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Optimization methods have been rapidly entering the realm of antenna design over the last several 
years. Despite many available algorithms, practical optimization is demanding due to the high 
electromagnetic (EM) analysis cost necessary for dependable antenna assessment. This is particularly 
troublesome in global parameter tuning, routinely conducted using nature-inspired procedures. 
Unfortunately, these methods are known for their poor computational efficiency. Surrogate modeling 
may mitigate this issue to a certain extent, yet dimensionality and parameter range issues severely 
impede the construction of accurate metamodels. This research suggests an innovative algorithm 
for global parameter adjustment of antenna systems. It conducts a simplex-based search in the 
space of the structure’s performance figures (e.g., center frequencies, bandwidth, etc.). Operating at 
this level regularizes the objective function. Low cost is achieved by the simplex updating strategy 
requiring only one EM analysis per iteration, and multi-resolution simulations. The global search state 
involves coarse-discretization full-wave analysis, whereas final (gradient-based) parameter tuning 
involves medium-fidelity simulations for sensitivity estimation and high-fidelity models for design 
verification. The developed algorithmic framework is validated using four microstrip antennas. The 
results generated in multiple runs demonstrate global search capability and remarkably low expenses, 
corresponding to around a hundred high-fidelity analyses on average. The performance level is 
competitive over local and global optimizers.

Keywords  Antennas, Design automation, Electromagnetic analysis, Characteristic points, Simplex, Variable-
fidelity models

Strict performance requirements generated by the needs of various fields of application (wireless 
communications1,2, internet of things3, space communications4, energy harvesting5, microwave imaging6, 
automotive radars7) make antenna design a challenging endeavor. It is further aggravated by functionality 
demands such as broadband8, multi-band9or MIMO operation10, tunability11, enhanced gain12, beam steering13, 
circular polarization14, as well as small physical dimensions15–17. Meeting these specifications leads to developing 
intricate topologies featuring large numbers of parameters. Their reliable evaluation requires EM analysis. Further, 
yielding the best possible design is contingent upon careful tuning of antenna dimensions while simultaneously 
controlling several responses and the antenna size. Traditionally used experience-driven parameter sweeping or 
utilization equivalent network models are no longer adequate for this purpose. Instead, rigorous optimization is 
suggested18–20, although it is computationally expensive, even in local search. Global algorithms21–23(including 
multi-criterial design routines24–26) incur significantly higher expenses. Yet, global search is required for a 
growing number of design scenarios that include multi-modal problems (e.g., design of coding metasurfaces27, 
frequency selective surfaces28, EM-driven miniaturization with performance constraints29, pattern synthesis of 
array antennas30, design of metamaterial lenses31), the lack of a good starting point32, or antenna scaling across 
extended ranges of operating frequencies and/or material parameters33.

Nowadays, global optimization is dominated by nature-inspired methods34–37. The traditional yet still 
widely used population-based approaches encompass genetic algorithms (GAs)38, evolutionary algorithms/
strategies39,40, ant systems41, or genetic programming42. Some examples of newer methods are, among others, 
particle swarm optimization (PSO)43, differential evolution (DE)44, firefly algorithm45, or grey wolf optimization46. 
Recent years witnessed the development of vast amounts of algorithms (harmony search47, eagle strategy48, 
bacteria foraging optimization49, invasive weed optimization50, and many others51–60. The capability to perform 
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global search stems from information exchange within the candidate solution set, either through recombination/
mutation operators61, or through biasing the member relocation towards, e.g., local or population-wise best 
solution found so far62. Nature-inspired methods are straightforward to implement, and the operating flow is 
identical for most procedures63. The downside is unsatisfactory computational efficiency. As number of merit 
function calls during an optimization run ranges usually from hundreds to many thousands, direct antenna 
optimization with these algorithms is normally infeasible unless faster models are available (e.g., synthesis of a 
radiation pattern using analytical array factor models64–66), or EM analysis is relatively cheap (e.g., when antenna 
geometry is simple and coarse discretization is employed).

Global (especially nature-inspired) optimization of antennas is nowadays most often realized using surrogate 
modeling methods24,67–70. Popular modeling techniques include neural networks71,72, kriging73, support vector 
regression74, or Gaussian process regression75. Unfortunately, globally accurate models can only be constructed 
for simple structures. Consequently, surrogate-assisted procedures are typically in the form of machine learning 
frameworks76,77, where the surrogate is iteratively refined and used to predict candidate solutions78. Model 
refinement may target identifying a globally optimum design, but other infill criteria are also possible79,80. 
Optimization processes can also be expedited using physics-based surrogates81–83, typically used for local search.

Other challenges in constructing reliable data-driven antenna models include response nonlinearity and the 
need to model several responses (reflection, gain, axial ratio) over broad frequency ranges. Accordingly, many 
surrogate-based techniques are only demonstrated using structures operating over limited parameter spaces84,85. 
The recently reported performance-driven modeling techniques86–89allow for mitigating some of these issues by 
focusing on regions with high-quality designs. A performance-driven modeling paradigm has been employed for 
general-purpose meta-modeling90, but it has also expedited multi-objective optimization91and robust design92. 
Yet another approach is the response feature technology93,94, which capitalizes on restating the task using 
adequately determined characteristic (or feature) points, e.g., resonances, local maxima/minima of reflection 
or gain within the operating bandwidth, etc. This regularizes the merit function, enables the acceleration of 
optimization processes95, and enhances the computational efficiency of surrogate model rendition96.

This research suggests a new algorithm for the global design of antennas. The major prerequisites are reliability 
and computational efficiency. Both are enabled by arranging the optimization process as a simplex-based search 
constructed regarding operating figures obtained from EM simulations, rather than the complete frequency 
characteristics. This allows for achieving the benefits inherent to the response-feature approaches (objective 
function landscape regularization), which facilitates finding the optimum but also expedites the process. The 
two additional factors contributing to the algorithm’s efficiency are the strategy of updating the simplex and 
the incorporation of multi-resolution simulations. The early optimization stages employ coarse-discretization 
EM analysis, whereas final (gradient-based) tuning is executed using mixed models: high-fidelity for design 
verification and medium-fidelity for sensitivity estimation. Furthermore, the implemented mechanism of 
reducing the simplex size guarantees convergence. A comprehensive verification of our methodology uses four 
microstrip antennas of different characteristics. The numerical results indicate its superior performance over 
the benchmark concerning the ability to render high-quality designs consistently (i.e., for all performed runs), 
repeatability of results, and computational efficiency. The average CPU expenses of the search process amount to 
only 95 high-fidelity EM antenna analyses. While this low-cost results from the overall algorithm architecture, 
the additional acceleration factor resulting from multi-resolution models is as high as 1.3 on average, as estimated 
by comparison with the high-fidelity simplex-based search.

The technical contributions of this work include: (i) the development of antenna optimization framework 
with global search capability achieved using simplex regressors constructed for the operating parameters, (ii) 
incorporation of efficient design relocation strategy and variable-resolution EM simulations to guarantee cost 
efficiency, (iii) development of mechanisms that guarantee a formal convergence, (iv) implementation of the 
algorithmic framework combining global and rapid local tuning stages, (v) conclusive demonstration of the 
efficacy of the introduced methodology both regarding reliability, final design quality, and low running cost.

Global optimization with simplex regressors and Variable-Resolution models
This part of the work provides the details of the presented optimization strategy. The underlying concept is 
the employment of simplex regressors representing the antenna’s operating parameters. By exploiting regular 
dependence between antenna geometry and operating parameters, a rapid determination of the promising 
region becomes possible. The process is accelerated even further by the utilization of low-resolution EM analysis. 
To ensure reliability, global search is complemented by final tuning at the high-resolution level.

EM-Driven optimization
The problem is defined using the design objectives and constraints and the type of responses to be handled. 
The antenna adjustable parameters are marked as x = [x1 … xn]T. In contrast, target operating frequencies are 
represented as ft = [ft.1 … ft.K]T, assuming a K-band structure. The vector x is assessed using a merit function 
U(x,ft). It is established so that smaller values of U correspond to better designs. The optimum solution x* is 
rendered as

	
x∗ = arg min

x
U(x, ft)� (1)

The problem (1) may be constrained. If constraint evaluation requires EM analysis, a convenient handling 
approach is through penalty functions105, as outlined in Fig. 1.

In formulation (1), the operating frequencies are explicitly distinguished to emphasize that their proper 
placement is the fundamental challenge in optimizing high-frequency systems. Also, the algorithm introduced 
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here relies on metrics quantifying the discrepancy between the actual and target frequencies. Hence, this 
notation is necessary for further consideration.

Multi-Resolution EM analysis
The concept of multi-resolution modeling has been explored in high-frequency design since the early 2020 s97. 
For antennas, a flexible approach to rendering lower-fidelity representation is the reduction of the structure’s 
discretization in the EM analysis process and introducing other simplifications (e.g., neglecting losses, etc98).

Reducing the resolution of the simulation process allows for shortening the analysis time while compromising 
the dependability99, cf. Figure 2. The achievable speedup is typically from three to ten, assuming the low-fidelity 
analysis accounts for relevant antenna characteristic features. In practice, two levels of resolution are employed: 
low (coarse discretization) and high (fine model)100, although more sophisticated model management schemes 
have been developed as well101, including continuous adjustment of the model fidelity102. For specific applications, 
e.g., local optimization with space mapping103, it is mandatory to enhance the low-fidelity model, but it may be 
applied as is for other purposes, e.g., pre-screening104.

Here, we use two models: low-resolution Rc(x) and high-resolution Rf(x). Rc(x) is used in the global search 
stage (cf. Sects.  Simplex-Based regression models and Global search). The high-resolution model will be 
employed for the final tuning of antenna parameters, cf. Sect. Final tuning.

Simplex-Based regression models
The performance of antenna structures is contingent upon the appropriate parameter adjustment. The high cost 
incurred by multiple EM simulations involved in the optimization process, even for local tuning, is a serious 
obstacle. In a growing number of cases, global search is necessary, which is hindered by several factors that 
include the need for exploring vast spaces, response nonlinearity and considerable relocations of the operating 
frequencies.

Inherent difficulties of EM-driven design can be mitigated using surrogate-assisted approaches24,67–83. 
However, rendering accurate behavioral models over large spaces is generally infeasible. Consider Fig.  3(a), 
showing |S11| of a dual-band antenna at random designs. Local optimization originating from most of the 
shown designs will be unsuccessful in moving the operating frequencies toward the required values. Meanwhile, 
constructing an accurate data-driven model of highly nonlinear characteristics such as those in Fig. 3(a) requires 
large training datasets.

The same situation examined from the standpoint of antenna operating parameters gives a different picture. 
The relationships between the resonant frequencies f1 and f2 and antenna geometry parameters, cf. Figure 3(b), 
are simpler and essentially monotonic, even though the plots were obtained using random observables. The 
literature on feature-based modeling concurs that these dependencies are common for high-frequency 
structures93–96.

The algorithm introduced in this work is developed to explore the relationships illustrated in Fig. 3. The 
simplicity of the mentioned dependencies allows us to conduct globalized optimization based on structurally 
uninvolved surrogate models, which are defined using the operating parameters instead of the original antenna 
outputs. At the same time, whatever model is used, it must reflect the full dimensionality n of the parameter space. 
This implies incorporating no less than n + 1 affinely independent points x(j). The most straightforward object 
fulfilling these requirements is a simplex, which is also suitable for handling the relationships demonstrated 

Fig. 1.  Constrained optimization and the outline of constraint handling in an implicit manner using penalty 
functions.
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in Fig. 3. Below, we provide a formal definition of a simplex-based regression model utilized in this work and 
elaborate on its use for antenna optimization. The relevant notation has been introduced in Fig. 4.

Consider affinely independent points x(j) = [x1
(j) … xn

(j)]T, j = 0, …, n, in the parameter space X (n + 1 points 
in total). The pertinent operating figure vectors and performance figure vectors are f(j) = f(x(j)) = [f1

(j) … fN
(j)]T 

and l(j) = l(x(j)) = [l1
(j) … lM

(j)]T, respectively. All points x(j) reside within acceptance bounds fL ≤ f(j) ≤ fU, and lL ≤ 
l(j) ≤ lU, for j = 0, …, n. Identification {x(j)}j =0, …, n, is realized through random sampling.

The EM-simulated responses at these points subsequently undergo an extraction process that permits 
assessing the respective operating and performance parameters f(x(j)) and l(x(j)). Only parameter vectors 
exhibiting distinct resonances within the specified ranges are considered suitable for predictor construction.

Given {x(j)}j =0, …, n, we can define the simplex-based regression models. As x(j) – x(0) are linearly independent, 
any parameter vector x ∈ X can be written as

Fig. 3.  Relationship between the entire antenna characteristics and its geometry parameters versus analogous 
relationship for antenna operating parameters: (a) |S11| of a dual-band antenna form Fig. 2(b) at several trial 
points; (b) resonant frequencies f1 and f2 versus two (out of six) geometry parameters of the same antenna 
(random designs). The dependencies shown in panel (b) are clearly more linear than those presented in panel 
(a).

 

Fig. 2.  Responses of simulation models of two fidelities (low-fidelity Rc (- - -) and fine model Rf (—)): (a) a 
miniaturized broadband monopole antenna (the model includes the SMA connector), the simulation times for 
Rf and Rc are about 400 s and 50 s, respectively; (b) a dual-band antenna, the Rf and Rc simulation times are 
about 90 s and 25 s, respectively.
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x = x(0) +

n∑
j=1

aj(x(j) − x(0)), with a(x) = X−1(x − x(0))� (4)

In (5), the non-singular n × n matrix X is assembled as

	 X = [x(1) − x(0) . . . x(n) − x(0)]� (5)

The performance and operating vectors are rendered using the regression models F(x) : X → F, and L(x) : X → 
RM, respectively, as

	
F (x) = f (0) +

n∑
j=1

aj(f (j) − f (0)) = f (0) + Xf a(x) = f (0) + Xf X−1(x − x(0))� (6)

	
L(x) = I(0) +

n∑
j=1

aj(I(j) − I(0)) = I(0) + Xja(x) = I(0) + XjX−1(x − x(0)) � (7)

The coefficient vectors a are obtained using (5), whereas the matrices Xf and Xl are defined as.

	 Xf = [f (1) − f (0) . . . f (n) − f (0)], XI = [I(1) − I(0) . . . I(n) − I(0)] � (8) 

Global search
The global search stage will be conducted using the regression models of Sect. Simplex-Based regression 
models  using the low-resolution EM model Rc. As the operating parameters and geometry variables are in 
a weakly nonlinear relationship, F(x) and L(x) are expected to predict antenna performance in the space X, 
especially near the vector set {x(j)}j =0, …, n.

Evaluating design quality
Any optimization procedure requires an appropriate assessment of design quality. Here, it is realized using a 
scalar function UF, which assesses the antenna based on its operating and performance vectors f(x) and l(x). The 
aim is to align the operating vector f(x) with the target ft. To simplify notation, ft stands for the target operating 
figure vector and the target operating frequency vector (cf. Sect. EM-Driven optimization), although they are 
formally different. Yet, in all verification examples of Sect. Algorithm verification and benchmarking, the two 
vectors are identical.

The objective function UF is

	 UF (x) = U(f(x), l(x)) = UL(l(x)) + βF ∥f(x) − fr∥2� (9)

In (9), UL is similar to U but it is computed using the performance vector l(x) instead of the complete antenna 
outputs. For clarification, consider the following examples:

Fig. 4.  Notation used in the context of simplex-based regression models.

 

Scientific Reports |        (2025) 15:11631 5| https://doi.org/10.1038/s41598-025-96253-7

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


• Example 1  • Let l(x) = [l1 … lM]T stand for |S11| at M resonances of an antenna. To improve reflection at oper-
ating frequencies f1 through fM, one may define UL(l(x)) = max{l1,…,lM} (cf. Figure 5(a)).

• Example 2  • Let l = [l1 l2]T be a performance vector of the quasi-Yagi antenna (cf. Figure 5(b)), with l1 being 
the reflection level at antenna operating frequency f1, and l2 being the maximum realized gain. If the goal is to 
enhance the gain at f1, we define UL(l(x)) = –l2.

Figure 5 shows the examples of vectors f and l for a dual-band and quasi-Yagi antennas.
Note that UL does not need to exactly mimic U(x), which is particularly the case when responses are supposed 

to be controlled at specific bandwidths. The main concern of global search is to bring f(x) possibly close to ft. The 
main role is played by the regularization term in (9), with βF being the enforcement factor.

Simplex refinement
The information on antenna operating and performance figures is encoded in F(x) and L(x). We use it to identify 
a location of the optimum according to function UF of (9). We have

	 xtmp = arg minx∈XUF (F (x), L(x))� (10)

where f(x) and l(x) are predicted by F(x) and L(x). As the regression models are the most accurate close to the 
vertices {x(j)}j =0,…,n, the process (10) is restricted to a small neighborhood of the simplex. Solving (10) is subject 
to constraints defined using a(x) of (4)

	

n∑
j=1

aj = 1� (11)

	 −α ⩽ aj ⩽ 1 + α, j = 1, . . . , n� (12)

Here, α > 0 is a small number (e.g., α = 0.2).
In subsequent considerations, we order the vertices regarding ||f(j) – ft||. Thus, x(0) corresponds to the smallest 

distance between f(j) and ft. For the same reason, solving (10) starts from x(0), which is the best available design 
in the alignment between the actual and target parameters. Observe that a(x(0)) = [0 … 0]T. The process of 
generating the candidate design is shown in Fig. 6. xtmp is only accepted if it improves the simplex quality, that 
is, if

	 ∥ftmp − ft∥ < max
{

j ∈ {0, 1, . . . , n} :
∥∥f (j) − ft

∥∥}
� (13)

where ftmp = f(xtmp). If (13) holds, then xtmp replaces x(jworst), in which

	 jworst = argmax{j ∈ {0, 1, . . . , n} :
∥∥f (j) − f

∥∥}� (14)

In case of rejecting xtmp, the simplex is reduced towards x(0) as

	 x(j) ← γx(j) + (1 − γ)x(0) for j = 1, . . . , n � (15)

Fig. 5.  Operating and performance parameters: (a) dual-band antenna of Fig. 2(b) (f = [f1f2]T – resonant 
frequencies; l = [l1l2]T – reflection at f1 and f2) (b) quasi-Yagi antenna (cf. Sect. Algorithm verification and 
benchmarking) (f = f1, l = [l1l2]T – reflection at f1 and gain at its maximum).

 

Scientific Reports |        (2025) 15:11631 6| https://doi.org/10.1038/s41598-025-96253-7

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


Therein, the reduction coefficient is established at γ = 0.5 so that the reduction is carried out to half of the original 
size. It can be shown (details omitted here) that under mild conditions on f(x) (specifically, its continuous 
differentiability), sufficient reduction of the simplex size improves vertex quality by reducing the corresponding 
norms ||f(j) – ft||.

The simplex updating procedure is terminated if any of the following conditions holds:

•	 Operating parameter convergence:

	 ||f(xtmp) − ft|| ≤ Fmax� (16)

Here, the control parameter Fmax is set up in a relaxed manner, only to ensure that the optimum is 
reachable through local tuning. In practice, Fmax should be equal to a fraction (twenty to 50%) of the 
expected bandwidths.

•	 Exceeding computational budget: the number of EM analyses exceeds Nglobal (control parameter);
•	 Sufficient simplex reduction: D = max{j ∈ {1, 2, ..., n} : ∥x(j) − x(0)∥} < Dmin (control parameter).

The last two conditions ensure convergence even if (16) cannot be fulfilled.

Final tuning
The global search stage is concluded upon finding the parameter vector x(0) that satisfies the condition (18) 
(or any of the two convergence-related criteria, cf. Sect. Simplex refinement). The next stage is final parameter 
tuning involving a trust-region (TR) gradient-algorithm106. It is a gradient-based procedure with response 
sensitivities evaluated using finite differentiation (FD)107. The algorithm is terminated if the distance between 
subsequent iteration points ||x(i+1) – x(i)|| < ε(control parameter). To improve the efficiency, FD is replaced by a 
rank-one Broyden formula108,109 if ||x(i+1) – x(i)|| < Mcε, where Mc = 10. For reliability, the local tuning is carried 
out using Rf.

Fig. 6.  Global search: (a) current simplex. The predictions obtained using models F(x) and L(x) are juxtaposed 
against f(x) and l(x) at xtmp obtained by (10). Here, xtmp will be accepted as it improves UL and ||f(x) – ft||; (b) 
corresponding simplex update (illustrated assuming that xtmp is better than x(1) but inferior to x(0)); (c) simplex 
reduction if xtmp was rejected.
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Optimization procedure
The proposed framework combines the components discussed in Sects. Multi-resolution EM analysis through 
Final tuning. The input data includes the parameter space X, EM models Rc and Rf, definitions of the operating 
vector f and performance vector l, the target operating parameter vector ft, as well as the analytical formulation 
of the objective function UL (cf. (11)). Note that X, f, l, Rc, and Rf, are antenna-dependent, whereas ft and UL are 
determined by design specifications.

The control parameters are summarized in Table 1. One needs to emphasize that none of these is critical for 
the algorithm performance, except Fmax (cf. Sect. Simplex refinement for more details). Most parameters control 
the resolution of the optimization process. Figures 7 and 8 provide the flow diagram and the pseudocode of the 
suggested procedure.

Algorithm verification and benchmarking
Our algorithm is comprehensively validated and juxtaposed with benchmark procedures that include bio-
inspired techniques, randomized gradient search, and a simplex-based routine using high-fidelity EM 
simulations. The verification set comprises four microstrip antennas. The primary performance indicators are 
global search capability, design quality, and computational efficiency.

Verification antennas
Consider microstrip antennas shown in Fig.  9110–113. Figure  10 provides essential data concerning substrate 
materials, decision variables, EM models, and the target operating frequency vectors ft. For Antennas I through 
III, the performance vector l (cf. Figure 7) contains the antenna reflection coefficient |S11| at the resonances; for 
Antenna IV, it also includes the maximum in-band gain.

The EM models Rc and Rf are evaluated in CST Microwave Studio. The analysis resolution is adjusted using 
the lines-per-wavelength parameter. Rc is set up to ensure that the EM analysis yields all important response 
features (e.g., resonances), whereas Rf is adjusted based on the grid convergence. As observed in Fig. 10, Rc 
is 2.3 (for Antenna II) to 5.2 (Antenna III) faster than Rf. Clearly, the computational savings being a result of 
incorporating variable resolution models depends on that ratio.

Antennas I, II, and III are optimized for best impedance matching. The associate objective function is defined 
as U(x) = max{k = 1, …, K : |S11(x,f0.k)|}, where K is the number of frequency bands (two for Antenna I, and three 
for Antennas II and III), whereas f0.k is the kth center frequency, cf. target operating frequencies in Fig. 10). 
Antenna IV is optimized for maximum gain G(x,f0) and the impedance matching condition |S11(x)| ≤ − 10 
dB over the ± 50 MHz frequency range F centered at f0 = 2.5 GHz. The corresponding objective function is 
defined as U(x) = –G(x,f0) + βc(x)2, where the penalty coefficient β = 100, and the penalty function is c(x) = max{ 
(max{f ∈ F : |S11(x,f)|} + 10)/10, 0}. The penalty term enforces the impedance matching condition, whereas 
maximization of gain is the primary goal.

Numerical experiment setup
The antennas of Fig.  9 were optimized using our algorithm and several benchmark procedures outlined in 
Table 2. Our framework was run with the default setup, i.e., Fmax = 0.2 GHz, α = 0.2, γ = 0.5, Dmin = 1, ε = 10–3 
and Mc = 10 (cf. Table 2). This allows us to demonstrate that no problem-related algorithm tuning is necessary.

The benchmark methods, PSO, DE, gradient search, a machine learning algorithm employing kriging 
interpolation surrogates, and simplex-based global search using high-resolution EM analysis, have been chosen 
to verify the relevance of the specific features of the proposed approach. For example, a comparison with PSO 
and DE allows us to illustrate computational advantages of our framework over nature-inspired routines. Note 
that both were set up with a low budget for population-based procedures (only 500 and 1000 function calls for 
Version I and II, respectively). These budgets, although low from nature-inspired optimization perspective, are 
considerable for practical EM-based design (two to three days of CPU time per algorithm run on average). The 
inclusion of gradient-based search (Algorithm III) allows us to corroborate multimodality of the considered 
test problems. The machine learning algorithm is incorporated to illustrate the operation of a surrogate-assisted 
approach; here, based on the iterative prediction-correction scheme, where the surrogate model yields predictions 
concerning the location of the optimum design, and it is refined using the accumulated EM simulation data. 
Finally, a comparison with Algorithm IV, which essentially coincides with the proposed one except of being 
executed exclusively using Rf, enables demonstrating the computational benefits of the capitalizing of multi-
resolution models, and investigating whether the employment of Rf early in the search process compromises 
dependability.

Parameter Explanation Value

Fmax Threshold for terminating the global search stage (cf. (16)) Problem-dependent, typically, a fraction of GHz

α Search region extension parameter (cf. (12)) 0.2

γ Simplex reduction ratio (cf. (15)) 0.5

Dmin Termination parameter (global search) 1% of the parameter space size

ε Termination parameter (local tuning) 10–3

Mc Multiplication factor for enabling sensitivity update using Broyden formula 10

Table 1.  Proposed optimization algorithm: control parameters.
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Findings
The results are gathered in Tables 3, 4 and 5, and 6 for Antennas I through IV. Figures 11, 12 and 13, and 14 
illustrate antenna outputs at the designs produced by the global stage and the final outcomes (obtained through 
local tuning) for selected algorithm runs. The numbers in square brackets refer to the total optimization time 
that includes the cost of EM simulations and other components (e.g., surrogate model optimization time in the 
case of Algorithm IV, etc.).

Each technique has been executed ten times for all antenna structures, and the mean cost function values 
along with the running expenses are reported in the tables. An additional performance indicator is the success 
rate, i.e., the fraction of runs where ||f(x*) – ft|| < Fmax, i.e., the actual operating parameters are sufficiently close 
to the target. The results collected in Tables 3, 4, 5, and 6 are analyzed below, and the proposed approach is 
compared to the benchmark methods with respect to computational efficiency, reliability, and design quality.

Reliability of the optimization process can be assessed using the success rate, which is perfect (i.e., 10/10) 
for the proposed framework across the entire antenna test set. This can also be viewed as confirmation of the 
procedure’s global search capabilities. Meanwhile, a low success rate (the average of 4/10) for TR-based search 
(Algorithm III) confirms design task multimodality. Among the benchmark methods, Algorithms IV and V also 

Fig. 7.  Proposed optimization procedure: flow diagram.
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demonstrate 10/10 success, which is expected for Algorithm V because it shares the same operating principles 
with the proposed framework. Algorithm IV is slightly worse (the success rate for Antenna III is 9/10), yet 
it is generally comparable to the proposed approach. The performance of bio-inspired routines is noticeably 
inferior: the average success rate is about 7/10 for Version I (500 objective function calls), and about 9/10 for 
Version II (1,000 objective function calls) for both PSO and DE. This difference is indicative of insufficient 
computational budget assigned to these methods (set to avoid excessive CPU costs as explained earlier). It is 
likely that increasing the budget to, say, 2,000 function calls, would improve PSO/DE performance even further.

In terms of design quality, the proposed method and Algorithm IV are superior to other techniques, which 
demonstrates the relevance of the algorithmic tools employed here, in particular, conducting the global search 
stage using the operating figures. At the same time, the results demonstrate that the speedup achieved by 
employing multi-resolution EM analysis does not jeopardize dependability. Quite the opposite: the mean cost 
function is slightly better for the proposed algorithm than for Algorithm III; however, the differences are not 
significant. In detail, regarding the average value of the objective function, the proposed algorithm provides 
considerably better results than all benchmark techniques. For Antennas I, II, and III, the cost function is 
expressed in a minimax form and refers to the maximum in-band reflection level, which should be as low as 
possible (and lower than − 10 dB). As shown in Tables 3 and 4, and 5, our technique yields objective function 
values better than the benchmark by at least several decibels. Only the single-fidelity simplex-based procedure 
renders comparable results yet still noticeably worse results. For Antenna IV, the goal was the enhancement of 
the end-fire realized gain. In this case, the average results provided by our method are considerably better than 
all benchmark methods except Algorithms IV and V. The former yields slightly better results (by 0.3 dB on 
average), whereas the results of the latter are marginally worse (by 0.2 dB on average).

The efficiency of our algorithm is remarkable. The typical cost corresponds to just 95 high-resolution EM 
analyzes, which is 23% less than for Algorithm IV. This difference demonstrates the role of employing Rc early in 
the search process. Interestingly, the cost is lower than for local tuning (Algorithm III). At first glance, this result 
seems surprising, because the proposed framework contains local tuning as one of its components. However, 
the final parameter tuning within our algorithm starts from a very good initial design produced by the simplex-
based search at the low-resolution level, which greatly lowers the overall expenses. Comparison with PSO and 
DE (Version II with the budgets of 1,000 function calls) reveals dramatic speedup: the savings exceed 90% and 

Fig. 8.  Proposed optimization procedure: pseudocode.
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would be significantly higher should bio-inspired algorithms be run under more realistic budgets. Finally, our 
technique is substantially faster than the machine learning routine (Algorithm IV): the expenses incurred by 
the latter are around 500 EM simulations on average, which is around five times more than for the proposed 
algorithm. Also, except for Antenna IV, Algorithm IV provides much worse values of the objective function. The 
main reason is the necessity building a reasonable surrogate model over the parameter space, which is impeded 
by its large size but also dimensionality-related problems.

The performance of the proposed framework makes it suitable for solving global optimization problems 
under challenging scenarios. Because the search process is conducted using operating parameters, the method 
is predisposed to handle structures for which identification of the operating figures is straightforward (in 
particular, multi-band antennas). Excellent computational efficiency and no need of tuning the procedure for 
a specific problem are additional advantages that make our framework an attractive alternative to conventional 
global optimization techniques such as nature-inspired routines.

It should be emphasized that the proposed algorithm is a global search procedure. As such, it does not require 
any initial design. The optimization process is conducted in the entire parameter space. However, due to the nature 
of the algorithm, there are some potential limitations of the method. In particular, setting up the simplex-based 
regression models is contingent upon the extraction of the operating frequencies of the antenna, which is based 
on random sampling (Sect. Simplex-Based regression models, Fig. 8) and may be problematic for poor-quality 
designs (due to heavily distorted responses). This would lead to the rejection of most of the random observables 
at the sampling stage, consequently increasing the optimization cost. The problem would be pronounced for very 
large search spaces, which are arbitrarily set up without accounting for the engineering insight that might help 
establish reasonable ranges of design variables. On the other hand, a reasonable establishment of the parameter 
space allows for effective mitigation of this issue. In fact, the parameter spaces assumed for Antennas I through 
IV considered in our verification studies are large regarding dimensionality and parameter ranges; still, our 
technique proved to be successful.

Experimental validation
The designs optimized using our algorithm were manufactured and experimentally validated to provide a 
supplementary illustration. The specific designs considered here are those included in Figs.  11(a) (Antenna 
I), 12(a) (Antenna II), 13(a) (Antenna III), and 14(a) (Antenna IV). Figure  15 shows the prototypes and a 
comparison between EM analysis and measurements. In the case of Antenna IV, the measured end-fire gain is 
also included as this parameter was subject to optimization for this structure. Figure 16 shows the measurement 
setup for Antenna IV in the anechoic chamber. The setup includes a double-rigged horn antenna (Geozondas 
GZ0226DRH) and Anritsu VNA (MS4644B). The alignment between EM simulation and measurements is 
satisfactory. Minor discrepancies can be attributed to manufacturing inaccuracies.

Fig. 9.  Verification test cases: (a) Antenna I (dual-band dipole)110, (b) Antenna II (triple-band dipole)111, (c) 
Antenna III (triple-band patch with defected ground; ground slot shown using light gray)112, (d) Antenna IV 
(quasi-Yagi with integrated balun, shown using light gray)113.
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Conclusion
In this research, we introduced an innovative methodology for global antenna optimization. Our technique 
employs variable-resolution EM models, simplex-based surrogates, and gradient-based final tuning. The 
presented framework underwent numerical verification involving four antennas and several benchmark 
procedures. The results demonstrate the ability of the proposed technique to allocate operating frequencies close 
to the targets in all algorithm runs. The quality of results, measured by the achieved objective function value, 
is competitive with the benchmark. Computational efficiency is remarkable, with the average running costs 
corresponding to only 95 EM simulations of the antenna at the high-resolution level. These costs represent over 
23% savings over the simplex-based procedure using high-resolution EM simulations and 91% savings regarding 
the nature-inspired optimization. Another advantage of our approach is simple handling owing to a limited 
number of control parameters and no need for problem-specific algorithm tuning.

Algorithm Name Outline

This study
Variable-resolution simplex-based global 
search with gradient-based fine tuning (Sect. 
Global optimization with simplex regressors 
and variable-resolution models)

Control parameters: Fmax = 0.2 GHz, α = 0.2, γ = 0.5, Dmin = 1, ε = 10–3 and Mc = 10 (cf. Table 1)

I Particle swarm optimizer (PSO) Swarm size N = 10, number of iterations: 50 (Version I) and 100 (Version II); conventional parameter setup (χ = 0.73, 
c1 = c2 = 2.05);

II Differential evolution (DE) Population size N = 10, number of iterations set to 50 (Version I) and 100 (Version II); conventional parameter setup 
(CR = 0.5, F = 1)114;

III Trust-region (TR) gradient-based optimizer 
[107]

Random initialization, Jacobian matrix estimated by finite differentiation, termination: convergence in argument 
[115]

IV Machine-learning procedure
Algorithm setup: Initial surrogate set up to ensure relative RMS error less than 20% (max. number of training samples 
limited to 400); the algorithm operates in the original parameter space (no dimensionality reduction); infill criterion: 
minimization of the predicted objective function; surrogate model optimization using the particle swarm optimizer

V Simplex-based global search with gradient-
based fine tuning Algorithm setup: the same as for the proposed approach, except that the search process is conducted using Rf

Table 2.  Algorithm setup (proposed and benchmark).

 

Fig. 10.  Important parameters of antennas of Fig. 9.
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Conducting the search process using the operating parameters constitutes a potential limitation of the 
proposed technique. In particular, setting up the simplex-based regression models requires extraction of the 
operating frequencies, which may be problematic for poor-quality designs (due to heavily distorted responses). 
This would lead to rejecting the majority of random observables at the sampling stage, consequently increasing 
the optimization cost. Nonetheless, a reasonable establishment of the parameter space through engineering 
insight allows for effective mitigation of this issue. Given the aforementioned reservation, the suggested 
framework might be considered an attractive and cost-efficient alternative to available optimization methods, 
including bio-inspired and machine-learning algorithms.

Method This work

PSO (Algorithm I) DE (Algorithm II)
TR algorithm 
(Algorithm 
III)

Machine learning with 
kriging surrogates 
(Algorithm IV)

Simplex-based 
procedure using 
high-resolution EM 
model (Algorithm V)50 iterations 100 iterations 50 iterations 100 iterations

Mean cost function 
[dB]& 7.6 6.1 6.8 6.0 6.9 –1.1 7.9 7.4

Computational cost$ 115.1
[4.8 h]

500
[20.8 h]

1,000
[41.7 h]

500
[20.8 h]

1,000
[41.7 h]

138.4
[5.8 h]

583.3
[24.5 h]

144.3
[6.0 h]

Success rate# 10/10 9/10 10/10 8/10 10/10 1/10 10/10 10/10

Table 6.  Results for antenna IV. &Realized gain at 2.5 GHz. $Equivalent number of high-resolution model 
evaluations. The numbers in brackets refer to the total optimization time in hours. #Number runs for which 
||f(x*) – ft|| < Fmax.

 

Method This work

PSO (Algorithm I) DE (Algorithm II)
TR algorithm 
(Algorithm 
III)

Machine learning with 
kriging surrogates 
(Algorithm IV)

Simplex-based 
procedure using 
high-resolution EM 
model (Algorithm V)50 iterations 100 iterations 50 iterations 100 iterations

Mean cost function 
[dB] –20.7 –12.3 –14.2 –13.5 –15.1 –12.1 –11.8 –17.5

Computational cost$ 81.1
[4.1 h]

500
[25.3 h]

1,000
[50.6 h]

500
[25.3 h]

1,000
[50.6 h]

125.4
[25.3 h]

471.6
[24.1 h]

110.7
[5.6 h]

Success rate# 10/10 6/10 8/10 7/10 9/10 4/10 9/10 10/10

Table 5.  Results for antenna III. $Equivalent number of high-resolution model evaluations. The numbers in 
brackets refer to the total optimization time in hours. #Number runs for which ||f(x*) – ft|| < Fmax.

 

Method This work

PSO (Algorithm I) DE (Algorithm II)
TR algorithm 
(Algorithm 
III)

Machine learning with 
kriging surrogates 
(Algorithm IV)

Simplex-based 
procedure using 
high-resolution EM 
model (Algorithm V)50 iterations 100 iterations 50 iterations 50 iterations

Mean cost function 
[dB] –20.1 –10.8 –13.8 –12.1 –13.6 –7.8 –13.5 –17.5

Computational cost$ 122.0
[2.7 h]

500
[11.1 h]

1,000
[22.3 h]

500
[11.1 h]

1,000
[22.3 h]

105.8
[2.4 h]

470.0
[10.7 h]

154.0
[3.4 h]

Success rate# 10/10 5/10 8/10 6/10 8/10 4/10 10/10 10/10

Table 4.  Results for antenna II. $Equivalent number of high-resolution model evaluations. The numbers in 
brackets refer to the total optimization time in hours. #Number runs for which ||f(x*) – ft|| < Fmax.

 

Method This work

PSO (Algorithm I) DE (Algorithm II)
TR algorithm 
(Algorithm 
III)

Machine learning with 
kriging surrogates 
(Algorithm IV)

Simplex-based 
procedure using 
high-resolution EM 
model (Algorithm V)50 iterations 100 iterations 50 iterations 100 iterations

Mean cost function 
[dB] –30.9 –18.2 –19.3 –21.5 –22.8 –13.5 –20.7 –25.3

Computational cost$ 65.3
[1.7 h]

500
[12.8 h]

1,000
[25.6 h]

500
[12.8 h]

1,000
[25.6 h]

84.2
[2.2 h]

457.8
[11.9 h]

82.9
[2.1 h]

Success rate# 10/10 9/10 10/10 9/10 9/10 6/10 10/10 10/10

Table 3.  Results for antenna I. $Equivalent number of high-resolution model evaluations. The numbers in 
brackets refer to the total optimization time in hours. #Number runs for which ||f(x*) – ft|| < Fmax.
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Fig. 12.  Antenna II: frequency characteristics at the designs found using our algorithm for representative runs: 
(a) run 1, (b) run 2, (c) run 3, (d) run 4.

 

Fig. 11.  Antenna I: frequency characteristics at the designs found using our algorithm for representative runs: 
(a) run 1, (b) run 2, (c) run 3, (d) run 4.
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Fig. 14.  Antenna IV: frequency characteristics at the designs found using our algorithm for representative 
runs: (a) run 1, (b) run 2, (c) run 3, (d) run 4.

 

Fig. 13.  Antenna III: frequency characteristics at the designs found using our algorithm for representative 
runs: (a) run 1, (b) run 2, (c) run 3, (d) run 4.
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Fig. 15.  Prototypes of Antennas I through IV and comparison of EM analysis (gray) and measurements 
(black): (a) Antenna I, (b) Antenna II, (c) Antenna III, (d) Antenna IV.

 

Scientific Reports |        (2025) 15:11631 16| https://doi.org/10.1038/s41598-025-96253-7

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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