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Abstract

We explore the relation between the rank of a bipartite density matrix and the existence of
bound entanglement. We show a relation between the rank, marginal ranks, and distillability of
a mixed state and use this to prove that any rank n bound entangled state must have support
on no more than an n × n Hilbert space. A direct consequence of this result is that there are
no bipartite bound entangled states of rank two. We also show that a separability condition in
terms of a quantum entropy inequality is associated with the above results. We explore the idea
of how many pure states are needed in a mixture to cancel the distillable entanglement of a
Schmidt rank n pure state and provide a lower bound of n− 1. We also prove that a mixture of
a non-zero amount of any pure entangled state with a pure product state is distillable. c© 2002
Published by Elsevier Science B.V.

Perhaps the central topic in quantum information theory has been the study of entan-
glement, the non-classical correlations between separated parts of a quantum system.
In the early days of quantum theory Einstein, Podolsky and Rosen discuss the paradox-
ical “spooky action at a distance” of entangled particle pairs to express their disbelief
that quantum theory could provide a complete picture of reality [11]. Later, Bell used
entanglement to prove that quantum mechanics is inconsistent with local reality [1].
An understanding of entanglement seems to be at the heart of theories of quantum
computation and quantum cryptography [2], as it has been at the heart of quantum
mechanics itself.
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In the case of bipartite pure states, entanglement is rather well understood, in the
sense that there is a good measure of entanglement, namely the entropy of the reduced
density matrix of one party. For a pure state | 〉 in a Hilbert space belonging to two
parties (traditionally named Alice and Bob) HA ⊗HB we deBne

E(| 〉〈 |) = S(TrA| 〉〈 |) = S(TrB| 〉〈 |); (1)

where S is the von Neumann entropy function of a density matrix given by S(�)=
− Tr(� log �). DiFerent entangled bipartite pure states of the same entanglement E
can be asymptotically converted amongst one another while conserving entanglement
[3]. In the case of three or more parties sharing entanglement, the situation is more
complicated (cf. [20,7]), as it is for mixed states even for only two parties [4,6].
There are several measures of entanglement for bipartite mixed states. The entangle-

ment of formation Ef is deBned as

Ef (�) = min
k∑

i=1
piE(| i〉); (2)

where the minimization is over all ensembles of pure states  i and non-negative real
numbers pi summing up to 1 such that

k∑
i=1

pi| i〉〈 i| = �: (3)

The distillable entanglement D(�) is deBned as the asymptotic amount of pure entan-
glement that can be gotten out of the mixed state � using only local quantum operations
and classical communication (these were deBned originally in [4,6]). For pure states
these two measures are equal and equal to the entropy of the reduced density matrix
of each party as in Eq. (1). For mixed states, we have the property D6Ef , reGecting
the intuitive idea that one cannot distill more entanglement out of a state than was
used in preparing it. Indeed, it has been shown [11] that there exist states for which
D=0 but Ef¿0. Such states are known as the bound entangled states.
The entanglement of formation and the related relative entropy measure of entan-

glement [22] share the problem that it is unknown whether or not they are additive.
Is the entanglement of formation of two copies of a state �⊗2 = �⊗ � always exactly
twice that of one copy? More generally, is the entanglement of formation of n copies
of a state always exactly n times the entanglement of formation of just one copy? This
has turned out to be a rather diJcult problem to solve, but a conjecture about the
bound entangled states of [16] may give us a clue. Bound entangled states have Bnite
entanglement of formation, but might it be that in the asymptotic limit as n approaches
inBnity we have Ef (�⊗n

bound)=n→ 0, which would explain why no entanglement can be
distilled from them? 1

1 Since the initial submission of this paper, Vidal and Cirac have shown [23] that bound entangled states
do exist that have a non-zero asymptotic entanglement of formation (which is equal to the entanglement
cost [12]). Still, the motivation remains to look for low rank bound entangled states as a means of possible
Bnding states with subadditive entanglement of formation or even asymptotically zero but single-copy Bnite
entanglement of formation.
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One way of exploring this question is to numerically calculate the entanglement
of formation for a bound entangled state �, and then for �⊗2, �⊗3, etc., and look
for subadditivity. We have done this for some small examples, but unfortunately, the
diJculty of the calculation scales exponentially with the number of copies of �, and our
only results so far have been negative. On the other hand, the rate of the exponential
growth is strongly dependent on the rank of the density matrix.
When trying to Bnd the minimum ensemble (as in Eq. (2)) for a density matrix of

rank R it is known that at most k =R2 pure states  i are required [21] and each pure
state is of dimension R. Thus, for a density matrix of the form �⊗n with � of rank
r, �⊗n will have rank R= rn and the minimization will in general require r2n vectors
of dimension rn. For this reason, it is desirable to Bnd bound entangled states of low
rank. The bound entangled states of smallest known rank have rank four [5].
Recently, results have been obtained suggesting the sensitivity of bound entanglement

to rank. In [24] it was shown by means of numerical analysis that randomly generated
bound entangled states in 2× 4 typically have a participation ratio (a quantity related
to the rank) R̃≡ 1=Tr(%2) between 5 and 6. On the other hand, for 2× n it was proved
[17] that all states which remain positive semi-deBnite under partial transposition 2 [15]
(PPT states) of rank n and full rank of the reduced density matrix of the second party
are separable.
In this paper, we prove that if a bipartite density matrix’s rank is less than the rank

of the marginal density matrix of either party, then the density matrix has distillable
entanglement (is not bound). We use this to prove the negative result that there do
not exist bound entangled states of rank two, and to put some restrictions on what a
rank three bound entangled state must be like. Note that this implies that there are no
unextendible product bases (UPBs) [5,8] in m× n with mn − 2 members because the
complementary state to such a UPB would be rank 2 and bound entangled.
We also show that a mixture of a pure product state with a non-vanishing amount

of any pure entangled state is distillable and hence not bound entangled. Finally, we
conjecture that any irreducible bound entangled state in n× n has a rank greater than
n and shows that this would imply that no rank three bound entangled state exists.
We will Brst prove a powerful theorem relating the distillability, rank and marginal

ranks of a mixed state. Then we will use this result to prove that there exists no bound
entangled state of rank two.
Consider a bipartite density matrix � whose two parts belong to Alice and to Bob.

We denote its marginal or local density matrices by �A =TrB(�) and �B =TrA(�),
respectively, obtained by tracing out Bob and Alice. Its marginal rank on Alice’s side
R(�A) is the rank of �A and it is similar for Bob. For pure states, the marginal ranks
are equal and are also called the Schmidt rank of the state [18]. We say that a state �
in m× n is irreducible if and only if R(�A)=m and R(�B)= n. Intuitively, this means
that the density matrix fully utilizes each of the local Hilbert spaces of Alice and Bob.

2 The partial transpose is deBned by

PT(�)ij;kl = �il;kj ; (4)

where the i and k indices are associated with Hilbert space HA and the j and l indices with HB.
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In our proof we use the reduction criterion of separability and distillability [13]: If
a state � is separable, then 1 ⊗ �B − �¿0 and �A ⊗ 1 − �¿0. (A Hermitian matrix
H is positive semi-deBnite, or H¿0 for short, if and only if 〈 |H | 〉¿0 ∀ , or
equivalently H has no negative eigenvalues.) If this criterion is violated, then � is
distillable. This provides a necessary condition for separability and a suJcient condition
for distillability.

Theorem 1. If R(�)¡max[R(�A);R(�B)], then � is distillable.

Proof. Without loss of generality let R=R(�A)¿R(�)= r. By local Bltering Alice
takes � to �f such that,

�Af =
1
R
1R: (5)

This can always be done with non-zero probability by applying the local Blter W=
∑R

i=1
(1=�iR)|�i〉〈�i|, where �i are the non-zero eigenvalues and |�i〉 are the corresponding
eigenvectors of �A [13]. Thus the eigenvalues of �Af are 1=R. Since �f has a unit
trace and is of rank r, its largest eigenvalue �max cannot be less than 1=r which in
turn is larger than 1=R. Choosing | 〉 to be the eigenvector of �f corresponding to the
eigenvalue �max we have

〈 |�Af ⊗ 1− �f | 〉 = 〈 |�Af ⊗ 1| 〉 − �max 6
1
R
− 1

r
¡ 0: (6)

Thus the reduction criterion for separability is violated and hence �f is distillable. Since
�f can be obtained from � by a local quantum operation (Bltering), this implies that
� is distillable.

Remark. It is also easy to show by the same reasoning that if R(�)=R then � is
distillable except in the case where �f is proportional to the identity. This is the case
where �max is smallest: �max = 1=R=1=r.

Turning around the inequality (Theorem 1) we have that if a mixed state � is
separable or bound entangled (i.e. not distillable), then

R(�)¿ max[R(�A);R(�B)]: (7)

Using the monotonicity of logarithms, one can rephrase the theorem as an entropy
inequality: For separable or bound entangled states the entropy S0(�)≡ log(R(�)) must
satisfy the inequality

S0(�)¿ S0(�A) and S0(�)¿ S0(�B): (8)

The entropy S0 (called the Hartley entropy) is a special case of quantum RenOyi entropies

S� ≡ (1− �)−1 log(Tr ��): (9)

The counterparts of the separability condition (8) have already been proved for the
case of �=2 and the cases where � limits to 1 and ∞ (see [14]). It is interesting to

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


P. Horodecki et al. / Theoretical Computer Science 292 (2003) 589–596 593

note that the ratio of violation of (8) in the limit � ↓ 1 (the von Neumann entropy)
gives in the case of 2× 2 Werner states the yield of the hashing method of distillation
of entanglement [6].
Let us now look at some implications of this result for separable and for bound

entangled states.

Corollary 1. A rank n separable or bound entangled state in a Hilbert space H has
support in at most an n× n subspace of H. Further, there is no rank two bound
entangled state.

Proof. The Brst statement follows directly from Eq. (7). The second statement is a
consequence of the Brst and the fact that in 2× 2 every entangled state is distillable
[15].

An open question is whether there exists a rank three bound entangled state. We
can put some constraints on the form of such a state: If a rank three bound entangled
state exists, then Corollary 1 shows that it must have support on no more than a 3× 3
subspace. It must also be that such a state is irreducible because no bound entanglement
can exist in 2× 2 or 2× 3 [15]. Then, as in the remark above, �f must be proportional
to the identity on a three-dimensional subspace in 3× 3.
Given the fact that a rank n bound entangled state must live in an n× n subspace,

one may ask whether there are irreducible bound entangled states of rank n in n× n.
Of course there is no rank two bound entangled state in 2× 2, and all the known
examples of bound entanglement are not of this type. The closest one can get to this
among known examples is the UPB state of rank four in 3× 3 [5]. Thus we conjecture:

Conjecture 1. There are no irreducible bound entangled states of rank n in n× n, i.e.,
any rank n bound entangled state can be expressed in a bipartite space of dimension
n× (n− 1) or (n− 1)× n.

If this conjecture holds, then there are no rank three bound entangled states at all.
Theorem 1 also has consequences for the “cancellation of distillable entanglement”.

Suppose that one has a Schmidt rank n pure state |�〉= ∑n
i=1

√
�i| Ai 〉⊗ | Bi 〉. How

many other arbitrary pure states |�j〉 are needed in a mixture �=p0|�〉〈�| +∑k
j=1

pj|�j〉〈�j| before � stops being distillable? We have the following corollary.

Corollary 2. If �=p0|�〉〈�|+∑n−2
j=1 pj|�j〉〈�j| with p0¿0 and |�〉 of Schmidt rank

n, then � is distillable.

Proof. The proof follows from Theorem 1 and the fact that R(�)6n−1 and R(�A)¿n
since |�〉 is Schmidt rank n. Thus, R(�)6n− 1¡n6R(�A) and the theorem applies.

For n=2 the above corollary gives the empty result that a Schmidt rank two state
mixed with zero other states is distillable. We will show a slight extension of this
namely:
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Theorem 2. A mixture of a non-zero amount of any entangled pure state with any
pure product state is always distillable.

Proof. Consider the entangled and product pure states in the Hilbert space ofHA⊗HB.
Since the state � made by mixing them has rank two, it is always distillable unless
� has support on at most a 2× 2 subspace, by Corollary 1. Thus, without loss of
generality we may choose the product state to be |0〉|0〉 and the entangled state to be
| 〉= a|0〉|0〉+ b|0〉|1〉+ c|1〉|0〉+ d|1〉|1〉.
In H2⊗H2 a density matrix � is entangled [19] and distillable [14] if and only if

the partial transpose of � is not positive semi-deBnite.
We consider the mixture

� = p|00〉〈00|+ | 〉〈 |: (10)

This mixture would be normalized by a denominator of 1 + p, but this will not aFect
positivity and so we omit it.
The partial transpose PT(�) is

�′ = PT(�) =




p+ |a|2 a∗b ac∗ bc∗

ab∗ |b|2 ad∗ bd∗

a∗c a∗d |c|2 c∗d

b∗c b∗d cd∗ |d|2




: (11)

If a matrix has a negative determinant, then the matrix is not positive semi-deBnite.
Expanding the determinant of �′ using Cramer’s rule on the top row we can write that

det(�′) =p det(C11) + det(�′ − p|00〉〈00|)

=p det(C11) + det(PT(| 〉〈 |)); (12)

where C11 is the 3× 3 matrix formed by leaving out the Brst row and Brst column of
�′. The second term is always negative since | 〉 is entangled (this is easily seen by
doing the partial transpose in the Schmidt basis and noting the fact that the eigenvalues
and hence the determinant of the partial transpose are invariant based on which the
partial transposition is done). Writing out the Brst term as

− p|d|2(|a|2|d|2 − ab∗cd∗ − a∗bc∗d+ |b|2|c|2) = −p|d|2|(ad− bc)|2; (13)

we see that it is always less than or equal to zero. Thus, the determinant of �′ is
negative, implying �′ is not positive semi-deBnite and � is distillable.

Remark. In contrast to this theorem, a mixture of two entangled pure state can be
separable, for example, the equal mixture of (1=

√
2)(|00〉 + |11〉) and (1=√2)(|00〉 −

|11〉).

We have explored the relation between the rank of a density matrix and the existence
of bound entanglement. In particular we Bnd that a density matrix with rank smaller
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than either of the marginal ranks is distillable. This gave us the result that any rank n
bound entangled state must belong to an n× n subspace. A direct consequence of this
result is that there are no bound entangled states of rank two.
We also pointed out that there is a separability criterion in terms of a quantum

entropy inequality which is naturally associated with our results. Further, we have
explored the idea of how many pure states are needed to cancel the distillable entan-
glement of a Schmidt rank n pure state and we provided a lower bound of n − 1.
We also showed the related result that a mixture of a non-zero amount of any entan-
gled pure state with a pure product state is distillable. Thus mixing with a single pure
product state cannot prevent the distillability of an entangled pure state.
It should be noted that our results on bound entanglement hold even for bound

entangled states whose partial transpositions are not positive semi-deBnite, should such
states exist (for evidence they may see [9,10]). This can be seen because our proofs
are based directly on distillability.
It is an open question whether bound entangled states of rank three exist. Another

related question is whether states with rank equal to the marginal ranks can be bound
entangled or whether the rank needs to be strictly greater.
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