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While it is usually known that the mean value of a single observable is enough to detect entanglement or its
distillability, the counterpart of such an approach in the case of quantum privacy has been missing. Here we
develop the concept of a privacy witness, i.e., a single observable that may detect the presence of the secure
key even in the case of bound entanglement. Then we develop the notion of secret-key estimation based on
few observables and discuss the witness decomposition into local measurements. The surprising property of
the witness is that with the help of a low number of product measurements involved it may still report the key
values that are strictly above distillable entanglement of the state. For an exemplary four-qubit state studied in
a recent experiment [K. Dobek et al., Phys. Rev. Lett. 106, 030501 (2011)] this means 6 Pauli operator product
measurements versus 81 needed to carry out the complete quantum state tomography. The present approach
may be viewed as a paradigm for the general program of experimentally friendly detection and estimation of
task-dedicated quantum entanglement.
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I. INTRODUCTION

Entanglement-based cryptography [1], equivalent formally
to the Bennett-Brassard 1984 protocol (BB84) scheme [2],
uses the power of quantum entanglement monogamy obeyed
by a maximally entangled pure quantum state. If the state is
noisy, then in some cases it is possible to run an entanglement
distillation process [3], which may be interpreted as quantum
privacy amplification [4]. Since the final output is maximally
entangled, it may be used directly for secret-key generation.
The efficiency of this procedure is quantified with distillable
entanglement ED , which defines how many singlet states can
be obtained in the asymptotic regime per one input.

Still, it was known that certain states that cannot be
prepared by local operations and classical communication
(LOCC) are not distillable, exhibiting the phenomenon of
bound entanglement [5]. For a long time, bound entanglement
was believed to be useless for cryptography, but several years
ago it was shown [6,7] that at least some bound entangled states
may be useful in quantum cryptography. This is one extreme
instance of the general fact that the amount of distillable secure
key KD may exceed the amount of distillable singlets ED . The
latter effect has been verified in a recent experiment [8].

The key ingredient in the complete theory of distilling a
secret key from quantum states [6,7] is the notion of a private
bit (pbit), or, more generally, a private dit (pdit), which is a
delocalized maximally entangled state that still retains some
entanglement monogamy result. A quantum pdit is composed
from a d ⊗ d key part AB and the shield part A′B ′ shared
between Alice (subsystems AA′) and Bob (subsystems BB ′)
in such a way that the local von Neumann measurements on the
key part in a particular basis will make the results completely
statistically uncorrelated from the results of any measurement

of an eavesdropper Eve on her subsystem E, which is a part of
the purification |�〉ABA′B ′E of the pdit state �̂ABA′B ′ . There is
a nice explanation of how the shield part protects the statistics
of the measurement on A and B to be correlated to Eve:
it just makes it impossible to distinguish the results of the
measurement by an external observer.

An obvious way to determine privacy properties is to
reconstruct tomographically the complete pdit state �̂ABA′B ′ .
This, however, is a very time-consuming process, especially if
the system under investigation is high-dimensional. The aim
of the present paper is to give bounds on the distillable secure
key based on just a few observables. This advances further the
study presented in Ref. [9], where it was proposed to carry out a
tomography of the so-called privacy-squeezed state of the state
of merit. We demonstrate that a single observable suffices to
provide a nontrivial bound. We also provide more accurate es-
timates based on two observables. These results provide tools
for application-specific detection of entanglement, refining the
fundamental concept of the entanglement witness proposed in
Refs. [10,11], which can be also subjected to optimization with
respect to local measurements [12,13] and used to quantify the
amount of entanglement [14,15].

The present results can be viewed as an outcome of a more
general research program: experimentally friendly detection
or estimation of task-dedicated quantum entanglement and/or
correlations. In fact it is quite usual that we are interested in that
aspect of entanglement which is useful for specific quantum
information task. The quantity characterizing this aspect may
be a monotone, but we believe that it need not be in general.
For instance, it is known that there are cases when specific Bell
inequalities that are important for device independent cryptog-
raphy are better violated by nonmaximally entangled states. In
this context we believe that the present paradigm will lead to
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systematic development of experimentally friendly detection
or estimation of resources for quantum information tasks.

This paper is organized as follows. In Sec. II we elaborate
on lower bounds on distillable entanglement and the distillable
key. In Sec. III we present a lower bound on the distillable key
in terms of a single parameter, i.e., a single privacy witness.
An approximate version of this bound is presented in the
Appendix. In Sec. IV we discuss how to infer privacy of a
noisy state from the expectation values of two observables.
Finally, Sec. V concludes the paper.

II. KEY BOUNDS

Let us start by reviewing how an individual observable can
be used to estimate distillable entanglement ED . The most
natural observable in this context is a projector

Ŵent = |�max〉 〈�max| (1)

onto a maximally entangled state |�max〉 = 1√
d

∑d
i=1 |φi〉A ⊗

|ψi〉B of two d-level systems, where {|φi〉A} and {|ψi〉B} are
any two orthonormal bases. Following the idea of Ref. [3]
dealing with the case d = 2, there is a protocol for an arbitrary
d such that if F (�̂AB) = Tr(Ŵent�̂AB) = 〈�max|�̂AB |�max〉
satisfies F (�̂AB) > 1

d
, then the state �̂AB is distillable [16].

The corresponding rate of the distillation protocol can be
easily estimated from below by the hashing protocol [17,18],
which gives a lower bound for the distillable entanglement as

ED(�̂AB) � S(�̂B) − S(�̂AB), (2)

where S(·) denotes the von Neumann entropy.
Since an application of the so-called U ⊗ U ∗ twirling [16]

can only decrease distillable entanglement ED , we may twirl
the state �̂AB in order to bring it to a highly symmetric form
and then apply the hashing inequality (2), which eventually
gives

ED(�̂AB) � log2 d − H

(
F,

1 − F

d2 − 1
, . . . ,

1 − F

d2 − 1

)
, (3)

where F = F (�̂AB) and H ({pi}) = −∑
i pi log2 pi is the

Shannon entropy.
The above formula is valid for any bipartite quantum state

�̂AB . There are more sophisticated twirling protocols. For
instance, for two qubits there is a protocol [19] utilizing
selected random Pauli operations that brings the state to a
form diagonal in the Bell basis:

�̂Bell
AB =

4∑
i=1

pi |�i〉 〈�i |, (4)

where |�i〉 are Bell states. Applying the hashing protocol to
�̂Bell

AB leads to

ED(�̂AB) � 1 − H (p1,p2,p3,p4). (5)

Equations (3) and (5) provide bounds on the key rate for �̂AB ,
as distilled singlet states can be used for the standard Ekert
protocol. In general, however, this may not be the most efficient
way to generate the key.

As pointed out in the Introduction, there exists a straight-
forward way to verify that we have a pdit, or a state
sufficiently close to a pdit, from which the secret key may
be distilled. It is based on the so-called quantum state
tomography, which allows us to calculate specific entropic
functions that can be used to estimate the amount of the
secret key from below. A useful quantity is the Devetak-
Winter function K→

DW , which quantifies the secret key dis-
tillable through a specific one-way secret-key distillation
protocol:

KD(�̂ABA′B ′) � K→
DW (�̂ABA′B ′). (6)

The Devetak-Winter function is given explicitly by the
difference of two Holevo quantities χAB and χAE , which
characterize the amount of information that can be recovered,
respectively, by Bob and Eve from subsystems B and E after
Alice carried out a von Neumann measurement of subsystem
A in the secure basis {|i〉A}:

K→
DW (�̂ABA′B ′) = χAB

(
TrE�̂

cqq
ABE

) − χAE

(
TrB�̂

cqq
ABE

)
. (7)

The state �̂
cqq
ABE is given by

�̂
cqq
ABE = TrA′B ′

( ∑
i

(|i〉A〈i| ⊗ 1̂A′BB ′E)

×|�〉AA′BB ′E 〈�|(|i〉A〈i| ⊗ 1̂A′BB ′E)

)
. (8)

Let us now restrict our attention to a situation when the
key part is composed of two qubits, A and B. The complete
density matrix �̂ABA′B ′ can be written as a 4 × 4 array of blocks
Âij,kl = AB〈ij |�̂ABA′B ′ |kl〉AB :

�̂ABA′B ′ =

⎛
⎜⎜⎜⎜⎜⎝

Â00,00 Â00,01 Â00,10 Â00,11

Â01,00 Â01,01 Â01,10 Â01,11

Â10,00 Â10,01 Â10,10 Â10,11

Â11,00 Â11,01 Â11,10 Â11,11

⎞
⎟⎟⎟⎟⎟⎠. (9)

It can be transformed by LOCC (with respect to the partition
AA′ : BB ′) to the form

ˆ̃� =

⎛
⎜⎜⎜⎝

1
2 (Â00,00 + Â11,11) 0 0 1

2 (Â00,11 + Â11,00)

0 1
2 (Â01,01 + Â10,10) 1

2 (Â01,10 + Â10,01) 0

0 1
2 (Â01,10 + Â10,01) 1

2 (Â01,01 + Â10,10) 0
1
2 (Â00,11 + Â11,00) 0 0 1

2 (Â00,00 + Â11,11).

⎞
⎟⎟⎟⎠. (10)
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This state can be “untwisted” to a Bell diagonal matrix that is directly related to the privacy-squeezed state (see [7,9]):

σ̂AB =

⎛
⎜⎜⎜⎝

1
2 ||Â00,00 + Â11,11|| 0 0 1

2 ||Â00,11 + Â11,00||
0 1

2 ||Â01,01 + Â10,10|| 1
2 ||Â01,10 + Â10,01|| 0

0 1
2 ||Â01,10 + Â10,01|| 1

2 ||Â01,01 + Â10,10|| 0
1
2 ||Â00,11 + Â11,00|| 0 0 1

2 ||Â00,00 + Â11,11||

⎞
⎟⎟⎟⎠, (11)

where the norm || · || stands for the trace norm.
It will be convenient to write σ̂AB in the form

σ̂AB =

⎛
⎜⎜⎜⎜⎝

1
2 (p1 + p2) 0 0 1

2 (p1 − p2)

0 1
2 (p3 + p4) 1

2 (p3 − p4) 0

0 1
2 (p3 − p4) 1

2 (p3 + p4) 0
1
2 (p1 − p2) 0 0 1

2 (p1 + p2)

⎞
⎟⎟⎟⎟⎠. (12)

It is easy to see that σ̂AB is diagonal in the Bell basis
and the parameters pi are occupation probabilities of the
corresponding Bell states.

There is a useful bound on the secret key, which is [9]

KD(�̂ABA′B ′) � Icl(A : B) − S(σ̂AB)

= 1 − h(p1 + p2) − H (p1,p2,p3,p4). (13)

Here Icl(A : B) is the classical mutual information
for the outcomes of von Neumann measurements car-
ried out by Alice and Bob in the secure basis
|00〉AB,|01〉AB,|10〉AB,|11〉AB . As the joint probability distri-
bution for these outcomes is { 1

2 (p1 + p2), 1
2 (p3 + p4), 1

2 (p3 +
p4), 1

2 (p1 + p2)}, we have Icl(A : B) = 1 − h(p1 + p2),
where h(x) = −x log2 x − (1 − x) log2(1 − x) denotes the
binary entropy. For other bounds, see [20].

Note that the bound given in Eq. (13) is weaker than that on
distillable entanglement in Eq. (5), but the physical meaning
of the probability distribution p1, . . . ,p4 is different. In the
present case the state σ̂AB does not actually describe the
physical system at any stage of the protocol but is rather a
formal construct characterizing privacy properties of the state
�̂ABA′B ′ of the complete system ABA′B ′.

III. SINGLE PRIVACY WITNESS

The class of secrecy witnesses we shall consider here is
defined formally as

Ŵpriv = (|11〉AB 〈00| + |00〉AB 〈11|) ⊗ ÛA′B ′

= 1
2

(
σ̂ x

A ⊗ σ̂ x
B − σ̂

y

A ⊗ σ̂
y

B

) ⊗ ÛA′B ′ , (14)

where ÛA′B ′ ≡ Û is any Hermitian matrix satisfying Û Û † � 1̂
acting on the shield subsystems A′ and B ′.

We will use the expectation value of the privacy witness
〈Ŵpriv〉 to approximate the value of p1 − p2. In fact we have

w := |〈Ŵpriv〉| = |Tr[(Â00,11 + Â11,00)Û ]|
� ||Â00,11 + Â11,00|| = p1 − p2 (15)

since, for any matrix satisfying Û Û † � 1̂ and any Â, one has
Tr(ÂÛ ) � ||Â||. The most straightforward way to verify this
fact is to resort to the definition of the trace norm:

TrÂÛ � ||ÂÛ || =
√

TrÛ Û †Â†Â �
√

TrÂ†Â = ||Â||.
(16)

Sometimes the parameter w may give exactly the value of
p1 − p2, and then we shall call Ŵpriv optimal. The unitary
operation Û defining such an optimal witness is just a
Hermitian conjugate of the unitary operation diagonalizing
the operator (Â00,11 + Â11,00)†(Â00,11 + Â11,00). We will give
an instance of the optimal witness and the corresponding Û at
the end of this section. Let us also stress that the witness itself
(14) is an observable, which must be measured on the original
state (9).

Quantitative estimation of the distillable key will be based
on the inequality

H (p1,p2,p3,p4) � H
(
p1,p2,

1
2 (1−p1−p2), 1

2 (1−p1−p2)
)

(17)

applied to Eq. (13), which yields

KD � 1 − h(p1 + p2) − H
(
p1,p2,

1
2 (1 − p1 − p2),

1
2 (1 − p1 − p2)

)
. (18)

As we are interested in the most pessimistic scenario, we need
to minimize the right-hand side over pairs (p1,p2) that satisfy
all the constraints. This gives the central formula:

KD � 1 − sup
p1−p2�w

p1,p2�0,p1+p2�1

[
h(p1 + p2)

+H
(
p1,p2,

1
2 (1 − p1 − p2), 1

2 (1 − p1 − p2)
)]

. (19)

We found numerically the boundary value w∗ at which
the above bound becomes strictly positive, i.e., the witness
condition w = |〈Ŵpriv〉| > w∗, to be equal to w∗ ≈ 0.907.

We can simplify the optimization in Eq. (19) by introducing
a new pair of variables, p+=p1+p2 and ξ+=p1/(p1+p2).
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A straightforward calculation shows that the bound for the key
expressed in the new variables takes the form

KD � inf
w�p+�1

(w+p+)/2p+�ξ+�1

[p+ − 2h(p+) − p+h(ξ+)]. (20)

Because the lower limit for ξ+ is greater or equal to 1/2,
optimization over ξ+ for a fixed value of p+ yields h(ξ+) �
h((w + p+)/2p+). Consequently, the minimization in Eq. (20)
needs to be carried out over a single parameter p+:

KD � inf
w�p+�1

[p+ − 2h(p+) − p+h((w + p+)/2p+)]. (21)

The absolute minimum of this expression is analyzed in the
Appendix. However, we can simplify the bound in two ways,
leading to weaker but more compact formulas.

Weaker bound 1. Suppose that w � (1 − w)/3, which is
equivalent to w � 1/4. Then we have the following estimate:

KD � 1 − h(w) − H
(
w, 1

3 (1 − w), 1
3 (1 − w), 1

3 (1 − w)
)
.

(22)

In the last inequality we have used the fact that both p1 + p2 �
w and p1 � w.

Weaker bound 2. There is a possibility of having an-
other bound with the help of subadditivity of the entropy
H [p1,p2,p3,p4] � h(p1 + p2) + h(p1 + p3), which yields

KD � 1 − 2h(w) − h
(

1
2 (1 + w)

)
. (23)

For a graphic comparison of the derived formulas, see
Fig. 1.

The above considerations are based on the so-called ccq
scenario, i.e. such that Alice and Bob measure their qubits in

the secure key basis |0〉, |1〉. However, the optimal Û [i.e., the
one that saturates (15)] remains unchanged if we transform
the key part of the given state by local unitary transformation.
More specifically, if we rotate the state �̂ABA′B ′ , given in
Eq. (9) with optimal witness of the form (14), by the operation
ÛA ⊗ ÛB ⊗ ÎA′ ⊗ ÎB ′ , where ÛA ⊗ ÛB |ij 〉 = |eifj 〉, then the
optimal witness Ŵ ′ for a new state ρ ′ is Ŵ ′ = (|e0f0〉〈e1f1| +
|e1f1〉〈e0f0|) ⊗ ÛA′B ′ , where ÛA′B ′ is the same as in Ŵpriv. Let
us give here an example of when we know the optimal Û . In
the case of the four-qubit state whose approximate version
was realized experimentally in Ref. [8], a two-qubit swap
operator V̂A′B ′ = 1̂A′B ′ − 2|�−〉A′B ′ 〈�−| used in the privacy
witness would give exactly the value |〈Ŵpriv〉| = p1 − p2.
Note also that if Û were not Hermitian, we could decom-
pose Û = ÛR + iÛI and measure two observables ŴR

priv =
(|11〉AB〈00| + |00〉AB〈11|) ⊗ ÛR and Ŵ I

priv = (|11〉AB〈00| +
|00〉AB〈11|) ⊗ ÛI .

IV. TWO-OBSERVABLE PRIVACY ESTIMATION

In this section we will show how to characterize the
privacy properties of a noisy entangled state from expectation
values of two observables. The first one, given by σ̂ z

A ⊗
σ̂ z

B ⊗ 1̂A′B ′ , characterizes correlations between measurements
performed on the subsystems A and B in the key basis.
The security of the key will be inferred by combining its
expectation value with that of an observable σ̂ x

A ⊗ σ̂ x
B ⊗ ÛA′B ′ ,

which probes off-diagonal blocks of the density matrix
�̂ABA′B ′ .

In further discussion it will be convenient to use the
following parametrization of σ̂AB :

σ̂AB =

⎛
⎜⎜⎝

1
2p+ 0 0 p+

(
ξ+ − 1

2

)
0 1

2p− p−
(
ξ− − 1

2

)
0

0 p−
(
ξ− − 1

2

)
1
2p− 0

p+
(
ξ+ − 1

2

)
0 0 1

2p+

⎞
⎟⎟⎠. (24)

The nonnegative parameters p+ = p1 + p2 and p− =
1 − p+ = p3 + p4 can be interpreted as occupation

0.85 0.90 0.95 1.00

0.5

0.5

1.0

FIG. 1. (Color online) Graphs of lower bounds on the distillable
key as a function of w = |〈Ŵpriv〉| derived in Eqs. (19) (solid line),
(22) (dashed line), and (23) (dotted line).

probabilities of the correlated and the anticorrelated subspaces,
spanned respectively by pairs or vectors |00〉AB , |11〉AB and
|01〉AB,|10〉AB . The other two parameters, given explicitly by
ξ+ = p1/p+ and ξ− = p3/p−, characterize the off-diagonal
elements of σ̂AB , respectively, in the correlated and the
anticorrelated sectors and therefore contain information about
the privacy properties. Because the off-diagonal elements of
σ̂AB are nonnegative due to the definition given in Eq. (11)
and must ensure positive definiteness of σ̂AB , the parameters
ξ−,ξ+ satisfy the inequality

1
2 � ξ+,ξ− � 1, (25)

i.e., the relevant region for pairs (ξ−,ξ+) has the geometric
shape of a square.

In the new parametrization, the lower bound on the key
takes the following form:

KD � 1 − 2h(p+) − p+h(ξ+) − p−h(ξ−). (26)
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Because the binary entropies h(ξ+) and h(ξ−) are nonnegative,
a necessary condition for this bound to be nontrivial is
h(p+) < 1

2 ; otherwise, the right-hand side is not positive.
This means that p+ must satisfy either 0 � p+ < 1 − p∗
or p∗ < p+ � 1, where p∗ ≈ 0.89 is the bigger of two
solutions of a transcendental equation h(p∗) = 1

2 on the
interval 0 � p∗ � 1. We will restrict our further discussion
to the case p∗ < p+ � 1, as the analysis of the second case
0 � p+ < 1 − p∗ is completely analogous.

Let us now analyze how the parameters of σ̂AB are related
to measured observables. The parameters p± can be evaluated
directly from the measured observables as p± = 1

2 (1 ± 〈σ̂ z
A ⊗

σ̂ z
B ⊗ 1̂A′B ′ 〉). Following the discussion after Eq. (26), we will

be interested in the regime when p+ > p∗. Considering the
other regime when p+ < 1 − p∗ effectively boils down to
swapping the roles of the correlated and the anticorrelated
subspaces. These two possibilities can be analyzed jointly by
defining

wz := ∣∣〈σ̂ z
A ⊗ σ̂ z

B ⊗ 1̂A′B ′
〉∣∣ (27)

and using in further discussion

p± = 1
2 (1 ± wz). (28)

The condition p+ > p∗ can be equivalently written as

wz > 2p∗ − 1 ≈ 0.78, (29)

which defines the minimum value of wz above which the bound
on the key can become nontrivial.

The second quantity we will use in our analysis will be

wx := ∣∣〈σ̂ x
A ⊗ σ̂ x

B ⊗ ÛA′B ′
〉∣∣. (30)

It allows us to bound the parameters ξ− and ξ+ according to
the following inequality, which is at the heart of our reasoning:

wx = |Tr[Û (Â00,11 + Â01,10 + Â10,01 + Â11,00)]|
� ||Â00,11 + Â11,00|| + ||Â01,10 + Â10,01||
= p+(2ξ+ − 1) + p−(2ξ− − 1). (31)

For fixed p±, this inequality determines the allowed region of
(ξ−,ξ+) within the square defined by Eq. (25) as

p−ξ− + p+ξ+ � 1
2 (1 + wx). (32)

When evaluating the lower bound on the key rate KD according
to Eq. (26), we are interested in the worst-case scenario that is
consistent with the measurement results. Therefore our task is
to minimize the right-hand side of Eq. (26) under constraints
given by Eqs. (25) and (32). This is equivalent to maximizing
under the same constraints a concave function

f (ξ−,ξ+) = p−h(ξ−) + p+h(ξ+). (33)

The lower bound on the key can be written as

KD � 1 − 2h(p+) − f max, (34)

where f max is the maximum of f (ξ−,ξ+) over the allowed
region of parameters. It is useful to note that because f (ξ−,ξ+)
is a convex linear combination of binary entropies h(ξ−) and
h(ξ+), within the square given by Eq. (25), decreasing either

of the arguments ξ− or ξ+ will always increase the value of
f (ξ−,ξ+). This in turn implies that f max is reached on the line

p−ξ− + p+ξ+ = 1
2 (1 + wx). (35)

To proceed with the maximization, let us start from an
observation that if ξ+ = 1

2 , i.e., the correlated sector of the
density matrix has zero off-diagonal elements, no positive key
rate can be guaranteed by Eq. (26). This follows from the
straightforward fact that the expression 1 − 2h(p+) − p+ is
nonpositive for p∗ < p+ � 1. Therefore no point with ξ+ = 1

2
should satisfy Eq. (32). Because the slope of the line (35) is
negative, it is sufficient to require that the point (ξ− = 1,ξ+ =
1
2 ) is outside the allowed region. This is equivalent to the
inequality

2wx + wz > 1. (36)

Further analysis depends on whether the point (ξ− = 1
2 ,ξ+ =

1) is located within the allowed region of parameters. It is easy
to verify that this is determined by the relation between p+ and
wx . If p+ > wx , this point satisfies Eq. (32), and the allowed
region of parameters has the shape of a trapezoid, as shown
in Fig. 2(a). Consequently, all values 1

2 � ξ− � 1 are allowed.
On the other hand, when p+ � wx , the allowed region is a
triangle, as depicted in Fig. 2(b). The minimum allowed value
of ξ− is then (wx − wz)/(1 − wz). We can combine these two
cases by defining

ξmin
− = max

{
1

2
,
wx − wz

1 − wz

}
. (37)

The maximization of f (ξ−,ξ+) over the line defined in Eq. (35)
can now be written as a supremum over a single parameter:

f max = sup
ξmin− �ξ�1

f

(
ξ,

1 + wx

1 + wz

− ξ
1 − wz

1 + wz

)
, (38)

which, inserted into Eq. (34), yields the final form of the bound:

KD � 1 − 2h(p+) − sup
ξmin− �ξ�1

[
(1 − p+)h(ξ )

+p+h

(
1 + wx

1 + wz

− ξ
1 − wz

1 + wz

) ]
, (39)

where p+ = (1 + wz)/2. The results of a numerical evaluation
of the supremum are shown in Fig. 3(a).

FIG. 2. The permitted region of the parameters (ξ−,ξ+) used to
maximize the function f (ξ−,ξ+) defined in Eq. (33).
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FIG. 3. The lower bound on the key as a function of wx and wz

obtained from (a) full optimization over the free parameters specified
in Eq. (39) and (b) a weaker estimate according to Eq. (42). The
bound is positive in the shaded area, with solid contours drawn at
steps of 0.1 starting from 0.

It is also possible to derive a slightly weaker bound that
requires no numerical optimization. Because the function
f (ξ−,ξ+) is monotonic in each one of its two arguments, as
discussed after Eq. (34), we can estimate f max by f̃ max, defined
as

f max � f̃ max = f (ξmin
− ,ξmin

+ ), (40)

where ξmin
− and ξmin

+ are the smallest possible values of ξ− and
ξ+ within the allowed region defined by Eqs. (25) and (32).
The value ξmin

− has been given explicitly in Eq. (37), and it is

FIG. 4. The lower bound on the key given in Eq. (44) obtained
from observables w and wz. The physical region is restricted to points
(w,wz), satisfying the condition (1 + wz)/2 � w. The coding of the
bound value is the same as in Fig. 3.

easy to verify that

ξmin
+ = wx + wz

1 + wz

. (41)

The simplified bound therefore takes the following explicit
form:

KD � 1 − 2h(p+)−(1 − p+)h(ξmin
− ) − p+h

(
wx + wz

1 + wz

)
,

(42)

which is shown in Fig. 3(b).
Finally, let us note that the observable w defined in Eq. (15)

can be combined with wz to provide a stronger bound on
the distillable key. To obtain this bound, let us return to
Eq. (26) and estimate the last two terms on the right-hand
side. The inequality shown in Eq. (15) rewritten in the new
parametrization provides a lower bound on ξ+:

ξ+ � 1

2
+ w

2p+
. (43)

Because the right-hand side is greater than or equal to 1/2, we
have h(ξ+) � h(1/2 + w/2p+). Further, we obviously have
h(ξ−) � 1. This yields

KD � p+ [1 − h (1/2 + w/2p+)] − 2h (p+) . (44)

Let us note that physical values of w and wz must sat-
isfy the condition (1 + wz)/2 � w; otherwise, we would
have p1 + p2 = p+ = (1 + wz)/2 < w � p1 − p2 and, con-
sequently, p2 < 0. In Fig. 4 we depict the bound (44) in the
physical region of w and wz.
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FIG. 5. (Color online) The difference between the bounds from
Eqs. (20) and (A3) as a function of the parameter w.

V. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a privacy witness, i.e.,
an observable, whose mean value allows one to estimate
nontrivially from below the value of a secret key, even in
the case when the resulting state exhibits the separation of
the secret key and the distillable entanglement. In fact this
separation may be quite drastic while the witness is working
perfectly. To see this let us take A′B ′ being d ⊗ d-level systems
and consider a pbit state �ABA′B ′ in the form [6]

�̂ABA′B ′ = 1

2d2
[(|00〉AB 〈00| + |11〉AB 〈11|) ⊗ 1̂A′B ′

+ (|00〉AB 〈11| + |11〉AB 〈00|) ⊗ V̂A′B ′ ], (45)

where 1̂A′B ′ and V̂A′B ′ stand, respectively, for the bipartite
identity and the swap operator on the subsystems A′B ′. In
the limit of large d the distillable entanglement is bounded
by vanishing log negativity ED � log2(1 + 1

d
) → 0, while

the privacy witness Ŵpriv = 1
2 (σ̂ x

A ⊗ σ̂ x
B − σ̂

y

A ⊗ σ̂
y

B) ⊗ V̂A′B ′

gives us the value of lower bound KD � 1 since w =
Tr(Ŵpriv�̂ABA′B ′) = 1, and then just using either of the weaker
bounds given in Eqs. (22) and (23) does the job. Note, in
particular, that since the key part AB is a two-qubit part,
the above estimate gives the maximum possible value of the
secret key KD = log2 2 = 1 despite the fact that the distillable
entanglement of the state is almost zero.

In general the complexity of measuring the privacy witness
is related to the Hilbert-Schmidt decomposition of the Hermi-
tian operator Û used to construct the witness [12]. In the case of
the four-qubit state that was studied in the experiment reported
in Ref. [8] the operator in question is the swap operator,
which is composed of three terms involving products of Pauli
matrices:

V̂A′B ′ = 1
2

(
1̂A′B ′ + σ̂ x

A′ ⊗ σ̂ x
B ′ + σ̂

y

A′ ⊗ σ̂
y

B ′ + σ̂ z
A′ ⊗ σ̂ z

B ′
)
.

(46)

Taking into account the necessary measurements on the
key part, this gives in total 2 × 3 = 6 observables to be
measured, each formed by a product of four Pauli matrices.
This is dramatically fewer then the full tomography, which
requires 81 products of four Pauli matrices. Note that in
some cases, such as the pbit state discussed above, such an

apparently poor measurement has no problem in reporting
the key value that lies above the distillable entanglement,
which is bounded for our example by the log negativity value
ED(�) � log2(1 + 1

2 ) ≈ 0.585.
The above approach may be extended to higher dimensions,

and other twirling techniques may be applied. It may be
especially useful when the experimentalist has a good guess
about the expected pbit state in the laboratory; then he or
she may estimate the high key contents almost perfectly
even if there is virtually no distillable entanglement in the
system. Finally, let us note that the very difficult problem
is to find the nonlinear entanglement witness that would
capture collective behavior revealing the key in all the cases
when any single-copy entropic function based on a one-way
protocol fails. It seems that for this one needs quantum secrecy
distillation protocols of new generation.

We believe that the present approach will lead to general
and systematic development of experimentally friendly meth-
ods for detection and estimation of task-dedicated quantum
entanglement and other resources.
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APPENDIX: SINGLE-WITNESS BOUND

Let us denote

κ(p+) = p+ − 2h(p+) − p+h((p+ + w)/2p+). (A1)

The derivative with respect to p+ reads

dκ

dp+
= 1

2
log2

p2
+(p2

+ − w2)

(1 − p+)4
. (A2)

It is easy to see that on the interval w � p+ � 1 the argument
of the logarithm function runs from 0 to +∞. Therefore
κ(p+) reaches its minimum at a root of a polynomial equation
p2

+(p2
+ − w2) = (1 − p+)4. This is a cubic equation that can

be solved exactly, but a simplified formula can be found
by substituting p+ = w + δ and assuming that δ � 1 − w,
which is motivated by numerical analysis. This yields δ ≈
(1 − w)4/2w3 and, consequently, the bound on the key in the
approximate form

KD � κ

(
w + (1 − w)4

2w3

)
. (A3)

This approximate expression turns out to reproduce the
original bound quite tightly, as evidenced in Fig. 5, depicting
the difference between Eq. (A3) and the bound given in
Eq. (20).
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