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Rapid yield optimization 
of miniaturized microwave 
passives by response features 
and variable‑fidelity EM 
simulations
Anna Pietrenko‑Dabrowska 1* & Slawomir Koziel 1,2

The operation of high‑frequency devices, including microwave passive components, can be 
impaired by fabrication tolerances but also incomplete knowledge concerning operating conditions 
(temperature, input power levels) and material parameters (e.g., substrate permittivity). Although 
the accuracy of manufacturing processes is always limited, the effects of parameter deviations can 
be accounted for in advance at the design phase through optimization of suitably selected statistical 
performance figures. Perhaps the most popular one is the yield, which provides a straightforward 
assessment of the likelihood of fulfilling performance conditions imposed upon the system given 
the assumed deviations of designable parameters. The latter are typically quantified by means 
of probability distributions pertinent to the fabrication process. The fundamental obstacle of the 
yield‑driven design is its high computational cost. The primary mitigation approach nowadays 
is the employment of surrogate modeling methods. Yet, a construction of reliable metamodels 
becomes problematic for systems featuring a large number of degrees of freedom. Our work 
proposes a technique for fast yield optimization of microwave passives, which relies on response 
feature technology as well as variable‑fidelity simulation models. Utilization of response features 
enables efficient handling of issues related to the system response nonlinearities. Meanwhile, the 
incorporation of variable‑resolution simulations allows for accelerating the yield estimation process, 
which translates into remarkably low overall cost of the optimizing the yield. Our approach is verified 
with the use of three microstrip couplers. Comprehensive benchmarking demonstrates its superiority 
in terms of computational efficiency over the state‑of‑the‑art algorithms, whereas reliability is 
corroborated by electromagnetic‑driven Monte Carlo simulations.

Standard microwave design procedures, including parametric optimization, normally neglect possible devia-
tions of dimensions and material parameters from the nominal values thereof. At the same time, manufacturing 
processes are always imperfect, and so is the knowledge pertaining to the material properties (e.g., substrate 
relative permittivity) or operational conditions (possible geometrical distortions of the device, temperature, 
signal power level, etc.). All of them may exert some, typically undesirable, effects on electrical characteristics 
of the  device1. The uncertainties pertinent to operating conditions (also referred to as  epistemic2) are systematic 
and can be accounted for by ensuring satisfactory system performance within the prescribed condition range 
(e.g., input signal level). On the other hand, fabrication tolerances, e.g., inaccuracy of chemical etching for 
PCB-based components, or mechanical milling for waveguide structures, are of stochastic nature. These have 
to be described by means of process-specific probability distributions, typically Gaussian of a given mean and 
covariance matrix. As the performance requirements imposed on contemporary microwave devices are often 
stringent, tolerance-induced deviations of designable parameters from their nominal values may readily result 
in the system failing to meet the specifications. Consequently, the ability to quantify the effects of uncertainties 
is instrumental in estimating the design robustness, and, even more importantly, robustness enhancement. The 

OPEN

1Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 80-233 Gdańsk, 
Poland. 2Engineering Optimization and Modeling Center, Reykjavik University, 102 Reykjavík, Iceland. *email: 
anna.dabrowska@pg.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-26562-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22440  | https://doi.org/10.1038/s41598-022-26562-8

www.nature.com/scientificreports/

necessitates optimization of suitably formulated statistical performance  figures3, and is often labeled as tolerance-
aware  design4, robust  design5, or design  centering6. For microwave circuits, the performance requirements are 
typically formulated in a minimax form (e.g., through acceptance thresholds for return loss, transmission, power 
split, or phase responses), which makes  yield7 one of the most appropriate metrics of design robustness.

Evaluation of the system robustness under fabrication tolerances requires statistical  analysis8, which is a CPU-
intensive procedure when conducted utilizing full-wave electromagnetic (EM) simulations. At the same time, EM 
analysis is required to maintain reliability. The latter may be especially critical for compact microwave passives 
that normally feature considerable cross-coupling effects being byproducts of such miniaturization strategies as 
transmission line  meandering9 or exploiting the slow-wave  phenomenon10. Excessive computational cost of direct 
EM-driven statistical analysis (e.g., Monte Carlo simulation) fostered the development of accelerated methods. 
One possibility is to reduce the problem complexity (e.g., worst case  analysis11), yet accuracy degradation may be 
unacceptable. As of now, the most popular uncertainty quantification methods rely on surrogate modeling tech-
niques, which enable massive system evaluations at minimum expenses. Some of widely used techniques include 
polynomial chaos expansion (PCE)12,13, neural  networks14, and response surface  approximation15. Unfortunately, 
utilization of data-driven surrogates is encumbered by the curse of  dimensionality16, which may be mitigated to 
a certain extent by dimensionality reduction through, e.g., the employment of principal component  analysis17), 
improved modeling schemes (e.g., PC  kriging18), usage of multi-fidelity simulations (e.g., co-kriging19), or the 
usage of physics-based surrogates such as space  mapping20.

The quantification of the effects of uncertainties is a foundation of robust design procedures (yield-driven 
 optimization21, tolerance-aware  design22), which aim at improving the system immunity to manufacturing and 
other tolerances. In particular, optimization of yield attempts to directly increase the likelihood of fulfilling the 
performance conditions imposed upon the circuit under the assumed parameter deviations. Robust optimization 
can also be considered in a geometrical sense (by placing the design near the center of the feasible region), or 
addressed by increasing the acceptable levels of tolerances that ensure meeting the specifications (e.g., tolerance 
hypervolume  maximization23). Again, the biggest challenge of EM-driven statistical design are computational 
expenditures entailed by repetitive circuit simulations. Most practical optimization frameworks employ surrogate 
modeling  methods24–32 both data-driven24,25, and physics-based30. In some cases, when the considered statistical 
figures of merit are functions of statistical moments of the response of the system at hand, polynomial chaos 
expansion models can be used to avoid numerical integration of the underlying probability  distributions33. For 
microwave components and minimax-type of specifications, Monte Carlo  analysis34 carried out with the aid 
of the surrogate may be unavoidable to evaluate the robust objective function. Rendering reliable metamodels 
for yield optimization is, however, more demanding than for statistical analysis purposes due to a larger part 
of the parameter space that has to be covered. The alleviation is possible by adopting iterative approaches (e.g., 
sequential approximate  optimization35), in which the model is locally rendered in the proximity to the current 
design, thereby the training data acquisition cost may be kept low. Meanwhile, the model domain is relocated 
accordingly in the course of the optimization procedure. The response feature  technology36 offers alternative 
way of handling the problem, in which the design specifications are formulated at the tier of suitably defined 
characteristic (feature) points of the circuit outputs. Close-to-linear relationship between the feature points 
coordinates and circuit dimensions facilitates a surrogate model construction, thereby enabling acceleration of 
various design  procedures37.

This paper introduces a technique for fast yield optimization of microwave passive components, which capital-
izes on the feature-based framework reported  in38, and further expedites a robust design process by incorporating 
variable-resolution EM models.  Following38, our methodology utilizes local feature-based surrogates, employed 
for cost-effective estimation of the circuit yield, and embeds the search process in the trust region framework to 
control design relocation, and to ensure convergence. An additional speedup is achieved by estimating response 
feature sensitivity at the level of low-resolution EM analysis. Due to reasonably good correlations between EM 
models of various fidelities, zero-order correction turns sufficient to ensure acceptable surrogate accuracy. As a 
result, the computational expenses of the robust design procedure is cut down, and amounts to a handful of EM 
high-fidelity simulations of the circuit at hand. Comprehensive verification experiments carried out for three 
microstrip couplers demonstrate superior performance of the proposed method over the benchmark. The latter 
include several recent surrogate-assisted techniques, as well as the feature-based approach  of38.

Yield optimization of microwave passives using multi‑fidelity response features
This section delineates the proposed yield optimization algorithm. Background information concerning nominal 
(“Nominal optimization problem formulation” section) and robust design problem formulation (“Yield optimiza-
tion” section) is followed by recalling the concept and the properties of response features (“Response features for 
low-cost yield estimation” section), as well as variable-resolution computational models (“Variable-resolution 
EM models for further cost reduction” section). The variable-fidelity feature-based surrogates are discussed in 
“Yield optimization using variable-resolution feature-based surrogates” section, whereas the complete optimiza-
tion procedure is summarized in “Complete algorithm” section.

Nominal optimization problem formulation. The fabrication yield is defined with regard to design 
specifications pertinent to the microwave component of interest. These, in turn, are defined using a set of condi-
tions for the scattering parameters (or the functions thereof). In this paper, the verification structures considered 
in “Numerical verification” section are branch-line and rat-race couplers, therefore, the specific performance 
requirements used to illustrate the discussed concept will pertain to this type of circuits. For couplers, the effects 
of manufacturing inaccuracies manifest themselves as modifications of the power split ratios, but also reloca-
tion of the operating frequencies/bandwidths. Maximization of yield aims at adjusting the system geometry 
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parameters to enhance the probability of fulfilling the specs given the parameter deviations. All of these will be 
rigorously formulated in the remaining part of this section.

Consider an N-band coupler described by n geometry parameters aggregated into a vector x = [x1 … xn]T. 
Further, let [fL.k fR.k] denote the kth operating band, k = 1, …, N, with fL.k and fR.k being the lower and upper ends 
of the band, respectively. Within that band, the matching and isolation characteristics are not to exceed a user-
defined value Smax (e.g., − 20 dB).

Finally, let Dk be the tolerance thresholds for the power split deviations at the center frequency 
f0.k = [fR.k + fL.k]/2, and Sk stand for the intended power split ratio. The following conditions are to be fulfilled for 
the design x to satisfy the aforementioned specifications, where Sk1(x,f) stands for the respective S-parameter 
response, k = 1, …, 4:

The fulfillment of (1)–(3) is analogous to the circuit operating at the required bandwidth and ensuring 
assumed power division for all frequency intervals [fL.k fR.k].

Although the conditions (1)–(3) define the minimum requirements, it is normally possible, through opti-
mization, to improve the circuit performance further. This can be done, e.g., by improving both matching and 
isolation over the target bandwidths, or to broaden the bandwidths at the Smax level. The design that is optimized 
in the former sense, will be referred to as the nominal one, and denoted as x(0). It is obtained by solving

subject to the equality constraint

The design x(0) refers to the best achievable design that can be attained without considering manufacturing 
tolerances. In this work, it will be used as a starting point for yield optimization.

Yield optimization. Let dx denote a vector of deviations of the circuit parameters from their nominal 
values. The deviations originate from manufacturing inaccuracy and are quantified using probability distribu-
tions that are specific to the fabrication process. In this work, we assume joint Gaussian distribution with zero 
mean and variance σ (common for all parameters). In a more generic setup, the distribution can be determined 
by a covariance matrix that accounts for the circuit topology (e.g., correlations between deviations for certain 
parameters).

The fabrication yield Y is computed by integrating the probability density function p(x,x(0)) that describes 
deviations of x from the nominal design x(0). The integration is executed over the set Xf, which contains all 
designs satisfying the performance specifications (e.g., conditions (1) through (3) for the considered coupling 
structure). We  have39

As the geometry of the feasible set is not known explicitly, in practice, the yield is estimated through numeri-
cal integration, most often by employing Monte Carlo simulation. Given a set of random observables dx(k), k = 1, 
…, Nr, allocated according to the density function p, we get

where H(x) = 1 if the performance specifications are satisfied for the design x, H(x) = 0 if the specs are violated.
The yield optimization task is formulated as

Solving (8) entails repetitive yield estimations, which is associated with a prohibitive CPU cost when realized 
directly with the use of EM analysis. As elaborated on in the introduction, the majority of practical approaches 
employ fast surrogate models for the purpose of evaluating (7). However, building the surrogate can also generate 
considerable expenses and be numerically challenging for circuits described by many parameters. This paper 
incorporates two mechanisms intended to mitigate these issues: a response feature approach (“Response features 
for low-cost yield estimation” section) and variable-resolution EM models (“Variable-resolution EM models for 
further cost reduction” section).

(1)max

{
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Response features for low‑cost yield estimation. Following38, the yield estimation while solving the 
problem (8) is expedited using a response feature  technology36. Feature-based  modeling40 and  optimization41 
benefits from re-formulating the design problem in terms of properly selected characteristic points of the circuit 
outputs, and weakly nonlinear dependence between the frequency and level coordinates of these points on cir-
cuit dimensions. This section discusses how the performance specifications considered in “Nominal optimiza-
tion problem formulation” section can be expressed in terms of response features, which will be used in “Yield 
optimization using variable-resolution feature-based surrogates” section to realize reduced-cost yield maximiza-
tion.

The choice of the feature points depends on design specifications assumed for the system. Going back to 
the coupler example of “Nominal optimization problem formulation” section (cf. conditions (1)–(3)), it can be 
concluded that the feature points should account for − 20 dB levels for the matching and isolation responses, 
and also for the power split at the center frequency. Figure 1 illustrates this case for an exemplary branch-line 
coupler. Note that for certain feature points the relevant information is carried by their frequency coordinates, 
level coordinates, or both.

Throughout this paper, the feature points data will form a feature vector P, the entries of which will be the 
frequency and/or level coordinates of corresponding features. For the considered coupler example, we have

In (9), the frequencies f1 through f4 correspond to the − 20 dB level of |S11| (f1 and f2) and |S41| (f3 and f4), 
whereas l1 and l2 are the levels of the transmission characteristics |S21| and |S31|, respectively, at the (target) coupler 
center frequency. This can be generalized to the example of a multi-band coupler, where we have

The secondary subscript is the index of the circuit band. In general, the composition of the feature vector is 
problem- and performance-specification-dependent. The coordinates of the feature vector are garnered from 
EM-simulated characteristics of the circuit at hand.

Having defined the vector P, we are in a position to reformulate the performance requirements (conditions 
(1) through (3)) in terms of its coordinates:

As mentioned at the beginning of this section, the benefit of replacing (1)–(3) by (11)–(13) is that the rela-
tionships between the feature point coordinates and circuit dimensions are to a smaller degree nonlinear than 
an analogous relationship for the entire frequency characteristics. This facilitates a construction of surrogate 
models but also leads to accelerating the optimization processes.

(9)P(x) = [p1(x)p2(x) . . . p6(x)]
T = [f1(x)f2(x)f3(x)f4(x)l1(x)l2(x)]

T

(10)
P(x) = [p1(x)p2(x) . . . p6N (x)]

T

= [f1.1(x)f2.1(x)f3.1(x)f4.1(x)l1.1(x)l2.1(x) . . . f1.N (x)f2.N (x)f3.N (x)f4.N (x)l1.N (x)l2.N (x)]
T

(11)f1.k(x) ≤ fL.k , f3.k(x) ≤ fL.k , k = 1, . . . ,N

(12)f2.k(x) ≥ fR.k , f4.k(x) ≥ fR.k , k = 1, . . . ,N

(13)|l1.k(x)− l2.k(x)| ≤ Dk , k = 1, . . . ,N

(a)                                                 (b)                                                            (c)
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Figure 1.  Conceptual illustration of response features for a microwave coupler: S-parameters and feature 
points representing − 20 dB level of |S11| (matching) and |S41| (isolation) responses (o), along with |S21| and |S31| 
(transmission) at the intended operating frequency f0 = 1.5 GHz (verbal description: square). The characteristic 
point coordinates permit assessment of performance requirements satisfaction (100 MHz matching/isolation 
bandwidth centered around f0), and maximal power split deviation of 0.5 dB at f0): (a) coupler geometry, (b) 
design fulfilling specs, (c) design infringing power split and bandwidth conditions.
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Variable‑resolution EM models for further cost reduction. The second mechanism used in this 
work to accelerate the robust design process lies in the employment of multi-fidelity EM models. Reducing the 
discretization density of the structure allows for speeding up the process of simulation yet with detrimental effect 
to accuracy, which can manifest itself through the frequency and/or level shifts of the circuit characteristics. On 
the other hand, as the underlying physics of both low- and high-fidelity is the same, the EM models of different 
resolutions are normally well correlated, assuming that the model resolution is not pushed too far. This is illus-
trated in Fig. 2 for the coupler of Fig. 1a, where we can observe low- and high-fidelity model responses for three 
randomly generated designs. In this case, the high-fidelity model features about 80,000 mesh cells, whereas the 
low-fidelity model is set up with approximately 20,000 cells.

As explained in “Response features for low-cost yield estimation” section, in this work, the robust design 
problem will be solved at the level of response features, therefore, we are mainly interested in correlation between 
the coordinates of the feature points of low- and high-fidelity models, or, more specifically, the feature point 
sensitivities. Figure 3 shows the differentials Δpj = pj(xk) − pj(xl) of the high- and low-fidelity model computed for 
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Figure 2.  S-parameters for the coupler considered in Fig. 1 evaluated using the low- (gray) and high-fidelity 
(black) EM simulation. Observe considerable misalignment, especially in terms of the frequency shifts, yet the 
overall shape and the amount of misalignment is consistent for different designs shown in the pictures (plots (a) 
through (c)).
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Figure 3.  Scatter plots of feature coordinate differentials Δpj = pj(xk) − pj(xl) computed for all pairs of ten designs 
{xk}k = 1,…,10, generated in the vicinity of a nominal vector x(0) for a microwave coupler considered in Fig. 1. 
Horizontal and vertical axis correspond to the differentials of the high- and low-fidelity model, respectively.
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all pairs of designs selected from a ten-element random set {xk}k = 1, …, 10, generated in the vicinity of a nominal 
vector x(0) for a coupler of Fig. 1a.

The features are selected as presented in Fig. 1 (see also (9)). It can be observed that the correlation between 
the models is excellent with the linear correlation coefficients equal to 0.99, 0.97, 0.97, 0.97, 0.96, and 0.96 for f1, 
f2, f3, f4, l1, and l2, respectively. This means that response feature sensitivity predicted by the low-fidelity model will 
be in a good agreement with sensitivity evaluated with the high-fidelity one. Still, the computational expenditures 
associated with sensitivity estimation is considerably lower, typically, by a factor three to four.

Yield optimization using variable‑resolution feature‑based surrogates. The core of the proposed 
yield optimization follows the technique introduced  in38, which is enhanced by utilization of the variable-resolu-
tion EM models. The yield is maximized in an iterative fashion using the trust-region (TR)  procedure42.

In every iteration, a new design x(i+1) being an approximation of the optimum vector x* is produced, i = 0, 1, 
… (here, the nominal design x(0) is the starting point), by solving

The yield YP is computed at the level or response features as in (11)–(13), with the feature point coordinates 
predicted using a linear (regression) model L(i) of P(x) comprising the response features

in which JP.L is the approximation of the Jacobian matrix JP

estimated by finite differentiation with the use of the low-fidelity EM model. Let us denote the time evaluation 
ratio M between the high- and low-fidelity model. The cost of constructing the model L(i) equals to 1 + n/M, 
where n is the parameter space dimensionality. Assuming conservatively that M = 3, the computational savings 
reach sixty percent for n = 10.

Adjusting the size parameter d(i) is an important consideration in TR frameworks. It is normally done based 
on the gain ratio r, which is defined as a ratio between the observed improvement of the merit function (here, 
the yield) and the improvement predicted by the linear model. It should be noted that evaluation of the yield 
at the candidate design x(i+1) requires rebuilding of the linear model at x(i+1), which would turn to be a waste of 
computational resources if r < 0, i.e., if the candidate design is rejected (according to the TR  principles42, the 
design x(i+1) is only retained if r > 0). For the sake of cost savings, in this work, the gain factor is evaluated as 
r = [YP#(x(j+1)) − YP(x(j))]/[YP(x(j+1)) − YP(x(j))], where YP# is obtained from a linear model defined as in (15); how-
ever, instead of P(x(i)) the vector P(x(i+1)) derived from EM-evaluated system output for x(i+1). This only requires 
one EM analysis. The approximation is due to using the same Jacobian matrix for both x(i) and x(i+1), which is 
tenable as the distance between these two vectors is normally small (comparable to or smaller than the maximum 
assumed parameter deviation).

The actual yield estimation with the linear predictor L(i) is executed as Monte-Carlo-based integrating of 
(6), with the use of a large number of randomly allocated observables to reduce the estimation variance. For 
this purpose, the feature-based performance specifications (11)–(13) are verified for the output of the model 
L(i) obtained for each observable generated using the probability distribution assumed for input tolerances. The 
cost of this process is small in comparison to EM simulation of the circuit.

Complete algorithm. The flow diagram of the yield enhancement procedure introduced in this section has 
been presented in Fig. 4. As emphasized before, we use the nominal design x(0) as the starting point for robust 
design process. The high-resolution EM model is only utilized to evaluate the circuit response at the current 
design, whereas response feature sensitivities are estimated using the low-fidelity model. The linear regression 
model is constructed upon extracting feature point coordinates, and utilized to obtain the candidate design 
x(i+1). The gain ratio is evaluated as explained in “Yield optimization using variable-resolution feature-based 
surrogates” section. It is used to decide about the acceptance of the candidate design and to adjust the search 
region size parameter d(i). The algorithm is terminated if either ||x(i+1) − x(i)||< ε (convergence in argument), or 
d(i+1) < ε (reduction of the TR size). In the numerical experiments of “Numerical verification” section, we employ 
the termination threshold ε =  10−3.

Numerical verification
The proposed yield optimization framework is validated using three examples of microstrip couplers. It is also 
compared to four surrogate-assisted methods and the feature-based approach  of38. The optimization procedure 
reliability is verified via Monte Carlo analysis performed with the use of the EM simulation models of the respec-
tive structures.

Case studies. In order to validate the yield optimization procedure presented in this work, we use three 
microstrip couplers, a miniaturized rat-race coupler (Coupler I)43 (Fig. 5a), a compact branch-line coupler, BLC 
(Coupler II)44 (Fig. 5b), along with a dual-band branch-line coupler (Coupler III)45 (Fig. 5c). Table 1 gathers 

(14)x(i+1) = arg min
||x−x(i)||≤d(i)

{−YP(x)}

(15)L(i)(x) = P(x(i))+ JP.L(x
(i)) · (x − x(i))

(16)JP(x
(i)) =

[

∂pj(x
(i))

∂xk

]T

j=1,...,2N
k=1,...,n
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Figure 4.  Flow diagram of the proposed yield optimization procedure.
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Figure 5.  Verification circuits used for validation of the yield optimization framework of “Yield optimization of 
microwave passives using multi-fidelity response features” section: (a) miniaturized rat-race coupler with folded 
transmission lines (Coupler I)43, (b) compact branch-line coupler (Coupler II)44, (c) dual-band branch-line 
coupler (Coupler III)45.
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the necessary data on all circuits, which include independent geometry parameters, dielectric substrates, the 
setup of low- and high-fidelity models, performance specifications, as well as nominal designs. In all cases, 
the computational models are evaluated using the time-domain solver of CST Microwave Studio. Also, in all 
cases, the input parameter tolerances are assumed to follow independent zero-mean Gaussian distributions with 
0.017 mm variance, and maximum deviations limited to  dmax = 0.05 mm.

Reference algorithms
The performance of the introduced optimization procedure is benchmarked against several methods that have 
been outlined in Table 2. All of these are surrogate-assisted techniques that represent different approaches to 
robust design using data-driven models. In Algorithm 1, EM model is entirely replaced by the kriging sur-
rogate built in a sufficiently spacious domain, allocated in the vicinity of the nominal design. This approach is 
straightforward but the cost of constructing the model may be large owing to the extent of the domain. Algo-
rithm 2 utilizes a sequential approximate optimization approach, with several local surrogates rendered along 

Table 1.  Validation circuits. $ Parameters with subscript r are relative, and their deviations are recalculated 
accordingly in order to have the corresponding absolute parameters following the assumed probability 
distribution (here, Gaussian with variance of 0.017 mm). # All EM models are implemented in CST Microwave 
Studio and evaluated using the time domain solver.

Case  study$

Circuit I Circuit II Circuit III

Substrate RO4003 (εr = 3.38, h = 0.76 mm) AD300 (εr = 2.97, h = 0.76 mm) RO4003 (εr = 3.5, h = 0.51 mm)

Design parameters x = [l1 l2 l3 d w w1]T x = [g l1r la lb w1 w2r w3r w4r wa wb]T x = [Ls Ws l3r w1 w2 w3 w4 w5 wv]T

High-fidelity  model# ~ 115,000 mesh cells; simulation time 350 s ~ 85,000 mesh cells; simulation time 90 s ~ 120,000 mesh cells; simulation time 150 s

Low-fidelity  model# ~ 48,000 mesh cells; simulation time 125 s ~ 27,000 mesh cells; simulation time 33 s ~ 61,000 mesh cells; simulation time 68 s

Other parameters d1 = d +|w − w1|, d = 1.0, w0 = 1.7, and l0 = 15
L = 2dL + Ls, Ls = 4w1 + 4 g + s + la + lb, W = 2dL + Ws, 
Ws = 4w1 + 4 g + s + 2wa, l1 = lbl1r, w2 = waw2r, 
w3 = w3rwa, w4 = w4rwa

dL = dW = 10 mm, L = 2dL + Ls, 
W = 2dW + 2w1 + (Ws − 2wf), l1 = Ws/2, 
l2 = l321/2, l3 = l3r((Ls − w3)/2 − w4/21/2), lv1 = l3/3, 
lv3 = Ls/2 − w3/2 − l3 + lv1; wf = 1.15 mm

Operating bands 0.89–1.11 GHz 1.45–1.55 GHz 2.36–2.44 GHz
5.16–5.24 GHz

Maximum power split error 0.4 dB at 1 GHz 0.5 dB at 1.5 GHz 0.5 dB at 2.4 GHz
0.5 dB at 5.2 GHz

Nominal design x(0) = [4.50 11.08 21.81 0.65 0.94 0.86]T x(0) = [0.63 5.90 9.34 12.45 1.29 2.02 0.99 0.32 2.81 
0.22]T

x(0) = [25.05 0.85 0.76 1.90 1.23 0.36 0.71 0.30 
0.30]T

Table 2.  Benchmark algorithms.

Algorithm Description

1

Surrogate-assisted method using a metamodel established in a relatively large vicinity of the nominal design to enable suf-
ficient relocation of the design during yield optimization
The yield optimization task (8) is solved using a local optimization algorithm
The metamodel is constructed using  kriging46, in the interval domain [x(0) − d, x(0) + d]
The entries of the size vector d = [d1 … dn]T are set to dk = 10dmax, k = 1, …, n (dmax is the maximum parameter deviation)
Remarks: The above domain size is normally sufficient to conclude yield maximization in a single iteration. The method is 
simple to implement. The drawback is a potentially high cost of training data acquisition, especially for higher-dimensional 
parameter spaces

2

Procedure based on sequential approximate optimization (SAO)  approach35. The problem (8) is solved iteratively as
x(i+1) = argmin

x
{−Y

(i)
s (x)} (17)

where x(i), i = 0, 1, …, are approximations to the optimum design x*
The yield Ys

(i) in the ith iteration, is estimated using a surrogate model established in the local domain [x(i) − dl, x(i) − dl], 
x(i) = [x1

(i) … xn
(i)]T, centred at the current iteration point

The surrogates are constructed along the optimization path; thus, their domains can be smaller than for Algorithm 1; here, 
dl = [dl.1 … dl.n]T is set to dl.k = 3dmax, k = 1, …, n
Problem (17) is constrained to satisfy xk

(i) − dl.k + dmax ≤ xk ≤ xk
(i) + dl.k − dmax, k = 1, …, n, which allows to run Monte Carlo 

simulation within the region of validity of the metamodels
Remarks: The advantage of this procedure is a lower cost of setting up the surrogate as compared Algorithm 1. Yet, several 
iterations are required to approach the optimum solution

3

Procedure based on the performance-drive modelling  concept21

The surrogate is constructed in the domain spanned by the most relevant directions that affect the likelihood of satisfying the 
design requirements in the most significant manner, cf. Fig. 6
These directions are found through auxiliary local  optimizations21

Remarks: The advantage of this method is low volume of the surrogate model domain, which is of sufficient size wherever 
necessary. Thus, Algorithm 3 effectively combines the advantages of Algorithms 1 and 2

4
Feature-based procedure embedded in the trust-region  framework38

The overall optimization procedure is similar to the algorithm described in “Response features for low-cost yield estimation”, 
“Yield optimization using variable-resolution feature-based surrogates” and “Complete algorithm” sections; however, it is 
entirely based on high-fidelity EM model
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the optimization path, which allows for lowering the cost of individual model construction at the expense of 
repeating the process across a few iterations. Overall, this method is expected to offer computational savings 
over Algorithm 1, especially for parameter spaces of larger dimensions.

Algorithm 3 employs the performance-driven modeling  concept47, in which the extent of the metamodel 
domain is larger along the important directions (here, representing more consequential variations of the circuit 
yield), and smaller along the remaining directions (see Fig. 6). This allows to combine the advantages of Algo-
rithms 1 and 2, i.e., to conclude the robust design process using a single model, while maintaining relatively low 
cost of data acquisition. Finally, Algorithm 4 is the framework reported  in38, which utilizes the same mechanisms 
as described in “Response features for low-cost yield estimation”, “Yield optimization using variable-resolution 
feature-based surrogates” and “Complete algorithm” sections, but the entire optimization process is conducted 
using the high-resolution EM model.

The purpose of the verification experiments is to analyze the performance indicators of the presented and 
the benchmark algorithms, in particular, the computational complexity and reliability. The latter is validated 
through EM-based Monte Carlo (MC) simulation, carried out with the use of 500 random points featuring the 
assumed probability distribution for input tolerances. While the number of points is restricted because of high 
cost of massive EM analyses, a significant consequence is that this leads to a decreased accuracy of MC, which 
is about two percent.

Results and discussion. Table 3 gathers the yield-enhanced solutions for Circuits I through III found by 
the proposed variable-resolution feature-based procedure. Tables 4, 5, and 6 gather the comparison data for all 
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Figure 6.  Performance-driven yield  enhancement21: (a) S-parameters of a microwave coupler for design x(0) 
(nominal), design x(1) (degraded power split), and design x(2) (enhanced bandwidth at − 20 dB); for clarity, only 
relevant characteristics are shown; the directions important for yield manipulation are determined by designs 
x(1) and x(2); (b) surface S(t) parameterized by vector t = [t1 t2]T is delimited by the designs x(0), x(1), and x(2); the 
model domain XS is a union of intervals SI(t) for − 1 ≤ t1, t2 ≤ 1.

Table 3.  Yield-optimized designs for Circuits I through III obtained using the proposed approach.

Circuit Parameter vector

I x* = [4.70 11.38 21.66 0.75 0.94 0.86]T

II x* = [0.63 5.98 9.21 12.53 1.29 2.08 0.99 0.31 2.82 0.28]T

III x* = [25.05 0.85 0.76 1.90 1.23 0.37 0.71 0.30 0.30]T

Table 4.  Design centering results for Circuit I (Fig. 5a). $ Optimization cost in number of EM simulations of 
the considered circuit. # Equivalent number of high-fidelity EM simulations (actual number of analyzes was 6 
high-fidelity and 28 low-fidelity).

Optimization algorithm

Initial yield Optimized yield

CPU  cost$Estimated by surrogate model (%) EM-based (%) Estimated by surrogate model (%) EM-based (%)

Reference algorithm 1 50 42 100 97 400

Reference algorithm 2 45 42 97 97 200#

Reference algorithm 3 44 42 98 98 82

Reference algorithm 4 45 42 99 98 25

This work (“Yield optimization of microwave passives 
using multi-fidelity response features” section) 48 42 99 99 16.0#
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the circuits and all benchmark algorithms. Observe that—as expected—the incorporation of variable-resolution 
models leads to further improvement of the cost efficacy of the yield optimization routine. It is already remark-
ably low for Algorithms 3 and 4, with the average number of high-fidelity EM simulations being 105 and 31, 
respectively. Yet, the proposed approach brings these numbers even lower, to the average of twenty, which corre-
sponds to 36-percent saving over Algorithm 4, and 81-percent savings over Algorithm 3. As explained in “Yield 
optimization of microwave passives using multi-fidelity response features” section, this is due to the fact that 
most of EM analyses is executed to estimate the Jacobian matrix, and carrying out this task using the low-fidelity 
models reduces this cost by a factor of about three for the considered coupler circuits.

In terms of design quality, the solutions obtained using the proposed approach are comparable to those 
identified using the benchmark methods. The same can be said about reliability, as confirmed through EM-based 
Monte Carlo simulations. It should be reiterated that the variance of the MC-estimated yield is relatively high 
(up to two percent), as emphasized before, due to a relatively low number of observables used in the process. 
This means that the yield differences of up to two or three percent are statistically insignificant.

It can also be noticed that the differences between MC- and surrogate-model-estimated yield values are the 
highest for Circuit III, which is because this circuit is the most difficult to model. For example, the relative RMS 
error of the surrogate used by Algorithm 1 is better than four percent for Circuits I and II, but it exceeds six per-
cent for Circuit III, despite of using as many as 800 training data samples. Figures 7, 8 and 9 provide visualization 
of EM-based Monte Carlo simulation at the nominal and robust designs obtained using the proposed algorithm, 
for Circuit I, II, and III, respectively. Again, MC is based on 500 random samples.

Observe that recognition of the response features may prove problematic due to misshaped circuit responses, 
which may occur for design cases with large statistical variations. Nevertheless, as indicated by the results of EM-
driven Monte Carlo simulations (Figs. 7, 8, 9), such a situation would might happen for the parameter variations 
of at least an order of magnitude larger than those assumed in the paper under review (i.e., dmax = 0.05 mm). 
Practically, for the PCB technology, such large variations are unrealistic, as this would mean, e.g., error of etching 
the circuit slits of around one millimeter (i.e., comparable to the slit width). The actual manufacturing procedures 
(chemical etching or mechanical milling) are considerably more accurate with the deviations corresponding to 
the levels assumed in this work.

The computational cost of our procedure amounts to around 16, 20 and 23 EM simulations for the structures 
featuring 6, 9, and 10 parameters (see Tables 4, 5, 6). Thus, the dependence of the cost on the number of design 
variables is close-to-linear: the ratio between the computational cost for Circuit II (described by the largest 
number of design variables) and Circuit I (described by the smallest number of design variables) equals around 
1.5 and it is almost equal to the ratio between the respective numbers of design variables. This suggests that for 
higher-dimensionality cases, the computational cost of the proposed procedure would be increased proportion-
ally to the number of geometry parameters describing the microwave component of interest. The relationship 
between the computational cost and the number of design variables is visualized in Fig. 10.

Table 5.  Design centering results for Circuit II (Fig. 5(b)). $ Optimization cost in number of EM simulations of 
the considered circuit. # Equivalent number of high-fidelity EM simulations (actual number of analyzes was 7 
high-fidelity and 44 low-fidelity).

Optimization algorithm

Initial yield Optimized yield

CPU  cost$Estimated by surrogate model (%) EM-based (%) Estimated by surrogate model (%) EM-based (%)

Reference algorithm 1 82 77 93 88 800

Reference algorithm 2 76 77 94 93 320

Reference algorithm 3 79 77 92 93 112

Reference algorithm 4 79 77 90 92 37

This work (“Yield optimization of microwave passives 
using multi-fidelity response features” section) 79 77 94 92 23.1#

Table 6.  Design centering results for Circuit III (Fig. 5c). $ Optimization cost in number of EM simulations of 
the considered circuit. # Equivalent number of high-fidelity EM simulations (actual number of analyzes was 6 
high-fidelity and 30 low-fidelity).

Optimization algorithm

Initial yield Optimized yield

CPU  cost$Estimated by surrogate model (%) EM-based (%) Estimated by surrogate model (%) EM-based (%)

Reference algorithm 1 80 71 99 93 800

Reference algorithm 2 88 71 96 91 500

Reference algorithm 3 74 71 94 92 123

Reference algorithm 4 71 71 93 89 32

This work (“Yield optimization of microwave passives 
using multi-fidelity response features” section) 71 71 90 89 19.6#
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Figure 7.  Visualization of EM-based Monte Carlo analysis for Circuit I: (a) at the nominal design, and (b) at 
the optimal design rendered with the use of the procedure introduced in this work. MC is executed using 500 
random data points. Gray curves represent EM simulations, whereas the circuit characteristics at the nominal 
(a) and optimal design (b) are shown black.

Figure 8.  Visualization of EM-based Monte Carlo analysis for Circuit II (a) at the nominal design, and (b) at 
the optimal design rendered with the use of the procedure introduced in this work. MC is executed using 500 
random data points. Gray curves represent EM simulations, whereas the circuit characteristics at the nominal 
(a) and optimal design (b) are shown black.
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The remarkable cost reduction obtained using our approach is achieved at the expense of limiting the scope 
of its applicability to structures whose responses feature discernible characteristics points, which should be 
defined to enable estimation of the yield. The examples of such structures include microwave filters or imped-
ance matching transformers. In the case of microwave filters, the response features may be defined as the local 
maxima of the return loss within the pass-band, as well as the crossing points at the edge of the pass-band. Similar 
definition may be employed in the case of impedance matching transformers, where possible definition of the 
response features includes local maxima of the reflection characteristics, as well as points defining the bandwidth 
at the assumed target level, e.g. − 20-dB. Overall, the proposed methodology may be not as versatile as other 
frameworks that do not impose any restraints on the response structure of the component under design. Yet, the 

Figure 9.  Visualization of EM-based Monte Carlo analysis for Circuit III: (a) at the nominal design, and (b) at 
the optimal design rendered with the use of the procedure introduced in this work. MC is executed using 500 
random data points. Gray curves represent EM simulations, whereas the circuit characteristics at the nominal 
(a) and optimal design (b) are shown black.
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Figure 10.  Computational cost of the yield optimization process using the proposed algorithm versus number 
of design variables for Circuit I, III, and II described by 6, 9, and 10 design variables.
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characteristics of many real-world microwave passives are inherently structured. Consequently, the employment 
of the feature-based techniques such as the proposed one is only slightly hindered by the aforementioned factors.

Conclusion
This work introduced, a novel technique for cost-efficient optimization of the fabrication yield of microwave pas-
sives. The presented methodology employs an ensemble of acceleration mechanisms, including regression-based 
surrogate modeling at the level of response features, as well as variable-fidelity EM simulations. Both permit 
reliable and fast estimation of the yield, maximization of which exploits a sequential approximate optimization 
paradigm, and also the trust-region framework to govern design relocation and secure convergence of the pro-
cedure. Numerical verification of our procedure has been realized with the use of three microstrip couplers. Its 
efficacy has been compared to several surrogate-assisted algorithms. The results demonstrate that incorporation 
of the aforementioned algorithmic tools gives a competitive edge over the benchmark, with computational sav-
ings as high as over ninety percent. In absolute terms, the average cost of yield optimization corresponds to only 
twenty EM circuit simulations at the high-fidelity level, which is 36 percent cheaper than for the feature-based 
algorithm exclusively using high-fidelity models (being one of the benchmark methods). At the same time, the 
reported speedup does not compromise the yield evaluation reliability, as corroborated using EM-based MC 
analysis. The proposed framework is simple to implement, and can be viewed as a CPU-efficient replacement of 
conventional statistical design methods, particularly for circuits whose responses exhibit easily distinguishable 
characteristic points.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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