5 (when p = 0.5 then V is the identity transformation).

Our approach brings further extensions, with two folded generalizations. Firstly, in
the case of Lebesgue operators V on S = [0, 1], we only assume that P(x, y, ·) =
α(x, y)δx∧y(·)+ (1−α(x, y))δx∨y(·), where α(x, y) > 0.5 for all x �= y ∈ [0, 1] (or
α(x, y) < 0.5 for all x �= y ∈ [0, 1] respectively). We will show that this condition
may be relaxed further (see our Corollaries 5.1 and 5.2). In particular, we do not
require the Volterra condition. Secondly, we shall extend Ganikhodjaev’s, Saburov’s
and Muhitdinov’s results from [15] to general phase spaces, assuming that S = I
is a weakly compact order interval. Let us recall (cf. [2], Theorem 4.9) that order
intervals in Banach lattices with order continuous norm are weakly compact. And
finally, in general Banach lattices the notion of Lebesgue q.s.o. may split in different
directions. For this let us only mention that α(x, y)δx∧y(·) + (1 − α(x, y))δx∨y(·) is
not necessarily a convex combination of δx , δy .
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3 Monotonicity of means and regularity

Theorem 3.1 Let I = [0, f ] ⊂ F be a weakly metrizable order interval in a Banach
lattice (F, ‖·‖,≤)with order continuous norm and let {P(x, y, ·)}x,y∈I be a quadratic
transition probability function satisfying:

(3.1)
∫
I zP(x, y, dz) ≤ x+y

2 , for all x, y ∈ I .

Then for every μ ∈ P(I ) the barycenters of V
n(μ) converge in the norm to c(μ) ∈ I .

In particular limn→∞
∫
I ξ(z)Vn(μ)(dz) = ξ(c(μ)) for every ξ ∈ F ′.

If additionally the transition probabilities P(x, y, ·) are Feller and have the prop-
erty that

(3.2) the equality in (3.1) implies x = y,

then limn→∞ V
n(μ) = δc(μ) in the ‖ · ‖FM norm.

If moreover,

(3.3) suppP(x, y, ·) ⊆ [x ∧ y, x ∨ y] for all x, y ∈ I .

then c(μ) ∈ I (μ).

Proof It is sufficient to evaluate the limits limn→∞
∫
I ξ(z)V n(μ)(dz) only for positive

ξ ∈ F ′+, as the dual space F ′ = F ′+ − F ′− is a Banach lattice too (cf. [2], Proposition
5.5). For every natural n

ξ
(
bar(Vn+1(μ))

)
=

∫

[0, f ]
ξ(z)Vn+1(μ)(dz)

=
∫

[0, f ]
ξ(z)

∫

[0, f ]

∫

[0, f ]
P(x, y, dz)Vn(μ)(dx)Vn(μ)(dy)

=
∫

[0, f ]

∫

[0, f ]

(

ξ

(∫

[0, f ]
zP(x, y, dz)

))

V
n(μ)(dx)Vn(μ)(dy)

≤
∫

[0, f ]

∫

[0, f ]
ξ

(
x + y

2

)

V
n(μ)(dx)Vn(μ)(dy)

=
∫

[0, f ]

∫

[0, f ]
ξ

( x

2

)
V
n(μ)(dx)Vn(μ)(dy)

+
∫

[0, f ]

∫

[0, f ]
ξ

( y

2

)
V
n(μ)(dx)Vn(μ)(dy)

=
∫

[0, f ]
ξ(z)Vn(μ)(dz) = ξ

(
bar

(
V
n(μ)

))
.

Hence (cf. [2], Proposition 5.5), 0 ≤ bar(Vn+1(μ)) ≤ bar(Vn(μ)) for all n ∈ N, as
the order in F ′ is induced by F ′+ = {ξ ∈ F ′: ξ(x) ≥ 0 for all positive x ∈ F+}. The
barycenters of V

n(μ) form a nonincreasing sequence in I . It follows (cf. [2], Theorem
4.9, p. 186) that bar(Vn(μ)) converges (in the norm) to a vector c(μ) ∈ [0, f ].
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Let n j ↗ ∞ be any increasing sequence such that V
n j (μ) converges weakly to

some ν ∈ P(S). By the Feller assumption

V(ν) = V

(

lim
j→∞ V

n j (μ)

)

= lim
j→∞ V

n j+1(μ).

It follows that

c(μ) = lim
j

bar(Vn j+1(μ)) = bar(V(ν)) ≤ bar(ν) = lim
j

bar(Vn j (μ)) = c(μ).

We obtain bar(V(ν)) = bar(ν). Hence for any positive ξ ∈ F ′ we get

0 =
∫

I
ξ(x)ν(dx) −

∫

I
ξ(x)V(ν)(dx)

=
∫

I

∫

I
ξ

(
x + y

2

)

ν(dx)ν(dy) −
∫

I

∫

I

∫

I
ξ(z)P(x, y, dz)ν(dx)ν(dy)

=
∫

I

∫

I
ξ

(
x + y

2
−

∫

I
zP(x, y, dz)

)

ν(dx)ν(dy).

By positivity of ξ and condition (3.1) we get ξ(
x+y
2 − ∫

I zP(x, y, dz)) = 0 for ν × ν

almost all (x, y). Now, applying the additional assumption (3.2), we get x = y for
ν × ν almost all (x, y). Hence ν = δc(μ). Since n j was arbitrary (with only restriction
that V

n j (μ) converges), thus limn→∞ V
n(μ) = δc(μ).

Finally applying (3.3) we notice that suppV(μ) ⊆ I (μ). Iterating this inclusion we
obtain

∞⋃

n=0

supp(Vn(μ) ⊆ I (μ).

We obtain c(μ) ∈ I (μ). ��
The next result concerns a specific class of quadratic transition probabilities. They

generalize the notion of Lebesgue quadratic stochastic operators introduced in [15].

Definition 3.2 Let S = [0, f ] ⊂ F be an order interval in a Banach lattice F . A
quadratic transition probability family {P(x, y, ·)}x,y∈S is called order cramped if

P(x, y, ·) = α(x, y)δx∧y + β(x, y)δx∨y + 1−α(x,y)−β(x,y)
2 δx + 1−α(x,y)−β(x,y)

2 δy,

(3.4)

where Borel functions α, β: [0, f ] × [0, f ] → [0, 1] are symmetric (i.e. α(x, y) =
α(y, x) and β(x, y) = β(y, x)), and satisfy α(x, y)+β(x, y) ≤ 1. The corresponding
quadratic stochastic operator V also is called order cramped. If α(x, y)+β(x, y) = 1
then (following [15]) we call such operators Lebesgue.
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Obviously supp(P(x, y, ·)) ⊆ [x ∧ y, x ∨ y]. If F = R then we obtain a Volterra
q.s.o.. Finally if α, β are weakly continuous on S × S, then we get a Feller order
cramped q.s.o..

Theorem 3.3 LetV be an order cramped quadratic stochastic operator defined on an
order interval I = [0, f ] of a real Banach lattice F with order continuous norm. If I is
weaklymetrizable, the functionsα andβ areweakly continuous andα(x, y) > β(x, y)
if x �= y, then the corresponding q.s.o. V is weakly regular, and for all μ ∈ P(μ)

lim
n→∞

∥
∥V

n(μ) − δc(μ)

∥
∥
FM = 0,

where c(μ) ∈ I (μ).

Proof It suffices to verify the condition (3.1) of Theorem 3.1. For this

∫

I
zP(x, y, dz) = α(x, y)(x ∧ y) + β(x, y)(x ∨ y) + 1 − α(x, y) − β(x, y)

2
(x + y)

= α(x, y)
x + y − |x − y|

2
+ β(x, y)

x + y + |x − y|
2

− (α(x, y) + β(x, y))
x + y

2
+ x + y

2

= x + y

2
− α(x, y) − β(x, y)

2
|x − y| ≤ x + y

2
,

with equality only if x = y. By Theorem 3.1, for all μ ∈ P(I ) we obtain
the convergence limn→∞ V

n(μ) = δc(μ) in the ‖ · ‖FM norm. We notice that, if
x, y ∈ supp(μ), then supp(P(x, y, ·)) ⊆ I (μ). Hence supp(V(μ)) ⊆ I (μ) and by
induction supp(Vn(μ)) ⊆ I (μ) for all n ∈ N. It follows that c(μ) ∈ I (μ). ��

4 Finite dimensional case

In the finite dimensional case, when F = R
d and the q.s.o. is Lebesgue, the last result

may be strengthen. We assume that in R
d we have the standard order, so the positive

cone is R
d+ = {(x1, . . . , xd): x j ≥ 0, j = 1, . . . , d}. The lattice norm ‖ · ‖ may be

taken arbitrary as all norms on finite dimensional vector spaces are equivalent (or
apply Corollary 4.4 from [2]).

Theorem 4.1 Let I = [0, f ] be a an order interval in the Banach lattice F = R
d

and P(x, y, ·) = α(x, y)δx∧y + β(x, y)δx∨y , where α(x, y) = α(y, x), β(x, y) =
β(y, x) are continuous functions such that α(x, y) > β(x, y) if x �= y and satisfy
α(x, y) + β(x, y) = 1. Then the corresponding Lebesgue q.s.o. generated by P is
weakly regular and for every μ ∈ P(I )

lim
n→∞ ‖V

n(μ) − δi(μ)‖FM = 0.
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Proof By Theorem 3.3 the sequence V
n(μ) converges in ‖ · ‖FM to δc(μ), where

c(μ) ∈ [i(μ), s(μ)]. Define Wu = [i(μ), u], where i(μ) < u ≤ s(μ) and set Du =
I\Wu . Then

V(μ)(Wu) =
∫

Wu

∫

Wu

P(x, y,Wu)dμ(x)dμ(y) + 2
∫

Wu

∫

Du

P(x, y,Wu)dμ(x)dμ(y)

+
∫

Du

∫

Du

P(x, y,Wu)dμ(x)dμ(y)

≥ μ(Wu)
2 + 2

∫

Wu

∫

Du

α(x, y)dμ(x)dμ(y)

≥ μ(Wu)
2 + μ(Wu)μ(Du) = μ(Wu).

Clearly i(V(μ)) = i(μ). Therefore, we can iterate the above estimation to obtain

μ(Wu) ≤ V(μ)(Wu) ≤ · · · ≤ V
n(μ)(Wu) ≤ · · ·

We have already noticed that i(μ) = limn→∞ rn , where rn = x1 ∧ · · · ∧ xn , for
some sequence x j ∈ supp(μ). It follows from the definition of Lebesgue quadratic
transition function that rn ∈ supp(Vn(μ)). Now for arbitrarily fixed ε > 0 we find
k ≥ 0 such that ‖i(μ) − rk‖ < ε and define uk = (1 − ε)rk + εs(μ). We shall
show that V

k(μ)(Wuk ) > 0. Let J = { j : rk, j = s(μ) j } ⊆ {1, . . . , d}. Then for
every j ∈ J we have uk, j = s(μ) j as well. Define �∗ = min{s(μ) j − rk, j : j /∈ J }.
Clearly the set U�(rk) = {x ∈ I : ‖x − rk‖∞ < �} is an open neighborhood of rk
(both for ‖ · ‖ and ‖ · ‖∞ norms) in the relative topology on I . Notice that, whenever
� < ε�∗, then U�(rk) ⊆ [i(μ), uk] = Wuk . In fact, for all j ∈ J if x ∈ U�(rk), then
x j ≤ s(μ) j = uk, j . On the other hand, if j /∈ J , then

x j < rk, j + � = uk, j + εrk, j − εs(μ) j + � = uk, j − ε(s(μ) j − rk, j ) + �

≤ uk, j − ε�∗ + � < uk, j .

Hence 0 < V
k(μ)(U�(rk)) ≤ V

k(μ)(Wuk ). By monotonicity we obtain

lim
n→∞ V

n(μ) ([i(μ), uk]) ≥ V
k(μ)(Wuk ) > 0.

This implies c(μ) ∈ [i(μ), uk] and by the triangle inequality

‖c(μ) − i(μ)‖ ≤ ‖uk − i(μ)‖ ≤ ‖uk − rk‖
+‖rk − i(μ)‖ < ε‖ f ‖ + ε = ε(1 + ‖ f ‖).

We get c(μ) = i(μ) as ε > 0 may be as small as we wish. ��
In the finite dimensional case the Lebesgue quadratic operators may be generalized

further. If J ⊆ {1, 2, . . . , d} we introduce 2-argument operations ∧J1, ∨J1, ∧J2 and
∨J2. Namely, if x, y ∈ R

d we define
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(x ∧J1 y)k =
{

(x ∧ y)k if k ∈ J

xk if k /∈ J.
(4.1)

(x ∨J1 y)k =
{

(x ∨ y)k if k ∈ J

xk if k /∈ J.
(4.2)

(x ∧J2 y)k =
{

(x ∧ y)k if k ∈ J

yk if k /∈ J.
(4.3)

(x ∨J2 y)k =
{

(x ∨ y)k if k ∈ J

yk if k /∈ J.
(4.4)

We notice that if J = ∅ then x ∧∅1 y = x = x ∨∅1 y, x ∧∅2 y = y = x ∨∅2 y. On
the other hand, if J = {1, 2, . . . d} then x ∧{1,2,...,d}1 y = x ∧ y = x ∧{1,2,...,d}2 y and
x ∨{1,2,...,d}1 y = x ∨ y = x ∨{1,2,...,d}2 y.

Let αJ (x, y) = αJ (y, x) and βJ (x, y) = βJ (y, x) be continuous functions on
the order interval [0, f ]2 ⊆ R

d × R
d , where the index J runs over all subsets of

{1, 2, . . . , d}. If ∑
J (αJ (x, y) + βJ (x, y)) = 1

2 , then

P(x, y, ·) =
∑

J

(
αJ (x, y)δx∧J1y + αJ (x, y)δx∧J2 y

+βJ (x, y)δx∨J1y + βJ (x, y)δx∨J2 y
)

defines properly a quadratic probability transition function. From the biological point
of view these operatorsmaymodelmutations in configurations described by coordinate
subsets J .

Proposition 4.2 Let P be a quadratic probability transition function defined above
acting on the finite dimensional interval I ⊂ R

d , where R
d is a Banach lattice with

ordinary coordinate order. If for all J ⊆ {1, 2, . . . , d} we have αJ (x, y) > βJ (x, y)
if x �= y, then for every μ ∈ P(I ) we have

lim
n→∞ ‖V

n(μ) − δc(μ)‖FM = 0,

where c(μ) ∈ [i(μ), s(μ)].
Proof Wewill verify conditions (3.1), (3.2) and (3.3) from Theorem 3.1. (3.3) follows
directly from the definition of P(x, y, ·). Given a vector x ∈ I and J ⊆ {1, 2, . . . , d},
let us define a vector x |J ∈ R

d by (x |J )k = xk if k ∈ J , and (x |J )k = 0 if k ∈ J c =
{1, 2, . . . , d}\J . We have

∫

I
zP(x, y, dz)

=
∑

J

(
α j (x, y) (x ∧J1 y + x ∧J2 y) + βJ (x, y) (x ∨J1 y + x ∨J2 y)

)
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=
∑

J

(αJ (x, y)(x ∧ y)|J + αJ (x, y)x |J c + αJ (x, y)(x ∧ y)|J + αJ (x, y)y|J c

+βJ (x, y)(x ∨ y)|J + βJ (x, y)x |J c + βJ (x, y)(x ∨ y)|J + βJ (x, y)y|J c )
=

∑

J

2αJ (x, y)

(

(x ∧ y)|J −
(
x + y

2

)

|J
)

+ 2βJ (x, y)

(

(x ∨ y)|J −
(
x + y

2

)

|J
)

+ αJ (x, y)(x + y) + βJ (x, y)(x + y)

=
∑

J

(

2(αJ (x, y) − βJ (x, y))

(

(x ∧ y)J −
(
x + y

2

)

|J
)

+ 2βJ (x, y)

(

(x ∧ y)|J −
(
x + y

2

)

|J + (x ∨ y)|J −
(
x + y

2

)

|J
))

+
∑

J

(αJ (x, y) + βJ (x, y)) (x + y)

=
∑

J

(

2 (αJ (x, y) − βJ (x, y))

(

(x ∧ y)J −
(
x + y

2

)

|J
)

+ 0

)

+ 1

2
(x + y) ≤ x + y

2
,

as 2(αJ (x, y) − βJ (x, y))((x ∧ y)J − (
x+y
2 )|J ≤ 0 for all J . Hence (3.1) is satisfied.

If x �= y then (x ∧ y)J − (
x+y
2 )|J � 0 for some J ⊆ {1, 2, . . . , d}. Hence (3.2) holds.

Applying Theorem 3.1 we end the proof. ��

5 Final conclusions and examples

The following results are strictly related to [15]. Under extra assumptions we iden-
tify limn→∞ V

n(μ) as δi(μ) (or δs(μ) respectively). We start with discussing classical
Lebesgue q.s.o. introduced in [15]; i.e. consider F = R and I = [0, 1]. The transition
functions are defined as

P(x, y, ·) = α(x, y)δx∧y + β(x, y)δx∨y, (22)

where the functionsα, β are symmetric on I×I andBorelmeasurable (continuity is not
required), and α +β = 1. In [15] both α(x, y) ≡ α =const and β(x, y) ≡ β = const.

Theorem 5.1 Let V be the Lebesgue q.s.o. defined by P(x, y, ·) as above, where
α(x, y) > β(x, y) if x �= y. If for some ε > 0 and 0 < � < 1

2 the measure
μ ∈ P([0, 1]) satisfies

α(x, y) >
1

2
+ � if x ∧ y ∈ [i(μ), i(μ) + ε] , (3)

then limn→∞ ‖V
n(μ) − δi(μ)‖FM = 0.
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Proof For a fixed 0 < τ < ε we set

γn = V
n(μ) ([i(μ), i(μ) + τ ]) .

We get

γn+1 = V
n+1 (μ) ([i (μ) , i (μ) + τ ])

≥ (
V
n (μ) ([i (μ) , i (μ) + τ ])

)2

+ 2

(
1

2
+ �

)

V
n (μ) ([i (μ) , i (μ) + τ ]) V

n (μ) ((i (μ) + τ, s (μ)])

≥ γ 2
n + 2

(
1

2
+ �

)

γn (1 − γn) .

Clearly γ0 = μ([i(μ), i(μ)+τ ]) > 0.Notice thatϕ◦n(μ([i(μ), i(μ)+τ ])) ≤ γn ≤ 1,
where the quadratic function ϕ: [0, 1] → [0, 1] is defined by the formula ϕ(t) =
t2 + 2( 12 + �)t (1 − t). Obviously the iterates limn→∞ ϕ◦n(t) = 1 for all 0 < t ≤ 1.
Thus limn→∞ γn = 1. It follows that limn→∞ V

n(μ)([i(μ), i(μ) + τ ]) = 1, where
τ > 0 may be as small as we wish. We have proved limn→∞ V

n(μ) = δi(μ). ��
By symmetry the following version of weak regularity holds;

Theorem 5.2 Let V be the Lebesgue q.s.o. defined by P(x, y, ·) as above, where
α(x, y) < β(x, y) if x �= y. If for some ε > 0 and 0 < � < 1

2 the measure
μ ∈ P([0, 1]) satisfies

β(x, y) >
1

2
+ � if x ∨ y ∈ [s(μ) − ε, s(μ)] , (4)

then limn→∞ ‖V
n(μ) − δs(μ)‖FM = 0.

Even in the one-dimensional case, when F = R and I = [0, 1], the question on
weak regularity of q.s.o. is nontrivial. In particular, it is a challenge to find a pattern of
general limit measures. In the example below we see that the condition on the global
mean monotonicity may be relaxed.

Example 5.3 Let I = [0, 1] ⊂ R. Given 0 < u < v < 1 and Borel functions
p: [0, u) → ( 12 + �, 1], q: (v, 1] → [0, 1

2 − �), where 0 < � < 1
4 , let us define a

symmetric function:

α(x, y) =

⎧
⎪⎨

⎪⎩

p(x), for 0 ≤ x < u, x ≤ y ≤ 1
1
2 , for u ≤ x ≤ v, x ≤ y ≤ 1

q(x), for v < x ≤ 1, x ≤ y ≤ 1.

Let V be the Lebesgue q.s.o. corresponding to α (i.e. P(x, y, ·) = α(x, y)δx∧y +
(1−α(x, y))δx∨y ). We recall that intervals [a, b] ⊆ [0, 1] are invariant for Lebesgue
q.s.o. V (i.e. if supp(μ) ⊆ [a, b] then supp(V(μ)) ⊆ [a, b]). Hence {P(x, y, ·)}
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restricted to [a, b] generates a q.s.o. which coincides with V|P([a,b]). The same
trick which is used in the proof of Theorem 5.1 gives the convergence of γn =
V
n(μ)([i(μ), i(μ) + τ)) → 1, for every probability Borel measure μ on [0, 1] such

thatμ([0, u)) > 0. It follows that limn→∞ ‖V
n(μ)−δi(μ)‖FM = 0. On the other hand

ifμ((v, 1]) = 1, then by the Theorem 5.2 we obtain limn→∞ ‖V
n(μ)−δs(μ)‖FM = 0.

More generally, if μ([u, 1]) = 1, then limn→∞ V
n(μ) = μ|[u,v] + μ((v, 1])δs(μ)

in the ‖ · ‖FM norm. Indeed, for every Borel A ⊆ [u, v] we have

V(μ)(A) =
∫

A

∫

A
P(x, y, A)dμ(x)dμ(y) + 2

∫

A

∫

Ac
P(x, y, A)dμ(x)dμ(y)

+
∫

Ac

∫

Ac
P(x, y, A)dμ(x)dμ(y)

= μ2(A) + μ(A)μ(Ac) = μ(A).

By induction, for every natural n and every Borel A ⊆ [u, v], we haveV
n(μ)(A) =

μ(A). Hence the sequence V
n(μ) restricted to the interval [u, v] is constant; i.e.

V
n(μ)|[u,v] = μ|[u,v]. If μ([u, 1]) = 1 and μ((v, 1]) > 0 let μ1 = μ|[u,v], μ2 =

μ|(v,1] and consider A = [s(μ) − τ, s(μ)], where 0 < τ < s(μ) − v. Then

V(μ)(A) = Q(μ1 + μ2, μ1 + μ2)(A) = Q(μ1, μ1)(A) + 2Q(μ1, μ2)(A)

+ Q(μ2, μ2)(A)

= 0 + 2
∫ ∫

P(x, y, A)dμ1(x)dμ2(y) +
∫ ∫

P(x, y, A)dμ2(x)dμ2(y)

= μ([u, v])μ(A) + 2
∫

(v,s(μ)−τ)

∫

A
P(x, y, A)dμ2(x)dμ2(y)

+
∫

A

∫

A
P(x, y, A)dμ2(x)dμ2(y)

≥ μ([u, v])μ(A) + μ2(A) + 2
( 1
2 + �

)
μ((v, s(μ) − τ))μ(A)

= 2
( 1
2 + �

)
(1 − μ([u, v]) − μ((s(μ) − τ), s([μ]))) μ(A) + μ2(A)

+μ([u, v])μ(A).

Now denote γn = V
n(μ)([s(μ) − τ, s(μ)]), n = 0, 1, . . . and C = μ([u, v]). Since

V
n([u, v]) = μ([u, v]) = C for every natural n, thus by the above estimation (replace

there μ by V
n(μ)) we get a recursion

1 − C ≥ γn+1 ≥ 2
( 1
2 + �

)
(1 − C − γn) γn + γ 2

n + Cγn .

Nowconsider an elementary quadratic functionϕ(x) = 2( 12+�)(1−C−x)x+x2+Cx
and find that for all 0 < x < 1−C we have 0 < x < ϕ(x) < 1−C . Hence the iterates
ϕ◦n(x) increase to 1−C , i.e. limn→∞ V

n([s(μ)−τ, s(μ)]) = 1−μ([u, v]) = 1−C for
all small enough τ > 0. It follows that for every probability measure μ, concentrated
on [u, 1], we have

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Quadratic stochastic operators on Banach lattices 491

lim
n→∞ V

n(μ) = μ|[u,v] + (1 − μ([u, v])) δs(μ)

in the ‖ · ‖FM norm.
Problem Describe weakly regular Lebesgue quadratic operators in the one-

dimensional case, for general symmetric (continuous) α(x, y), and identify limit
measures.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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