
Abstract—A new quasi-analytical near-to-far field transforma-
tion based on field matching method (field expansion in a base of
Hankel functions) is presented. This approach uses finite element
method to obtain near field, then the field is expressed in a base
of Hankel functions. The evaluated coefficients allow to calculate
the field outside the numerical domain, also in a far distance.
The main advantage of the proposed technique is avoiding of
the Green’s function integration. The method can be applied
for obstacles of an arbitrary cross section and homogeneous in
one direction. In order to confirm the validity of the presented
technique three different structures were analyzed and the results
were verified with the other methods.

Index Terms—Cylindrical structure, Near-to-far field transfor-
mation, Scattering.

I. INTRODUCTION

Scattering problems arise in both microwaves and optic
fields and have been investigated for many decades. Since
then many different approaches, depending on the analyzed
structures, have been developed. For structures, for which a
description in the orthogonal coordinate system using con-
stants coordinates is possible (e.g. cylindrical or elliptical
rods), analytical methods can be utilized [1], [2]. These
techniques are undoubtedly highly efficient (the numerical cost
is low). However, they are rather inflexible from a practical
point of view due to simple geometries. For more complex
structures there is a number of integral equation methods [3]–
[5]. These techniques require electric and magnetic currents
introduction and the use of Green’s function. Integration of
this function may cause problems related to singularities in
its domain [6]. Moreover, the efficiency of these methods
are very sensitive to choice of a base, which describes the
currents. In some cases the Green’s functions can be omitted
and field matching method can be applied [7]. However, it
is restricted only to a convex cross section of the obstacle.
The third class of techniques are discrete methods (e.g. finite
element method [8], finite difference method [9]), which are
the most versatile. In this group of techniques a numerical
domain has to be limited. The truncation of the domain can
cause some problems and affect the accuracy of the results.
Also in these methods Green’s function is utilized to far field
evaluation, which can lead to aforementioned inconvenience.

In this paper, near-to-far field transformation based on field
matching method (expansion in a base of Hankel functions)

is presented. In the first step finite element method (FEM) is
utilized to calculate the near field, then the obtained scattered
field is used to calculate coefficients, which are the weights
of Hankel functions of corresponding orders. The obtained
coefficients allow to evaluate the field directly in any arbitrary
distance (especially in far zone), in opposite to Green’s func-
tion techniques where a calculation of the field in a single
point (e.g. in far field) requires separate integration.

The method was verified for three exemplary structures
and the results were compared with the ones obtained from
different established techniques (analytical, field matching and
finite difference).

II. FORMULATION OF THE PROBLEM

A. Assumptions

The problem concerns scattering on a homogeneous cylin-
drical object with an arbitrary cross section. The wave can
illuminate the structure at any angle (problem 2.5D)

~Ei = ~E0e
−j~k◦~r, (1)

where

~E0 = E0[cos θ0 cosϕ0 cosψ0 − sinϕ0 sinψ0,

cos θ0 sinϕ0 cosψ0 + cosϕ0 sinψ0,− sin θ0 cosψ0],
(2)

~k = k0[sin θ0 cosϕ0, sin θ0 sinϕ0, cos θ0] (3)

and k0 = ω/c, where ω is angular frequency and c is
light velocity in vacuum. We assume that the structure is
homogeneous along z axis and variation along this direction
is known; for electric field

~E(x, y, z) = ~E(x, y)e−γz (4)

and magnetic field

~H(x, y, z) = ~H(x, y)e−γz, (5)

where γ = k0 cos θ0. Separating the fields to longitudinal and
transversal components in Maxwell equations we obtain two
coupled relations. The first one for scalar component Ez

~∇t ◦ (~iz × µ̄−1r ~iz × ~∇tEz) + γ~∇t ◦ (~iz × µ̄−1r ~iz × ~Et)

= ω2µ0ε0εrzEz
(6)
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Fig. 1. Incident wave.

and the second one for vector ~Et
~∇t × µ−1rz ~∇t × ~Et + γ~iz × µ̄−1r ~iz × ~∇tEz
+ γ2~iz × µ̄−1r ~iz × ~Et = ω2µ0ε0ε̄r ~Et,

(7)

where µ̄r =

[
µ̄rt 0
0 µrz

]
is relative permeability, ε̄r =[

ε̄rt 0
0 εrz

]
relative permittivity, µ0 and ε0 are permeability

and permittivity of the vacuum, respectively, and ~∇t = ∂
∂x
~ix+

∂
∂y
~iy .

B. Near-field evaluation with the use of FEM
The equations (6) and (7) can be transformed to the weak

form as follows [10]

−
∫∫
S

(~∇tF (x, y)) ◦ (~iz × µ̄−1r ~iz × ~∇tEz) ds

− γ
∫∫
S

(~∇tF (x, y)) ◦ (~iz × µ̄−1r ~iz × ~Et) ds

− ω2µ0ε0

∫∫
S

F (x, y)εrzEz ds = 0

(8)

and ∫∫
S

(~∇t × ~F(x, y)) ◦ (µ−1rz
~∇t × ~Et) ds

+ γ

∫∫
S

~F(x, y) ◦ (~iz × µ̄−1r ~iz × ~∇tEz) ds

+ γ2
∫∫
S

~F(x, y) ◦ (~iz × µ̄−1r ~iz × ~Et) ds

= ω2µ0ε0

∫∫
S

~F(x, y) ◦ ε̄r ~Et ds,

(9)

where F (x, y) and ~F(x, y) are the weight functions and S
represents the numerical domain. For scattering problems the
field can be written as a sum of incident field ~Ei (known) and
scattered field ~Es (unknown).

Applying the second order scalar α[q]
(n) and vector (Whitney)

~W
[q]
(n) shape functions [8], [10] the fields can be expressed

Esz =

Q∑
q=1

6∑
i=1

ψ
[q]
(i)α

[q]
(i),

~Est =

Q∑
q=1

8∑
i=1

φ
[q]
(i)
~W

[q]
(i) , (10)

where Q is a number of elements. Then utilizing Galerkin
method we obtain matrix equation[

Gzz Gzt

Gtz Gtt

] [
Ψ
Φ

]
=

[
Pz

Pt

]
, (11)

where specific blocks of the matrices are defined below:[
G[q]
zz

]
ji

= −
∫∫
S[q]

(~∇tα[q]
(j)) ◦ (~iz × µ̄−1r ~iz × ~∇tα[q]

(i)) ds,

[
G

[q]
zt

]
ji

= −γ
∫∫
S[q]

(~∇tα[q]
(j)) ◦ (~iz × µ̄−1r ~iz × ~W

[q]
(i) ) ds,

[
G

[q]
tz

]
ji

= γ

∫∫
S[q]

~W
[q]
(j) ◦ (~iz × µ̄−1r ~iz ×∇tα

[q]
(i)) ds,

[
G

[q]
tt

]
ji

=

∫∫
S[q]

(~∇t × ~W
[q]
(j)) ◦ (µ−1rz ~∇t × ~W

[q]
(i) ) ds

−ω2µ0ε0

∫∫
S[q]

~W
[q]
(j) ◦ ε̄r ~W

[q]
(i) ds

+γ2
∫∫
S[q]

~W
[q]
(j) ◦ (~iz × µ̄−1r ~iz × ~W

[q]
(i) ) ds,

[P[q]
z ]ji =

∫∫
S[q]

(~∇tα[q]
(j)) ◦ (~iz × ˜̄µ−1r ~iz × ~∇Eiz) ds

+ω2µ0ε0

∫∫
S[q]

α
[q]
(j)ε̃rzE

i
z ds

+γ

∫∫
S[q]

(~∇tα[q]
(j)) ◦ (~iz × ˜̄µ−1r ~iz × ~∇ ~Eit) ds,

[
P

[q]
t

]
ji

= −
∫∫
S[q]

(~∇t × ~W
[q]
(j)) ◦ (µ̃−1rz

~∇t × ~Eit) ds

−γ
∫∫
S[q]

~W
[q]
(j) ◦ (~iz × ˜̄µ−1r ~iz × ~∇tEiz) ds

−γ2
∫∫
S[q]

~W
[q]
(j) ◦ (~iz × ˜̄µ−1r ~iz × ~∇tEit) ds

+ω2µ0ε0

∫∫
S[q]

~W
[q]
(j) ◦ ˜̄εr ~E

i
t ds

−ω2µ0ε0

∫∫
S[q]

α
[q]
(j)εrzα

[q]
(i) ds.
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The vector
[
Ψ Φ

]T
represents scalar and vector basis func-

tion coefficients, respectively. The numerical domain is trun-
cated by absorbing boundary conditions - perfectly matched
layer (PML). In such a case the permittivity and permeability
of the structure have to be artificially modified by adding
extra layers at the boundary. Since the modification do not
involve the incident field permittivity ε and permeability µ in
Pz and Pt matrices stay unchanged (denoted by tilda). The
calculated above vector

[
Ψ Φ

]T
determines the electric field

in the numerical domain (near field) excluding the absorption
layer.

C. Near-to-far field transformation

The obtained field can be expressed in base of Hankel
functions on the circular contour surrounding the scatterer -
dashed line in Fig.2. The circle has to be placed appropriately

Fig. 2. Numerical domain.

outside the object and outside the absorption layer, than

Esz(ρ = R,ϕ, z = 0) =
M∑

m=−M
aEmH

(2)
m (κ1R)ejmϕ (12)

and
Esϕ(ρ = R,ϕ, z = 0) =

M∑
m=−M

[
−jγm
κ21R

H(2)
m (κ1R)aEm +

jωµ1

κ1
H ′(2)m (κ1R)aHm

]
ejmϕ.

(13)

The assumption of z = 0 do not affect the generality of the
approach. The coefficients aEn and aHn can be evaluated by
simple projection with the use of functions wn = ejnϕ on the
aforementioned circle of radius R, than

aEn =
1

2πH
(2)
n (κ1R)

∫ 2π

0

Esz(R,ϕ, 0)e−jnϕ dϕ (14)

and

aHn =
κ1

2πjωµ1H ′
(2)
n (κ1R)

∫ 2π

0

Esϕ(R,ϕ, 0)e−jnϕ dϕ

+
γn

ωµ1κ1RH ′
(2)
n (κ1R)

H(2)
n (κ1R)aEn .

(15)

These coefficients are sufficient to calculate all the components
of the electric and magnetic fields in any distance outside the
considered circle [11]. A calculation of the field in any new
point does not require any integration, in opposite to Green’s
function method.

III. NUMERICAL RESULTS

To verify the presented method three examples are shown.
For all considered structures the same parameter of PML
is utilized. The permittivity and permeability for absorption
layer is expressed by [10]

f̄ = f0Λ
g, Λx =

a 0 0
0 a−1 0
0 0 a−1

 , Λy =

a−1 0 0
0 a 0
0 0 a−1


where f ∈ {ε, µ} and g ∈ {x, y}; Λx is assigned to the border
in x = const and Λy to the border in y = const. For the
corners of the boundaries Λxy is defined as a product of Λx

and Λy . In all the presented examples the coefficient a is set to
1− j1010/ω. All the considered objects are made of dielectric
material with relative permittivity εr = 5 and placed in free
space. A number of Hankel functions used in the calculations
is set to M = 10 and maximum length of the edge in the FEM
mesh is hmax = 0.067λ [12]. The scattering characteristics for
all cases are evaluated at the distance of 100λ.

The first considered structure is a cylinder with an elliptical
cross section of geometry presented in Fig. 3. The object is

Fig. 3. Geometry of the elliptical cylinder.

surrounded with a circle of radius R = 1.1λ (Fig. 3) and
obtained characteristics are shown in Fig. 4. The solid line
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represents the data calculated with the use of the proposed
method and the dashed line is an analytical reference.

Fig. 4. Normalized scattering characteristics for elliptical cylinder (solid line
- this method, dashed line - analytical results).

Next example is a cylinder with rectangular cross section,
which is surrounded by contour of radius R = 0.8λ. The ge-
ometry of the structure and calculated scattering characteristics
are presented in Fig.5-6 (solid line - this method, dashed line
- mode matching method [7]).

Fig. 5. Geometry of the rectangular cylinder.

As the last proposed structure, a cross-shaped cylinder is
considered. The geometry parameters are presented in Fig.7.
The circle of radius 0.8λ is used to expand the field in a base
of Hankel functions. The obtained characteristics (solid line)
and a comparison with finite difference method [13] (dashed
line) are shown in Fig.8.

Fig. 6. Normalized scattering characteristics for rectangular cylinder (solid
line - this method, dashed line - mode matching method).

Fig. 7. Geometry of the cross-shaped cylinder.

IV. CONCLUSION

The field expansion in a base of Hankel functions is pro-
posed. The presented near-to-far field transformation requires
a small number of integrations which makes it fast and
simple. The results are verified by comparison with alternative
numerical methods and a very good agreement is achieved.
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Fig. 8. Normalized scattering characteristics for cross-shaped cylinder (solid
line - this method, dashed line - finite difference method).
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