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Abstract: The authors introduce a methodology for fast multi-objective design optimisation of miniaturised microwave
couplers. The approach exploits the surrogate-based optimisation paradigm with an underlying low-fidelity model
constructed from an equivalent circuit of the structure under consideration, corrected through implicit and frequency
space mapping. A fast prediction tool obtained this way is subsequently optimised by a multi-objective evolutionary
algorithm to identify an initial approximation of the Pareto front, that is, a set of designs representing the best possible
trade-offs between conflicting objectives. The correction/optimisation of the surrogate is then iterated by design space
confinement and segmentation based on a Pareto set representation obtained thus far in the process. This aims at
improving the surrogate model accuracy in the vicinity of the Pareto-optimal solutions. The technique is demonstrated
by two design examples of compact rat-race couplers. Experimental validation is also provided.
1 Introduction

The design of compact microwave passive circuits for modern
wireless communication systems requires handling of several,
often conflicting objectives, including size, bandwidth (BW), and
phase response [1–3]. For space-limited applications, finding an
appropriate trade-off between structure size and its electrical
performance is of particular interest. At the same time, as a result
of highly compressed layouts (such as in fractal-shaped couplers
[4], hybrids incorporating compact microstrip resonant cells [5], or
circuits modified by defected ground structures [6]), a reliable
evaluation of the miniaturised components cannot be realised by
means of simplified representations, for example, equivalent
circuits [7], because such models are incapable of adequately
accounting for electromagnetic (EM) cross-couplings inside and
between the elementary cells of the structure [3]. Accurate analysis
can only be achieved by means of full-wave EM simulations.
Unfortunately, high-fidelity EM simulations of compact circuits
are CPU intensive. This high evaluation cost renders conventional
design strategies (e.g. parameter sweeps [8], gradient-based search
[9], global optimisation using population-based metaheuristics
[10]) impractical.

These difficulties can be alleviated to some extent by the utilisation
of adjoint sensitivities [11], which may lead to a considerable cost
reduction when using gradient methods, as demonstrated in the case
of microwave filters [12] or antennas [13]. Another approach that
has gained considerable attention in recent years is surrogate-based
optimisation (SBO) [14–18]. In SBO, the key idea behind reducing
the cost of the simulation-driven design process is that of replacing
the direct optimisation of the expensive high-fidelity EM model by
the iterative enhancement and re-optimisation of its computationally
cheap representation (a surrogate). Probably the most popular
method of this kind in microwave engineering is space mapping
(SM) [14, 19, 20]. Many SM applications take advantage of
available equivalent circuit models, for example, in the design of
filters [21], multiplexers [22], or impedance transformers [15]. Other
popular SBO methods include adaptive response correction [23],
manifold mapping [24], shape-preserving response correction [25],
adaptively adjusted design specifications [26], and multi-fidelity
algorithms [27]. Some of these methods and their modifications
have been developed to address issues related to expensive
low-fidelity models (e.g. simplified representations of antenna
structures are normally constructed from coarse-discretisation EM
simulations [28, 29]).

Compact microwave components are typically developed exploiting
novel topologies so that the relationship between the structure size and
its electrical performance is difficult to predict. Sufficient insight into
these relationships as well as possible trade-offs between various
design objectives can be obtained through multi-objective
optimisation [28]. The outcome of a multi-objective optimisation
process is a set of alternative designs representing the best possible
trade-offs between conflicting objectives (referred to as a Pareto set),
which – for compact microwave structures – would often be the
circuit size and one or more electrical performance parameters [29,
30]. The most popular solution approaches to generating
Pareto-optimal designs are population-based metaheuristics [10],
including evolutionary algorithms [31], and particle swarm
optimisers [32]. Clearly, direct simulation-driven metaheuristic
optimisation of compact circuits is not possible due to the excessive
computational cost related to the number of objective function
evaluations required in the process (typically, thousands, tens of
thousands, or more).

In this paper, we propose an efficient procedure for multi-objective
EM-driven design of compact microwave couplers. Our approach
utilises fast equivalent circuit models enhanced by frequency scaling
and implicit SM [14, 20, 33, 34], a multi-objective evolutionary
algorithm (MOEA), as well as iterative surrogate model refinement
involving design space confinement and segmentation (based on the
currently known Pareto set representation). These measures allow us
to overcome the problem of the poor quality of an equivalent circuit
model: although the generalisation capability of the initial
(space-mapping-corrected) surrogate is relatively poor, it is gradually
improved by focusing model correction (mapping update) in the
region containing the Pareto-optimal solution, with the simultaneous
restriction of the search space to that region. An important
component of our design process is the appropriate handling of
multiple objectives, which is partially built into the selection
procedure of the evolutionary algorithm. Our technique is verified by
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two design examples of compact microwave couplers, that is, a rat-race
coupler (RRC) with folded transmission lines (TLs), and a RRC with
shunt-stub-based TLs. The proposed method is also validated by
physical measurements of the fabricated RRC prototypes extracted
from the Pareto set pertaining to one of the available examples.
2 Design optimisation methodology

In this section, we formulate the multi-objective optimisation
problem, and describe the main components of the proposed
design procedure. We also explain our way of handling the design
objectives, as well as the space-mapping correction of the
low-fidelity model. A discussion of the overall flow of the
optimisation process is also provided.

2.1 Multi-objective optimisation problem formulation

Let Fk(Rf(x)), k = 1,…, Nobj, denote the design criteria for the
problem at hand. Multi-objective optimisation aims at identifying a
representation of a so-called Pareto-optimal set XP that contains
non-dominated designs such that for any x ∈ XP, there is no other
design y for which the relation y < x is satisfied (y < x, i.e. y
dominates over x, if Fk(Rf(y))≤ Fk(Rf(x)) for all k = 1,…, Nobj, and
Fk(Rf(y)) < Fk(Rf(x)) for at least one k) [10, 35]. The elements of
XP represent the best possible trade-offs between the (usually
conflicting) objectives Fk.

2.2 Design objectives for compact microwave couplers

The design of microwave couplers typically involves multiple
objectives that are hard to obtain for miniaturised structures.
Traditionally, these include: matching of the input port, obtaining
half-power at the output ports with a certain phase shift, and
isolating the remaining port. In the case of conventional couplers,
the above objectives are satisfied exclusively at the centre
frequency. For compact structures, however, it is crucial to
consider a wider range of frequencies as the BW of a compact
coupler tends to be narrowed-down with smaller and smaller size
of the circuit. Thus, our main goal is to find the best possible
trade-offs between the size of the compact coupler and its BW,
while ensuring its proper operation in the vicinity of the centre
frequency. Therefore, we formulate two primary design objectives:

† F1 – BW maximisation (the BW is defined as the range of
frequencies for which both |S11| and |S41| are below –20 dB),
† F2 – size minimisation (layout area).

At the same time, we consider two auxiliary objectives to ensure a
proper operation of the coupler at hand:

† F3 – the power split error between the output ports at the operating
frequency (defined as | |S21| – |S31| |),
† F4 – the BW symmetry (defined as the ratio between the wider and
narrower parts of the previously-defined BW with respect to the
operating frequency).

The primary objectives are handled explicitly by the
multi-objective optimisation algorithm (cf. Section 2.3). The other
two objectives are treated as constraints, and are incorporated into
the selection mechanism of the evolutionary algorithm.

2.3 Multi-objective evolutionary algorithm primary and
auxiliary objectives

The main optimisation engine utilised in this work is a MOEA. To
make the optimisation process computationally feasible, MOEA
cannot directly handle the CPU-intensive high-fidelity EM model of
the structure (denoted as Rf) as the typical number of objective
function evaluations in such as a process is in thousands, tens or even
480
hundreds of thousands. Instead, the algorithm optimises the surrogate
model of the structure (termed Rs), which is a fast representation of Rf
(typically, an equivalent circuit model). The surrogate is iteratively
refined so that it gradually becomes a better approximation of the
high-fidelity model, at least in the vicinity of the Pareto front.

Here, we use a rather standard MOEA implementation, with
fitness sharing, mating restrictions and Pareto-dominance
tournament selection [10], as the mechanisms pushing the
solutions towards the Pareto front. Formally, MOEA works with
all four objectives (both primary and auxiliary, as described in
Section 2.2), however, we are only interested in that part of the
Pareto front for which the latter objectives satisfy certain
thresholds (cf. Section 3.1). These conditions are enforced at the
selection stage of the evolutionary algorithm, where the fitness f (x)
value assigned to a solution x (based on its Pareto ranking and
fitness sharing) is reduced using the following penalty term

f (x) � f (x)−
∑2
k=1

bk max
(Fk+2(Rf (x))− Fk+2.max)

Fk+2.max, 0

( )2
(1)

where F3.max and F4.max are the threshold values for the power split
error and BW symmetry, respectively; penalty factors βk are set
experimentally. Due to (1), the solutions that violate given
thresholds for the auxiliary objectives tend to be eliminated from
the population processed by MOEA, so that towards the end of the
optimisation task, the majority of the population satisfies these
conditions.

This approach is significantly more efficient than the explicit
handling of all four objectives. In the latter case, the Pareto front
would be a three-dimensional manifold in the feature space. The
acceptable part of it (i.e. the one containing solutions that satisfy the
aforementioned conditions regarding the power split and the BW
symmetry) would be a one-dimensional subset that could not be
appropriately represented in the Pareto set produced by MOEA (even
for relatively large population size of, say, a few hundred individuals).

2.4 Low-fidelity model correction design space
confinement

In this work, the surrogate model Rs of the structure at hand is
constructed by correcting its low-fidelity model (denoted Rc) using
frequency and implicit space mapping [14, 20, 33, 34]. This
particular choice of possible SM transformations is the result of
initial experiments as well as the fact that a frequency shift is one
of the major types of misalignment between the equivalent circuit
model Rc and the high-fidelity model Rf. The surrogate is defined as

Rs(x) = Rc.F(x; f , p) (2)

where Rc.F is a frequency-scaled low-fidelity model (an equivalent
circuit), while f and p are frequency space mapping and implicit
space mapping parameters, respectively.

The frequency and implicit SM are implemented as follows. Let
Rc(x) = [Rc(x, ω1) Rc(x, ω2)… Rc(x, ωm)]

T, where Rc(x, ωj) is an
evaluation of the circuit model at a frequency ωj. Then, Rc.F(x;f, p) =
[Rc(x, f0 + ω1·f1, p)… Rc(x, f0 + ωm·f1, p)]

T, with f0 and f1 being
the frequency scaling parameters. Here, the implicit SM
parameters p are dielectric permittivity and substrate thickness of
the microstrip components of the circuit corresponding to p = [ɛ1
ɛ2 ɛ3… h1 h2 h3…]T (see, e.g. Fig. 1a). The assignment of these
parameters to specific parts of the equivalent circuit is guided by
engineering experience. The SM parameters are extracted to
minimise misalignment between Rs and Rf in the norm sense:

[f ∗, p∗] = argmin
f ,p

∑
x[XB

||Rf (x)− Rc.F(x; f , p)|| (3)

Here, XB denotes a set of training points. There are two types of
training sets utilised to construct the surrogate. The parameter
extraction carried out to obtain the initial surrogate model Rs

(0) is
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Fig. 1 Compact RRC

a Equivalent circuit (low-fidelity model) of the compact RRC of Section 3.1.
Highlighted regions correspond to different sets of implicit SM parameters p, i.e.,
permittivity and thickness of the substrate (cf. Section 2.4)
b Return loss and isolation against frequency for variable-fidelity models of a compact
RRC of Section 3.1 (low-fidelity (– –), surrogate (o), and high-fidelity (—) models) at a
certain design x (other than at which the surrogate was extracted)

Fig. 2 Flowchart of the multi-objective design procedure

Fig. 3 Design case 1: Layout of the compact RRC composed of folded TLs
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executed using the star-distribution base set [36, 37] allocated in the
original design space. Typically, surrogate model accuracy is limited
because lower/upper bounds are normally set up to be wider rather
than narrower in order to make sure that the entire Pareto front can
be captured within the prescribed bounds. After MOEA
optimisation of Rs

(0), the design space is confined by narrowing the
bounds so that the reduced space only contains the Pareto set and
its small vicinity. Due to this, the next surrogate model – with the
parameter extraction process based on the Rf points sampled along
the Pareto set found so far – is expected to be more accurate. If
necessary, a segmentation process can also be utilised, where the
design space is divided into two or more compartments with
respect to the dimension showing the largest variations in the
structure’s response. Subsequently, the parameter extraction
process is executed separately in each compartment. The entire
process is automated through appropriate implementation.

Fig. 1b shows exemplary responses (here, only |S11| and |S41| are
shown for clarity) of the high- and low-fidelity models at a selected
design x, as well as the response of the surrogate model Rs

(1) at the
same design. It can be observed that despite of relatively large
discrepancies between the low- and high-fidelity models, both the
approximation and generalisation capability of the surrogate is
Fig. 4 Design case 1: Pareto set representations found by means of

a Complete multi-objective optimisation procedure of Section 2
b Its limited version without design space confinement for surrogate model parameter
extraction. Markers denote the surrogate model (×), and high-fidelity model (○)
responses. The latter are included for verification purposes
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Table 1 Design case 1: selected optimisation results

Design variables, mm Objectives Miniaturisationa, %

l1 l2 l3 d W BW, MHz RRC layout area, mm2

4.82 14.67 22.20 0.800 0.867 267 538 88.2
4.43 14.71 21.76 0.784 0.849 262 518 88.6
4.34 14.41 21.32 0.768 0.832 258 498 89.0
4.42 13.39 22.03 0.746 0.808 228 477 89.5
4.35 13.19 21.99 0.724 0.784 206 458 89.9
4.36 12.73 22.01 0.702 0.761 176 438 90.3
4.29 12.15 22.09 0.681 0.738 130 417 90.8
4.16 11.79 21.89 0.661 0.716 56 397 91.2
4.05 11.19 21.87 0.641 0.695 0 378 91.7

aWith respect to conventional RRC (size: 47.5 × 95.5 = 4536 mm2)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

good. Note that Rs
(1) is created in the vicinity of the initial Pareto front

approximation found by the evolutionary algorithm.

2.5 Optimisation algorithm

The overall flow of the multi-objective optimisation procedure is as
follows (the initial training set XB

(0) is a star-distribution set [36, 37]):

i. Set iteration index i = 0.
ii. Evaluate Rf at the training set XB

(i).
iii. Perform parameter extraction (3) to find the surrogate Rs

(i).
iv. Optimise Rs

(i) using MOEA to find a Pareto set.
v. Sample the Pareto set to get a new training set XB

(i+1).
vi. Confine/segment the design space.
vii. If max{x ∈ XB

(i) : |Rf(x)−Rs
(i)(x)||} < ɛ then| END; else set

i = i + 1 and go to 2.

The termination condition measures the accuracy of the current
surrogate model along the Pareto front representation obtained in a
given iteration. Good accuracy indicates convergence to a true
front, which terminates the optimisation process. The flowchart of
the multi-objective design optimisation process is shown in Fig. 2.

It should be mentioned that it is also possible to exploit adjoint
sensitivities (if available) to refine the Pareto front starting from its
initial approximation obtained in the first execution of Step 4 of the
algorithm. To this end, the front would have to be sampled and the
respective designs would have to be tuned through constrained
gradient search (e.g. by improving one of the objectives without
degrading the remaining ones). On the other hand, such a procedure
would only produce a discrete representation of the Pareto front at a
cost comparable with that of the proposed algorithm. The benefit
would be better precision in identifying the Pareto-optimal designs.
Fig. 5 Design case 1: S-parameters vs. frequency for the selected designs
corresponding to the layout areas of

a 538 mm2

b 458 mm2

c 397 mm2. Black and grey curves represent the performance of a given compact
coupler, and a conventional one, respectively. The latter has been designed for
comparison purposes
3 Case studies

In this section, we use the design methodology of Section 2 to
perform a fast multi-objective optimisation of compact microwave
couplers. To demonstrate the application of the proposed approach,
we consider two design examples, namely, a RRC with folded
TLs, and an RRC with shunt-stub-based TLs. For each case study,
a set of nine alternative design solutions is shown, illustrating the
best possible trade-offs between conflicting objective of size and
BW. Note that the miniaturisation level of each design solution is
calculated with respect to a conventional equal-split RRC of
rectangular shape [5] that occupies 4536 mm2 with external
dimensions of 47.5 mm × 95.5 mm.

3.1 Design case 1: compact RRC with folded TLs

The first design example is an RRC, whose footprint is simply
miniaturised by folding each of its quarter-wave TLs to the interior
(see Fig. 3). We choose Taconic RF-35 dielectric substrate (ɛr =
3.5, h = 0.762 mm, tanδ = 0.018) for circuit implementation. The
IET Microw. Antennas Propag., 2016, Vol. 10, Iss. 5, pp. 479–486
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Fig. 6 Design case 2: Layout of the compact RRC with shunt-stub-based
TLs [1]
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compact coupler of Fig. 1a is intended to operate in the vicinity of 1
GHz frequency. The structure is characterised by five independent
design parameters: x = [l1 l2 l3 d w]T, with w0 fixed to 1.7 mm to
ensure a 50-ohm input impedance. The footprint of this coupler is
taken as an A × B rectangle, where A = 6w + 5d and B = 8w + 7d +
l1 + l2 + l3. Lower/upper bounds l/u of the solution space are given
by: l = [2 10 17 0.2 0.5]T and u = [8 16 25 1.2 1.5]T. All the above
dimensions are in millimetres.

The high-fidelity EM model Rf of the coupler is implemented in
CST Microwave Studio [38], and contains approximately 220,000
mesh cells, which translates into about 15 min of simulation time
per design. The low-fidelity model Rc of the coupler under
discussion is an equivalent circuit implemented in Agilent ADS
[39]. The schematic diagram of this circuit is shown in Fig. 1a. It
should be noted that the substrate of the low-fidelity model has
been divided into three sections, for which a set of implicit
parameters (the substrate height hk, and permittivity ɛk, k = 1, 2, 3)
can be defined independently as explained in Section 2.4.

The values of the auxiliary objectives defined in Section 2.2 are to
be kept below F3.max = 0.2 dB, and F4.max = 1.5 for power split error
and BW symmetry, respectively. Note that F3 = 0 dB corresponds to
a perfect (equal-split) power division between the output ports,
whereas F4 = 1 represents perfect symmetry around the centre
frequency (here, 1 GHz). Penalty factors of (1) are set to 10.

The RRC of Fig. 3 has been optimised in a multi-objective sense
using the technique introduced in Section 2. The final Pareto set has
been obtained in three iterations of the proposed procedure. An
inspection of Fig. 4a reveals that the differences between the
surrogate and high-fidelity model samples allocated along the front
are minor (below 15 MHz BW-wise). For comparison purposes,
the same example has been optimised without the iterative
Fig. 7 Design case 2: Equivalent circuit (low-fidelity model) of the compact
RRC of Fig. 6

IET Microw. Antennas Propag., 2016, Vol. 10, Iss. 5, pp. 479–486
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confinement of the design space (cf. Section 2.4, stage 6). The
surrogate model used in this process is built using star-distribution
training points allocated in the original design space. As a result,
the final Pareto set of Fig. 4b, corresponding to the surrogate model,
illustrates much larger discrepancies in comparison with its
Fig. 8 Design case 2

a Pareto set representation with the accuracy of the surrogate (×) and high-fidelity (○)
model; S-parameters vs. frequency for the selected designs of the compact RRCs
of: a 841 mm2

b 534 mm2

c 353 mm2 areas (black lines). Grey lines represent the response of a conventional
coupler
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Table 2 Design case 2: selected optimisation results

Design variables, mm Objectives Miniaturisationa, %

w d1 d2 l1 l2 l3 l4 BW, MHz RRC layout area, mm2

0.61 0.3 2.90 13.16 13.16 1.55 0.83 258 841 81.5
0.55 0.3 2.60 13.50 13.50 3.85 1.71 232 763 83.2
0.50 0.27 2.07 15.44 15.44 6.11 3.03 208 703 84.5
0.45 0.2 2.07 14.52 14.52 9.09 2.87 184 604 86.7
0.39 0.2 1.93 14.23 14.23 12.57 3.09 156 534 88.2
0.37 0.17 1.71 14.51 14.51 14.36 8.11 143 483 89.4
0.35 0.15 1.26 15.00 15.00 14.85 6.21 114 409 91.0
0.31 0.15 1.20 15.53 15.53 15.37 5.78 90 387 91.5
0.28 0.15 1.07 15.71 15.71 15.55 6.02 36 353 92.2

aWith respect to conventional RRC (size: 47.5 × 95.5 = 4536 mm2)

Fig. 9 Comparison of the simulated (black curves) and measured (grey
curves) frequency characteristics of the selected coupler designs with areas of

a 538 mm2

b 458 mm2

c 397 mm2
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high-fidelity counterpart than previously (the worst case shows more
than 100 MHz BW dissimilarity). These results indicate that the
iterative confinement of the solution space for enhanced parameter
extraction significantly increases the accuracy of the
space-mapping-corrected surrogate. Selected optimisation results,
including final designable parameters, and their corresponding
figures of merit (BW, size, and miniaturisation), are listed in Table 1.
Fig. 5 shows the S-parameter plots for three selected designs (two
extreme points and the middle point from Table 1), compared with
the transmission characteristics of a conventional RRC. One can
observe that both the miniaturisation and design method contribute to
discrepancies in the performance between the conventional coupler
and its compact versions. More specifically, the former clearly leads
to the BW degradation (especially for more and more compact
designs, as in Figs. 5b and c), while the latter results in a shift of the
|S11| and |S41| minimums (the exact location of the |S11| and |S41|
minimums is not controlled by the proposed method).

The obtained results show that the design objectives are indeed
conflicting. In particular, the overall footprint of the structure with
the broadest BW of 267 MHz simultaneously exhibits the largest
footprint of 538 mm2. The smallest coupler design that fulfils the
BW criterion is 397 mm2 (which translates into a 56-MHz BW). It
should be emphasised that the RRC BW and footprint vary by 79
and 26% along the Pareto front, respectively. Moreover, it is
noteworthy that all optimal designs satisfy the prescribed
constraints concerning the power split error and BW symmetry.

The computational cost of the entire design process is very low,
especially considering the complexity of the multi-objective
optimisation problem. Construction of the initial surrogate model
requires 11 Rf samples (star distribution), whereas each algorithm
iteration requires about 10 Rf samples. Thus, the total number of
high-fidelity model evaluations is around 40. The overhead related
to the parameter extraction process and surrogate model
optimisation using MOEA is less than 50% of the overall cost.
The aggregated cost of the proposed design procedure corresponds
to less than 80 evaluations of Rf (about 20 h of CPU time). The
multi-objective optimisation method introduced in this work has
been compared with conventional MOEA optimisation based on
direct evaluations of high-fidelity coupler model. Assuming a
population of 500 individuals and 50 generations of MOEA, the
estimated cost of direct multi-objective optimisation of the
high-fidelity model Rf is over 260 days of the CPU time. This
estimation is based on the number of objective function
evaluations required by MOEA optimisation of the response
surface approximation model. The overall CPU time required by
our methodology is considerably lower, which means that
comprehensive information on the miniaturised coupler may be
obtained without involving excessive computational resources.

3.2 Design case 2: compact RRC with shunt-stub-based
TLs

The second design example, shown in Fig. 6, is an RRC built from
folded TLs loaded by shunt, T-shaped stubs. We use here the same
dielectric substrate and design specifications as in the previous
484
example. The structure is described by seven design parameters:
x = [w d1 d2 l1 l2 l3 l4]

T. The width of the feeding line has been
fixed to w0 = 1.7 mm to ensure a 50-ohm input impedance. The
IET Microw. Antennas Propag., 2016, Vol. 10, Iss. 5, pp. 479–486
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area of this coupler is given by A × B, where A = 32w + 24d1 + 7d2
and B = 3w + d2 + l1. Lower/upper bounds l/u of the solution
space pertaining to this example are: l = [0.2 0.1 0.1 10 10 0.1 0.1]T

and u = [1.5 1.2 4 20 20 20 20]T. All the above dimensions are in
millimetres.

The low-fidelity model Rc representing the coupler of Fig. 6 is an
equivalent circuit implemented in Agilent ADS [39]. Its schematic
diagram is illustrated in Fig. 7. The high-fidelity EM model Rf of
the given coupler is implemented in CST Microwave Studio [38],
and contains about 350,000 mesh cells, which translates into 25
min of simulation time per design. The auxiliary objectives used
here have the same threshold level values as in the previous example.

We have executed the proposed method to perform a
multi-objective optimisation of the coupler at hand, obtaining the
final Pareto set in three iterations. The results shown in Fig. 8a
indicate that the differences between the responses of the surrogate
and high-fidelity models are rather small (maximal discrepancy is
below 25 MHz BW-wise). Please note that the average
misalignments are slightly elevated when compared with the
previous example. This can be explained by the much more complex
geometry of the given coupler, which results in less accurate
low-fidelity model. Table 2 contains detailed data on the alternative
design solutions, which illustrate the non-commensurable nature of
the investigated dependence of size and BW. Transmission
characteristics of the selected designs are shown in Figs. 8b–d. The
performance of the conventional coupler has been added as a
reference. As previously, the largest coupler with a footprint of 841
mm2 exhibits the broadest BW of 258 MHz, while the smallest one
(353 mm2 area) features a BW of only 36 MHz. The
narrowing-down of the BW is a direct result of miniaturisation,
whereas shifting of the |S11| and |S41| minimums can be attributed to
the design method itself. Please note that each design solution
satisfies the performance constraints as defined beforehand. The
variation of the respective design objectives along the Pareto front is
59% for the area, and 86% for the BW.

The overall cost of the design process is about 90 Rf simulations,
which corresponds to around 38 hours of CPU time. A detailed cost
breakdown is the following: 15 Rf evaluations for the construction of
the initial surrogate model, and a total of 30 Rf simulations for its
further refinement during the optimisation process (three algorithm
iterations), as well as about 50 percent overhead with respect to Rf
simulations for parameter extraction and MOEA optimisation of
the surrogate.
4 Experimental verification

The selected Pareto-optimal designs of the coupler of Section 3.1,
namely, (i) 538 mm2, (ii) 458 mm2, and (iii) 397 mm2, have been
fabricated (see Table 1 for detailed dimensions as well as
corresponding objective function values). It should be noted that,
in contrast with, for example, miniaturised couplers based on
compact microstrip resonant cells [5, 40], our folded design is
rather insensitive to fabrication inaccuracies. The manufactured
RRCs have been measured and compared against EM simulations
(see Fig. 9). The difference between the BWs of the selected
couplers is 17, 19, and 38 MHz for the first, second, and third
design, respectively. Overall, the measurement results are in good
agreement with theoretical predictions. Slight discrepancies arise
from the simplified EM model of the structures that lacks
connectors, and uses isotropic dielectric substrates.
5 Conclusion

In this work, a procedure for fast multi-objective design optimisation
of miniaturised microwave circuits is proposed. The main elements
of our methodology, critical for its computational efficiency,
include a combination of equivalent circuit modelling, SM,
evolutionary algorithms, as well as iterative design space
confinement and segmentation. Constraining the region of the
design space in which the surrogate model is updated only to the
IET Microw. Antennas Propag., 2016, Vol. 10, Iss. 5, pp. 479–486
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vicinity of the current Pareto front representation allows us to
maintain good approximation and generalisation capabilities of the
model. Consequently, the algorithm is able to generate a reliable
representation of the Pareto-optimal designs representing the best
possible trade-offs between the conflicting objectives for the
structure under consideration. The procedure has been
demonstrated using two numerical examples of compact RRCs.
The selected designs have been fabricated and measured,
confirming the correctness of the proposed approach.
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