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Surface Plasmon Polaritons (SPPs) operating in mid-infrared up to terahertz (THz) frequencies have been
traditionally manufactured on expensive metals such as gold, silver, etc. However, such metals have poor
surface confinement that limits the optical applications of SPPs. The invention of graphene is a break-
through in plasmon-based devices in terms of design, fabrication and applications, thanks to its plas-
monic wave distribution, low-cost prototyping and its inherent reconfigurability. In addition, recent
advancements in plasmon-based metamaterials and metasurfaces led to the elimination of the past con-
straints on regular optical devices, opening a new door in THz devices and applications. This paper pro-
vides an operational perspective of the advanced graphene-based electromagnetic devices, with a focus
on graphene enabled antennas, absorbers and sensors, analyzing the strengths and limitations of various
design methodologies.
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1. Introduction

The science of plasmonic has recently gained extensive atten-
tion due to its optical properties in metal and semiconductors
[1–3]. Surface plasmonic resonance is a quantum-
electromagnetic phenomenon produced by the interaction of light
with free electrons at metal and a dielectric interface, resulting in
rðw;lc;C; TÞ ¼
je2ðw� j2CÞ
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longitudinal electromagnetic waves known as plasmonic waves
[4–6]. In particular situations, the photon’s energy is transferred
into free electrons on the material surfaces which is called surface
plasmon (SP). Two-dimension materials united with plasmonic
nanostructures show a diversity of optical features, which contains
efficient charge transfer, plasmonic hot-electron doping term,
greater light spectrum emission, and very sensitive photodetec-
tion. Therefore, upcoming technologies offer a great opportunity
to determine different photonic and optoelectronic utilizations of
plasmonic nanostructures in combination with 2D materials [5].

There are numerous applications to this phenomenon that
include biological application fields [7], chemistry [8], gaseous sen-
sors [9], image sensors [10,11], and communication devices such as
antennas [12]. Some metals like gold, silver, and copper can pro-
duce plasmonic waves in wavelengths lower than mid-infrared
(mid-IR). However, there is a vast demand for surface plasmonic
waves in mid-IR and terahertz bands [13–15] and [16–18].

Since the invention of graphene in 2004, it has been considered a
promising material for designing plasmon-based devices without
the need for metals, while it has brought a large degree of freedom
in the design and functionality of plasmon-based devices [19–24].
In particular, graphene has unique electrical, optical, and chemical
characteristics that metals do not possess that make it effective in
plasmonic sensors, antennas and absorbers [25–27]. These features
include high carrier mobility, photo response, broadband photode-
tection from the ultraviolet to THz spectrum regions, flexibility,
low price, etc. [28]. Therefore, graphene is used for the renovation
of most optical structures such as transistors [29], optical antennas
[30], biosensors [31], polarizer [32–35], modulator [36–39], optical
displays [40], absorbers [41,42], filters [43,44],and etc. However, the
most significant characteristic of graphene is its reconfigurability.
The graphene’s surface current is configurable by applying a gate
voltage [45,46]. This unique feature of graphene has made a break-
through in metamaterials and metasurfaces design [45,47,48].

This paper presents a systematic review of the recent and ongo-
ing advancements of graphene-based EM devices for THz applica-
tions. The organization of the article is as follow: Section II
briefly overviews the graphene theory. Section III focuses on gra-
phene enabled antenna reconfigurabilities in the aspects of operat-
ing frequencies, radiation patterns and polarizations. Section IV
discusses modern absorber design procedures using graphene-
based metamaterials. And Section V reviews the recent
graphene-based plasmonic sensors and their emerging applica-
tions in virus detection.
2. Graphene theory

The optical characteristics of graphene generally depend on its
careers, movements, and other electrical features in the mid-IR to
2

the terahertz frequency band. The applied voltage could configure
the electric carriers of graphene. The conductivity of graphene
includes two parts rðw;lc; s; TÞ ¼ rinter þ rintra. In this formula, w
is the radian frequency, lc is the chemical potential, s is the relax-
ation time and T is the environment’s temperature. The graphene’s
conductivity is derived from the Kubo formula [49]. Without con-
sidering the magnetic field, this formula could be represented as:
Where f dðeÞ (Fermi distribution function) is expressed as:

f dðeÞ ¼ ðeð
e�lc
KBT

Þ þ 1Þ
�1

and other parameters of formula (1) are: e is
electron charge, h and —h are respectively the normal and reduced
Planck’s constant and KB is Boltzmann’s constant. In addition, the
relationship between lc (chemical potential) and ns(carrier den-
sity) is expressed as follows [50]:

ns ¼ 2

p—h2V2
F

Z 1

0
e ðf dðeÞ � f dðeþ 2lcÞ
� �

de; ð2Þ

where VF is the Fermi velocity. Changing the chemical potential
results in varying graphene’s conductivity versus frequency. For
instance, when lc ¼ 0eV , the conductivity of graphene is nearly
1000 times less than the settings of lc ¼ 1eV [50].

As before mentioned, the conductivity of graphene is divided
into two parts of inter-band and intra-band. However, it can be
mentioned that rinera is considered as graphene’s conductivity for
the low THz frequency regime as follows [51,52]:

rintra ¼ 2e2KBT

ph2 :
i

wþ is�1 ½Lnð2 coshð
lc

KBT
ÞÞ�; ð3Þ

In which the real part is involved in the absorption and dissipa-
tion of energy due to the presence of intra-band electrons. In addi-
tion, the graphene’s chemical potential that is related to carrier
density is as follows [52]:

lc ¼ Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p—h2v2

f n
q

ð4Þ

The surface plasmon dispersion relations for unlimited gra-
phene between two dielectric layers with dielectric permittivities

of er ; e=r and lr ¼ l=
r ¼ 1 are calculated (for TM mode) as below

[53,54]:

erffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
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W
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The formula above becomes as follows if the graphene layer is

floating in the air (er ¼ e=r ¼ 1) [53,54]:

KTE ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

rg0

� �2
s

; ð6Þ

Where g0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p ¼ 377X is the free space impedance. Fur-
thermore, for TE mode:
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KTE ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rg0

2

� �2r
ð7Þ

And the dielectric of graphene equation could result from con-
sidering the graphene thickness of D [55]:

eg ¼ e0 þ ir
wD

ð8Þ

Graphene is modelled as an anisotropic layer by a thickness of
0.5 nm in the reference [55]. The graphene thickness in most appli-
cations is considered 3 to 10 nm. The dielectric definition model
type is generally used when graphene has a thickness, and the sur-
face current model type is employed when graphene is considered
a two-dimensional structure. In general, 2D conductive surface
model for graphene in the simulation of the device disclose its
material performance completely and efficiently [56]. The most
important challenge in manufacturing graphene-based devices is
the multifaceted industrial techniques and the expensive produc-
tion limiting graphene-based fabrications. Among several manu-
facturing approaches, Chemical Vapour Deposition (CVD)
technology can effectively produce graphene on a large scale. How-
ever, this technique may reduce the quality of graphene, leading to
worsening conductive characteristics of graphene for metasurface
or metamaterial-graphene based structures. Recently, some mod-
ern developments and methods, such as Pulsed laser deposition
(PLD), have been proposed to resolve this issue[57–59].
2.1. EM applications of Graphene-Based metamaterials and
metasurfaces

Metamaterial and metasurface structures can improve the per-
formance of electromagnetic waves across specific boundary con-
ditions. Metamaterials are unconventional materials made
around unique micro-and nanoscale arrays, allowing them to
interact with light waves and other forms of energy typically not
found in nature. For example, the negative index of refraction of
light is the most important characteristic of metamaterials. Meta-
surfaces are a type of metamaterial structures made of separate
parts arranged in 2D to eliminate wide range of losses and chal-
lenges in nanofabrications. New generations of metasurfaces tak-
ing advantage of graphene reconfigurability have been
introduced and used in designing antennas, absorbers and sensors
in THz band through a low-cost implementation. The following
Sections reviews these three main applications of graphene-
based metamaterials and metasurfaces.
3. Graphene-based antennas

Antennas play a critical role in communication and radar sys-
tems. Antennas’ adjustability can ameliorate their functionality
by adapting antennas with environmental conditions and provid-
ing additional levels of functionality for sending or receiving data.
A number of devices can be used to adjust the functionality of
antennas, such as switches (PIN diodes, FETs), variable reactive
loading, structural changes, etc [60–62]. However, there are some
drawbacks associated with these methods, such as high tuning
speed in PIN diodes or a small dynamic range in variable reactive
loading. Graphene can be used in conjunction with metamaterials
and metasurfaces to provide reconfigurability in terms of band-
width and center frequency, illumination direction, and polariza-
tion [63,64] and [65,66]. In addition to the use of graphene-based
metamaterials in antenna configuration, these structures are also
used for other applications such as generating orbital angular
momentum waves.
3

3.1. Frequency reconfigurability

The greatest advantage of graphene-metamaterials integration
is enabling a wide range of reconfigurability characteristics in
graphene-based antennas. Xianjun Huang and et al. (2016)
designed a reconfigurable antenna using graphene in the GHz band
[67], where graphene was modelled as a 2D layer with a surface
impedance (Rs) variable by chemical potential. This graphene array
antenna has an insertion loss of �9.55 dB at 7.89 GHz for
Rs = 2000 O. However, as the graphene’s surface impedance
changes to Rs = 100 O, the reflection becomes �1.1 dB. In [68],
an array antenna was introduced using a right/left-handed feeding
network. The presence of a graphene layer under this feeding net-
work led to the reconfigurability of the antenna’s operating fre-
quency, where the variation of chemical potential between 0 and
0.2 eV controls the operating frequency. In addition, the chemical
potential variation caused the antenna’s gain to change. An array
antenna based on graphene metamaterials fed by a circular horn
antenna was designed in [69]. The negative values of er and lr

are achieved for different chemical potential values for the fre-
quency range of 400 GHz to 620 GHz. The maximum gain of
22.6 dB was obtained in this article for a chemical potential of
0.4 eV. Another example of frequency alteration using graphene
metamaterials was presented in [66], where a graphene-based
array of split-ring resonators under the main antenna led to chang-
ing the resonance frequency.
3.2. Radiation patterns reconfigurability

Radiation patterns reconfigurability is becoming one of the
most critical features of modern antennas, thanks to the emerging
applications associated with IoT and non-geostationary satellite
communications [70–74]. This feature is critically advantageous
for increasing channel capacity [75]. Meisam Esfandiari and et al.
(2018) designed a 2X2 MIMO antenna using an upper layer placed
with space above the antenna shown in Fig. 1 a [76], rotating the
antenna’s pattern between 0 and 37 degrees Fig. 1 b. The capacity
of the channel was calculated for different transmitted powers by
designing a scenario Fig. 1 c. This achievement revealed that the
channel capacity is increased by 47% when aligning the pattern
along the direction of the minimum loss. In [77], a negative refrac-
tive index was achieved using graphene and metal. This metama-
terial structure resulted in rotating the designed antenna’s
pattern between 0 and �27 degrees by changing the graphene’s
chemical potential. This design approach is an efficient technique
for creating antennas with reconfigurable patterns. The use of
metallic metamaterials over graphene layers resulted in an
antenna pattern covering 360 degrees as discussed in [78,79],
where adjusting the chemical potential from 0 eV to 0.5 eV,
resulted in the graphene/gold-based unit cells achieving high
transmission (ON state) and almost total reflection (OFF state) at
two frequency ranges independently, resulting in the main
antenna beam to steer. The main antennas are enclosed with six
graphene/gold metamaterials screen parts.

Another example of using graphene metasurfaces in a leaky-
wave antenna for adjusting its pattern is demonstrated in [80],
where the periodic gaps are generated between graphene metasur-
faces layers equivalent to a series of capacitors in illumination
direction. This method has achieved a minimum beam steering
angle of �29 degrees at 1 THz and a maximum angle of 75 degrees
at 3.41THz. Apart from the above procedures for manipulating
radiation patterns, a revolutionary generation of all-metal meta-
surfaces has recently been developed by Lalbakhsh and et al, with
unparalleled electromagnetic characteristics, a breakthrough in
antenna engineering [81].

http://mostwiedzy.pl


Fig. 1. (a) The geometry and sizes of the MIMO antenna (reproduced with permission from [76]). (b) Radiation pattern of the antenna with superstrate layer and lc = 0 eV for
port 1, lc = 0 eV for port 2, lc= 1 eV for port 1, lc= 1 eV for port 2. (c) Channel capacity of the designed scenario with noise power of � 80 dBm. (d) Structure of the proposed
metasurface and its unit cell (reproduced with permission from [84]).
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3.3. Controlling antennas polarization

Graphene-based metamaterials have also been used for control-
ling antenna polarization [82]. Graphene-based metasurface was
designed for converting linear to circular polarization [83]. The
entire operating bandwidth of this polarization converter extends
from 14 THz to 40 THz for the graphene chemical potential from
0.4 eV to 0.6 eV with ellipticity over 0.95. In [84], a graphene-
based reconfigurable metasurface antenna scanning from 0 to
352.5 degrees at a terahertz band was presented with a maximum
reflection at 46:5

�
. The average reflectivity of this design was

68.3%, and the maximum reflectivity variation range was only
30%. The structure of this antenna and its unit cell is shown in
Fig. 1.d. The period boundary conditions need to be applied in
the simulation when numerically calculating the scattering param-
eters of unitcells following the setting explained in [85,86]. To
numerically calculate the frequency response of EM components,
such as antennas, sensors, filters, couplers, absorbers, and photonic
crystals, various computational approaches, including finite ele-
ment, finite difference time-domain [87–90], finite-difference
frequency-domain [91,92], are employed .

3.4. Coupling reduction and orbital angular momentum applications

Multi Input-Multi Output)MIMO(antennas play an essential
role in increasing the capacity of the channels. However, the cou-
pling between the components of the antenna is a significant chal-
lenge. Graphene-based structures have recently been considered as
a promising solution to reduce the unwanted coupling in the
MIMO antenna systems significantly.

Considerable coupling reduction was achieved in both GHz and
THz frequency bands as reported in [93,94], and shown in Fig. 2,
using graphene unit-cells. Another recent application of graphene
is generating orbital angular momentum (OAM) waves [84,95–
97]. OAM vortex waves can be generated by proper selection of
chemical potential of graphene layers with modes 1, 2, and 3 in
[95] and 0, 1, and 2 in [96], respectively. Both antennas cover a
large frequency band of 1.8 � 2.8 THz and 4.2 � 5.6 THz, for refer-
ences [95,96], respectively.
4. Graphene-based absorbers

Electromagnetic absorbers are engineering materials that can
prevent the reflection and transmission of electromagnetic radia-
tion. Electromagnetic absorbers have drawn increasing attention
in many areas, such as designing selective thermal emitters,
biosensors, photovoltaic devices, etc. Absorbers can be made of
materials such as dielectrics combined with metal plates spaced
at prescribed intervals or wavelengths. Over the last decade, meta-
materials and metal-printed metasurfaces have played a signifi-
cant role in designing EM absorbers. While this class of materials
was only brought to EM absorber designs in early 2000, and is still
considered a new approach, the introduction of graphene into the
EM absorbers is opening a new chapter in EM absorber designs and
applications [98–100]. Graphene is an appropriate alternative for
expensive metals used in modern absorbers, such as gold and sil-
ver, thanks to its reconfigurability and its higher wave absorption
rate [101,102]. This section discusses the recent graphene-based
metamaterials design technologies for EM absorbers.

One of the critical characteristics of EM absorbers is their capa-
bility of handling EM waves with different polarizations. Water/-
graphene metamaterial was recently proposed to satisfy this
requirement over a large frequency band [103]. This model demon-
strates that the bandwidth of the absorber is increased by combin-
ing water with graphene-based metamaterial, as depicted in Fig. 3.
5

a. Water permittivity increases the bandwidth and coupled the
absorption resonances. In this work, 90% absorption over a band-
width of 4.5 THz was achieved around the central frequency of
6.77 THz at the room temperature of 300 Kelvin in the case of nor-
mal incidence. In the case of oblique incidence, the absorber main-
tains its 90% absorption up to 36 degrees over the bandwidth of
59% (4.66 THz to 8.61 THz). The characteristic curve of absorption
for three different structures of A1, A2 and A12 for TE polarization
and different chemical potentials are shown in Fig. 3.a. In [104], a
graphene photodetector based on the metamaterial absorber in the
visible and near-infrared bands was proposed. The investigational
results indicate that the metamaterial-based graphene photode-
tector (MGPD) has attained up to 3751% of photocurrent. More-
over, the symmetric square-ring unit cell allows polarization-
independent photo response at normal incidence. In [105–107],
three structures of polarization an angle-insensitive graphene-
based absorbers were developed. Under the oblique incidence,
the absorptivity of the absorber is more than 90% over a wide range
of incidence angles up to 60 degrees, 55 degrees for the TE and TM
modes in [105,106], respectively. In addition, the results show 80%
absorption for incident angles up to 45◦ for TE waves and up to 65◦
for TM waves were achieved [107].

Another graphene-based approach for maximizing absorption is
the application of metallic metamaterial with graphene [108–110].
The combination of graphene and metallic metamaterials is the
best means to attain active control of the electromagnetic wave.
A C-shaped unit cell with a graphene layer under the cell, culmi-
nated in a maximum absorption in the range of 430 to 770 THz,
the unit cell is shown in Fig. 1 b [111]. The purposed graphene-
based metasurface absorber can be used as a basic building block
of solar energy-harvesting photovoltaic devices. Additionally, the
reflection of the absorber can be reduced by adding a bottom layer
of tungsten. The absorption power is acquired using the following
formulas:

D� E
!¼ iwl0H

!
;D� H

!¼ �iwl0 E
! ð9Þ

AðwÞ ¼ QabsðwÞ
QincðwÞ ð10Þ

Qabs ¼
we0
2

Z
v
Im eðwÞ½ � Ej j2dv ð11Þ

Qtot
abs ¼

Z
AðwÞFðwÞdw ð12Þ

where Qabs, A(w), Qtot
abs and QincðwÞ are spectral power absorbed

by each section, optical absorption, total power absorbed and spec-
tral power, respectively.

Greater absorption in the range of 99% can be achieved using
square ring-shaped graphene-based metamaterials shown in
Fig. 3 [112,113]. As shown in the absorption curves in Fig. 3d and
Fig. 3e, there are three perfect absorption peaks in the terahertz
band, corresponding to 25.53, 36.44 and 53.44 lm[112], and the
absorption bandwidth is 2.88 GHz [113]. A dual bias is used for a
single-layer graphene and a multi-layer absorber in [114]. The
two most important features of this design are cost reduction
and two-mode operation for the two biases. In the first mode,
the absorption peaks occur at 4 THz and 5 THz, while the second
mode shifted the peaks to the 6, 7 and 8 THz. Two sets of chemical
potential values are recommended for a unique design for absorp-
tion at different frequencies.

Artificial intelligence (AI)-based approaches, such as genetic
algorithms [115], particle swarm optimization [116–118], grey
wolf optimization [119–122], neural network algorithms [123–
132], and ant colony [133] have been recently brought to the EM
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Fig. 2. (a) Geometric of MIMO antenna with FSS divider (reproduced with permission from [93]). (b) S-parameters responses for MIMO antenna with and without HCGF FSS
divider (reproduced with permission from [93]). (c) The structure of the antennas, its FSS wall and S-parameter responses of the antennas model with and without separation
(reproduced with permission from [94]).
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community and also utilized in designing a wide range of EM
components including graphene-based absorbers. For example,
genetic algorithm was used to design a unit cell with graphene rib-
bons for reflection minimization, acquiring a 98% absorption ratio
in the frequency band of 6.45 THz and 7.35 THz [101,134]. Further
information on the aabove nature-based optimization can be found
in [135].In this AI-based absorber, two periodic arrays of graphene
ribbons and one graphene continuous sheet act as a coupling ele-
ment to improve the absorption bandwidth. Genetic algorithms
have also been used in reconfigurable graphene-based absorbers.
In [136], dual bias method combined with the inherent graphene
reconfigurability resulted in three modes that were then optimized
by a genetic algorithm. In detail, manipulating the nano graphene
disks increases the bias gates, enabling three reconfigurable modes
of 0.7–2.3 THz, 5.3–6.6 THz, and 7.4–8.4 THz with an absorption
rate higher than 90%. The configuration of some graphene-based
metamaterial absorbers and their absorption bands are demon-
strated in Table.1.
6

Absorbers applications have also been brought to sensing prac-
tices where a higher absorption rate increases sensitivity in plas-
monic sensors. Consequently, the graphene-based absorbers have
earned a special place in sensing applications [137,138]. In the fol-
lowing section, the graphene-based plasmonic sensors are dis-
cussed in detail.
5. Plasmonic sensors

The propagation of viruses has developed a threat to worldwide
biosecurity, typified by the current COVID-19 pandemic. Accord-
ingly, the investigation into epidemiologic infection and virus con-
trol has always been vital in these circumstances [139–141].
Recently, propagating surface plasmon resonance (SPR) has been
used in plasmonic sensor design for virus detection [142–144].

The optical properties of materials led to encouraging applica-
tions in sensor fabrication. However, the time and confinement

http://mostwiedzy.pl


Fig. 3. (a) The schematic design of the absorber with 3D and top views and Simulated absorption spectra of absorber(reproduced with permission from [103]). (b) The
diagram of a periodic array of graphene metamaterial absorber(reproduced with permission from [112]). (c) The absorption rate curve (reproduced with permission from
[112]). (d) Geometric and unit cell structure of absorber (reproduced with permission from [113]). (e) Absorption bands for different chemical potentials(reproduced with
permission from [113]).
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capacity of such (SPPs) are very small in noble metals such as gold
and Au. In addition, the Discovery and control of harmful and poi-
sonous chemical materials, gases, micro-organisms and electro-
magnetic radiation has been a challenge for scientists to recover
human and environmental health. 2D material-based sensors are
very efficient and fit with new production technology, used for
health and environment checking [145–147]. Graphene and
Graphene-oxides, black phosphorus (BP), transition metal chalco-
genides (TMDCs), metal oxides and other 2D nanomaterials are
now considered attractive approaches for the manufacture of
7

highly sensitive sensors [148–151]. The invention of graphene
and its plasmonic has opened a new door to designing SPR sensors.
Surface plasmon polaritons (SPPs) can be produced in graphene at
frequencies in the mid-infrared to terahertz range, which is not
possible using conventional plasmonic materials such as noble
metals. One of the most important property of graphene that dis-
tinguishes it from other two-dimensional materials is its adjusta-
bility by applying a voltage bias without changing the structure.
This ability allows us to change the properties of the structure
without changing its physical parameters. Close and conformal

http://mostwiedzy.pl


Table 1
summary of graphene-based metamaterial absorbers.

Absorber Configuration Absorption band Reference

Graphene square ring-shaped Triple bands, 25.33
lm,36.44 lm, 53.44 lm

[112]

Graphene split-ring nested with a
cross line

Multi bands, between 3
THz to 11 THz

[138]

Graphene double-open rectangular
ring with strip cross structure

Wideband, from 1.260 to
1.548 THz

[113]

Metal-based C-shaped metamaterial
with monolayer graphene

Wideband, from 430 to
770 THz

[111]

Metal-based Minkowski -shaped
with monolayer graphene

Multi bands, between
1200 nm and 1600 nm

[109]

Graphene ribbon Wideband, from 6.45 THz
to 7.35 THz

[134]

Graphene hallow-out squares Wideband, from 1.14 THz
to 3.31 THz

[101]

Water-graphene structure Wideband, bandwidth of
4.50 THz

[103]

Fig. 4. The unit cell of the structure and simulated transmission amplitude curve ().
reproduced with permission from [169]

Fig. 5. View of the mentioned sensor composed of (multi-G-FETs) with a
microfluidic channel along with solution inlet and outlet as labelled and its cross-
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interaction with tissues in the body, skin, brain and eyes is achiev-
able by graphene-based sensors because of their flexible mechanic
and their very thin thickness, which is necessary for attaining
high-quality signals. On the other hand, graphene’s high optical
transparency and electrical conductivity make it a perfect material
for bio-tissue investigations with good resolution images and with-
out visual disturbances. Additionally, a high signal-to-noise ratio
(SNR) in electrophysiological data signals can be achieved thanks
to the excellent electrical conductivity of graphene [152–155].
The conscious, flexible chemistry of graphene-based nanomateri-
als, including the ability to intermix with water-soluble and
water-insoluble active composites, proteins, DNA, cells and more
other things creates them a favorite for modern bio-technologic
with nano platform usages[156–159].

Moreover, combining graphene and metamaterials can achieve
an ultrathin optical SPR sensor of high performance [25,160,161].
Regarding the performance of these sensor models, a resonant
wavelength occurs in the reflection characteristic curve when the
wave vector of the decaying waves and the wave vector of the sur-
face plasmons are equal, where electrons or photons generate the
surface plasmon polaritons. However, this generation requires a
prism, a grating, a defect on the metal surface, or an optical fibre
[20,162–164]. One the great advantages of graphene in manufac-
turing sensors are its high electrical and thermal conductivities
and high control on functionalization. However, hydrophobicity,
high cost, and production difficulties are considered its disadvan-
tages [156].

Generally, there are two approaches for the analysis and inves-
tigation of plasmonic sensors; angle method and wavelength
method [5]. Sensitivity (S), detection accuracy (D.A) and quality
factor (Q) are three main parameters determining the performance
of a sensor that are expressed as: s ¼ rkres

rns . If the refractive index of
the sensing layer differs by rns, the wavelength of the sensor dif-
fers by rkres in the output power, reflection or in the transmission
curve. D:A ¼ rkres

rk0:5
is the signal to noise ratio (D.A), can be deter-

mined by the output power characteristic curve. In addition, the
sensitivity and the spectral width of the SPR curve are used to
determine the quality factor of the sensor Q ¼ S

rk0:5
[20,165–167].

The following summarizes recent studies on plasmonic sensors
using metal/graphene, graphene metamaterials and metasurfaces.

In 2014 a reconfigurable plasmonic sensor was designed based
on two concentric graphene rings sandwiched between the sensi-
tive region and the substrate [168]. This sensor demonstrated a
sensitivity of 9.59 lm=RIU for n = 1.4 and n = 1.5 in the best case.
As stated in the last part of the absorbers section, graphene meta-
materials increased absorption and sensitivity. In addition, the
8

high degree of structural symmetry confirms that the sensor’s
spectral response is angle and polarization-independent. More-
over, the operating frequency of the sensing range can be tuned
by doping chemical potential.

A resonator with a modulation depth of frequency and ampli-
tude was proposed in [166,169], achieving 58.58% and 99.35%,
59.53% and 97.7% in the two crossed-polarization orientations.
The structure and its transmission characteristic curve are shown
in Fig. 4. When the chemical potential is 0.5 eV, the transmission
characteristic curve is calculated for E field orientation (perpendic-
ular and parallel to the gap of the unit cell) as shown in Fig. 4.
When the electric polarization is oriented perpendicular to the
two gaps, the (SSR) structure, the left and right arcs are with the
same length, demonstrates only a single broad resonance at
16.39 THz; meanwhile, there are two resonances in ASR structure,
one of them is at 16.71 THz and another with enormously sharp
asymmetric resonance is at 13.66 THz. Also, there are two reso-
nances at 26.84 THz and 29.22 THz when the electric polarization
is oriented parallel to the two gaps in the ASR structure and one
resonant dip in the SSR structure at 28.03 THz.

In [170], a multi-channel structural sensor with a detection
limit of 10 pM for DNA was investigated. A single layer gra-
phene/crystal was spotted into several channels to measure time
and concentration of DNA hybridization kinetics and affinity con-
sistently with high sensitivity, shown in Fig. 5. Cost-effective,
high-throughput screening of drug candidates, genetic variations,
sectional view (). reproduced with permission from [170]
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Table 2
Summary of graphene-based metamaterial sensors.

Sensor
Configuration

Application FOM, Sensitivity Reference

Graphene Elliptical
ring

Biosensing,
Environmental
monitoring

, 14110 nm/RIU [164]

Graphene disk
with a SRR in
unitcell

Nanoscale optical
sensing

29, 28 cm�1/RIU [160]

Graphene-based
narrowband

Selective sensing 277.8, 1.84 THz/
RIU

[179]

Graphene split ring
with T-stub
(Two peaks)

Medical diagnosing,
Biosensing,
environmental
monitoring

(10.8, 3.2),
(5.6 lM/RIU,
17.2 lM/RIU)

[166]

Graphene Semi
elliptical nano
disk

Gas Sensing 3.9, 11.5 lM/
RIU

[175]

Graphene nano
disk

Multi substance
detection

20.4, 550 cm�1/
RIU

[176]

FLU/graphene-
based disk

For exciting surface
plasmons

5.1, 1140 nm/
RIU

[178]

Graphene
concentering
double rings

Gas sensing 5.82, 9.59 lM/
RIU

[168]

Graphene-layered
metamaterial

Nano sensing 9786, 7885 nm/
RIU

[180]

Fig. 6. View of the (PIT-sensor) and its transmission curve for voltages of v1 and
v2(). reproduced with permission from [172]
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and disease biomarkers are some of the most critical features of
this sensor, opening a new research avenue in biosensing.

In [171], Wendao Xu et al. developed a hybrid golden/graphene-
based metamaterial biosensor capable of decreasing down to 2 ng
chlorpyrifos. The configuration of some graphene-based metama-
terial sensors and their application, sensitivity and FOM are shown
in Table.2. A sensor using two sets of micro-ribbon graphene was
devised in Fig. 6. [172]. The plasmonic interaction between two
ribbons increased the induced plasmons and, as a result, intensi-
fied the sensitivity. The results proved the exact sensing of benzoic
acid with a detection limit smaller than 6.35 lg=cm2. Enhancing
the sensitivity can be an exciting feature for the PIT sensors for bio-
chemical sensing. In [173], a Fano resonance sensor was achieved
with a maximal sensitivity of 7885 nm/RIU.

Islam and et al. (2019) developed a multiband terahertz sensor
and applied a genetic algorithm to optimize its performance [174],
where a graphene layer for easing absorption was used. Addition-
ally, an array of graphene-based metasurface was employed at the
top layer to produce a greater evanescent wave. The main charac-
teristic of this sensor was a 99.7% absorption in its operating bands
suitable for sensing applications. Moreover, in [175,176], dual-
band sensors were designed to achieve 11.5 and 550 1/cm.RIU sen-
sitivities at their optimal performance. Their FOMs were 3.9 and
20.4, respectively, where the sensor in [175] was capable of han-
dling incident angles of 0 to 60 degrees.

A graphene/dielectric periodic sensor with anisotropic distribu-
tion properties of hyperbolic metamaterials was developed in
[177]. When the chemical potential of graphene increases over a
certain value, the equifrequency contour of the sensor will transit
from an ellipse to a hyperbola. In [178], a graphene-based tunable
metasurface sensor was numerically analyzed, showing the excited
plasmons attained a significant tunability with maximum sensitiv-
ity and FOM of 1140 nm/RIU and 5.1, respectively.

Xuemei Du and et al. (2021) introduced a dual-band absorber
with excellent absorption, which enhances the structure’s sensitiv-
ity. The results demonstrated that the sensor has a high Q-factor of
277.8 at 1.945 THz and the sensitivity reaches up to 1.84 THz/RIU
[179]. A graphene-based elliptical ring unit-cell was introduced in
[180,181], showing a sensitivity of 14110 nm/RIU and 21.1 lm=RIU
at their optimal performance, respectively.
9

In terms of the future perspective, the recent advancement in
graphene-based metasurfaces is revolutionizing the field of pho-
tonics in the terahertz (THz) frequency range. Antenna-sensors
made of graphene have received significant attention with the
Internet of Things (IoT) development and the ever-increasing pop-
ularity of wearable electronic devices. Electronic skin devices,
implantable medical components and human health checking are
the most critical applications of antenna sensors. Additionally,
graphene-based metasurfaces can be used to structure reflect-
array antennas.

6. Conclusion

Since 2004 Graphene has been introduced to electromagnetics
engineering and revolutionized EM components in performance
and versatility. Graphene-based metamaterials have unconven-
tional photonic, electronic, thermal, and mechanical properties,
allowing a great degree of freedom in THz operating devices. This
article provides a comprehensive review of the recent advance-
ments in electromagnetic engineering based on the newly intro-
duced graphene and metal/graphene-based metamaterials to
design modern antennas, absorbers and sensors.
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