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Featured Application: The present investigation shows a methodology that can support a speech
therapist by automatically classifying various types of speech disorders.

Abstract: This work deals with automatically detecting stuttering and its subclasses. An effective
classification of stuttering along with its subclasses could find wide application in determining the
severity of stuttering by speech therapists, preliminary patient diagnosis, and enabling commu-
nication with the previously mentioned voice assistants. The first part of this work provides an
overview of examples of classical and deep learning methods used in automated stuttering classi-
fications as well as databases and features used. Then, two classical algorithms (k-NN (k-nearest
neighbor) and SVM (support vector machine) and several deep models (ConvLSTM; ResNetBiLstm;
ResNet18; Wav2Vec2) are examined on the available stuttering dataset. The experiments investigate
the influence of individual signal features such as Mel-Frequency Cepstral Coefficients (MFCCs),
pitch-determining features in the signal, and various 2D speech representations on the classification
results. The most successful algorithm, i.e., ResNet18, can classify speech disorders at the F1 measure
of 0.93 for the general class. Additionally, deep learning shows superiority over a classical approach
to stuttering disorder detection. However, due to insufficient data and the quality of the annotations,
the results differ between stuttering subcategories. Observation of the impact of the number of dense
layers, the amount of data in the training set, and the amount of data divided into the training and test
sets on the effectiveness of stuttering event detection is provided for further use of this methodology.

Keywords: fluency disorder; stuttering; machine learning algorithms; ConvLSTM; ResNetBiLstm;
ResNet18; Wav2Vec2; feature vector; 2D feature space representation

1. Introduction

This work deals with automatic stuttering detection through machine learning. An
algorithm capable of effectively classifying stuttering along with its subclasses could find
wide application in determining the severity of stuttering by speech therapists, preliminary
patient diagnosis, and enabling communication with the previously mentioned voice assis-
tants. Despite its many potential applications, automatic stuttering detection employing
deep learning appears sporadically in the topic of speech processing and machine learn-
ing [1–4]. At the same time, it should be noted that deep learning has dominated many
areas related to speech recognition, such as speech recognition and speech synthesis [5–9].

The problem of speech impairment refers to difficulties in maintaining fluency when
speaking. One category of speech disorder is stuttering, which is very complex due to
its multiple subtypes in etiology [10]. It involves the involuntary addition of sounds
and words and/or the inability to maintain speech fluency. It also refers to repetitions,
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prolongations (difficulties with specific sounds or syllables as in part-word repetitions and
prolongation), blocks while speaking words, word repetitions (or pauses in speech), and
interjections (adding extra sounds, syllables, or words). It affects about 70 million people
worldwide, roughly 1% of the population [11]. However, stuttering does not always affect
people who have a congenital speech disorder. Even healthy people in situations of stress or
nervousness can sometimes lose fluency and freedom of speech. Such a situation, however,
does not imply a pathology. In addition, people who stutter suffer from different degrees
of severity of the condition depending on the situation. It may arise during a conversation
or while performing daily activities; it both may or may not be associated with social
anxiety, which worsens this condition. People who stutter face difficulties in social and
professional interactions, as well as an adverse public attitude toward stuttering [12].
Communicating with new technology through virtual voice assistants such as digital
banking, flight customer services, and chatbots, and even Alexa, Google Assistant, and Siri
can also be problematic [13].

Speech fluency disorders are not easily defined, as they are influenced by many factors,
such as gender, age, accent, and the language spoken by the speaker. There are many classes
of stuttering, each with its subclasses, which makes identifying all types of stuttering with
a single model a difficult task. Even a specific kind of stuttering applied to a single word
can be analyzed in different ways.

A common problem in training deep learning algorithms for speech disorder detection
is the lack of sufficient training data. Many works rely on their own hand-recorded,
transcribed, and labeled datasets, which are often relatively small due to the limited work
put into creating them. The most widely used in the speech disorder field is the UCLASS
(University College London Archive of Stuttered Speech) dataset [10]. A dataset released
in 2021 by Apple, SEP28-k [14], contains approx. 28,000 short recordings containing speech
disorders and may prove to be a breakthrough in this regard.

Methods for detecting stuttering use spectral features such as Mel-Frequency Cepstral
Coefficients (MFCCs), Linear Prediction Cepstral Coefficients (LPCCs), pitch, zero-crossing
coefficient, etc. Moreover, spectral analysis resulting in a 2D (two-dimensional) feature
space is also employed. These features in the form of parameter vectors are analyzed by
using statistical modeling methods such as hidden Markov models (HMM) [15,16], support
vector machines (SVM) [17], neural networks [18,19], and rough sets [19]. Moreover,
methods such as wavelet analysis [20] and dynamic time warping (DTW) [21] are also
employed in stuttering analyses [22–24]. More recently, a 2D feature space was combined
with deep learning algorithms [1–3]. An alternative strategy for detecting stuttering is
to use designated signal features to create language models [25–27]. However, this is a
computationally expensive and error-prone method.

The overall purpose of this study is to develop and test algorithms for stuttering
detection in several contexts. However, specifically, the experimental setup aims to check
the impact of applying different speech features, changing the deep model architecture,
and changing the amount of data divided into the training and test sets. The paper starts
with recalling the datasets and related works used in stuttering classification that constitute
the background of this study. Then, the assumptions, along with a block diagram of
the present investigation, are included. Several stages of the analysis performed follow
this. Among the algorithms tested are two baseline, i.e., k-NN and SVM, as well as deep
models, i.e., ConvLSTM, ResNetBiLstm, ResNet18, and Wav2Vec2. A transformer-based
architecture, ResNet18 was determined to be the most successful algorithm, i.e., it can
classify speech disorders at the F1 measure of 0.93 for the general class. Additionally, the
deep learning model shows superiority over a classical approach to stuttering disorder
detection. However, due to insufficient data and the low quality of the annotations, the
results differ between stuttering subcategories. Observation of the impact of the number of
dense layers, the amount of data in the training set, as well as the amount of data divided
into training and test sets on the effectiveness of stuttering event detection is provided for
further use of this methodology. Finally, a discussion and conclusion are presented.
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The highlights of our work are as follows:

- We examine the impact of individual signal features such as Mel-Frequency Cepstral
Coefficients (MFCCs), pitch-determining features in the signal, and various 2D speech
representations on the recognition performance;

- We propose restructuring the network model so it achieves an F1 measure of 0.93 for
the general class classification;

- We use the Wav2Vec2 transformer-based model that achieved better results for word
and sound repetitions, which is promising for further research as there are issues with
satisfactory results in those classes;

- We demonstrate that the results obtained by the best-performing algorithm are com-
parable to state of the art and it outperforms the literature-reported outcomes, both
for general class classification and when detecting speech disfluency subclasses.

2. Background
2.1. Datasets Available

In this section, datasets containing speech disfluencies are recalled, as they constitute
an essential part of the machine learning approach to the given problem. They may also
be helpful for both researchers and therapists as examples of how to archive data when
collecting samples of stuttered speech.

SEP-28K [14] is the most extensive collection of labeled stuttering samples published,
containing multiple classes for both speech impairment and fluency in speech. It includes
recordings from 385 interviews created through 8 series conducted with people with speech
disorders. These episodes involve selected radio plays: He stutters; HVSA; I stutter, so what;
My stuttering life; Stutter talk; Stuttering is cool; Women who stutter; Strong voices [14].

Between 40 and 250 short, 3 s segments were cut from each episode. Their final
total number was 28,177. The editing of the recordings was conducted automatically
using a speech detector. According to the authors, speech disorders most often occur
just after, before, or during pauses in speech, and for this reason, the aforementioned
several-second blocks are located around such pauses. In addition, to obtain the greatest
variety in the labeled disorders, the recordings were cropped differently with respect to the
localized breaks in speech. Each clip was annotated independently by three people. The
evaluators received brief training in recognizing stuttering and its subcategories, but none
professionally dealt with the disorders in question. This caused some errors in annotating
due to the difficulty arising from labeling with audio only. Unlike other collections, the
authors did not have access to any additional auxiliary information, such as physical or
visual signs of stuttering.

A list of classes annotated as part of the collection is presented below. It is worth
mentioning that each block can be assigned to multiple classes, both related to speech
disorders and those not caused by disfluency [14]:

1. Block—a pause in a speech indicating taking a breath or stuttering;
2. Prolongation (prolongation)—prolongation of a single vowel, e.g., “M[mmm]ommy”;
3. Syllable repetition (sound repetition)—repetition of a single slab or sound,

e.g., “I [pr-pr-pr-]prepared dinner”;
4. Word or phrase repetition (word/phrase repetition)—for example, “I made [made] dinner”;
5. Interjection—the insertion of a word or voice into an utterance, e.g., “um”, “uh”;
6. No dysfluencies.

The recordings also have non-speech disfluency labels to assist in speech processing:

1. Pause (natural pause)—a natural pause in speech not caused by stuttering;
2. Unintelligible passage (unintelligible)—the authors were unable to understand the

speaker’s message;
3. Unsure—the denominator was uncertain into which class or classes the block should

be classified;
4. No speech (no speech)—there is silence, or only noise occurring in the background;
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5. Poor audio quality (poor audio quality);
6. Music—no speech, while background music can be heard.

As mentioned earlier, to minimize errors, each recording was labeled by three inde-
pendent evaluators. The inter-rater reliability between the evaluators assigning grades was
measured using Fleiss’ kappa measure [28], which is calculated according to
Equation (1) [14].

κ =
Po − Pe

1 − Pe
(1)

where:

- Po—observed agreement between evaluators;
- Pe—expected agreement when data are randomly labeled.

Fleiss’ kappa measure ranges from 0 to 1, with 1 indicating complete agreement and
0 indicating no compliance. The highest agreement was observed for the syllable repetition,
interjection, sound repetition, and no disturbance classes, amounting to 0.62, 0.57, 0.4,
and 0.39, respectively. The lowest score was obtained for interruptions and prolongations,
at 0.25 and 0.11, respectively. This may be explained by the lack of additional modality
beyond the audio signal when evaluating a speech sample.

Table 1 shows the distribution of classes in the SEP28-k dataset. It can be observed
that the ratio of samples with any speech disorder to samples with fluent speech is about
44:56, so this is a balanced dataset, considering the general class. The percentage of the
occurrence of other disfluency types, unfortunately, is not as good. Most of them amount to
about 10% of the entire set. In contrast, interjections amount to 21.2% of the collection. Such
a disproportion of data in particular classes may result in difficulties in training a machine
learning model capable of correctly classifying all disorder events. Classes unrelated to
speech disorders make up a small percentage of the data. The only marking that frequently
occurs, in as much as 8% of the samples, is natural pausing, which is insignificant in
sample quality.

Table 1. Distribution of classes in the SEP28-k dataset [14].

Classes Related to Stuttering Frequency of Occurrence [%]

Breaks 12
Prolongations 10
Repetitions of sounds 8.3
Repetitions of words or whole phrases 9.8
Any disruption of speech 44.1
Interjection 21.2

Classes not related to speech impairment Frequency of occurrence [%]

Natural pause in speech 8.5
Unintelligible speech 3.7
Uncertainty of the evaluator 0.1
Lack of speech 1.1
Poor audio quality 2.1
Audible music 1.1

SEP28-k was more extensively described as it was used in the present investigation;
however, there are other databases available, including UCLASS [10], LibriSpeech [29],
TORGO [30], and FluencyBank [31]. The FluencyBank database contains many recordings
of children and adults with various types of speech disorders, including stuttering [31].
The labels for these recordings are transcriptions saved in CHAT format. Unfortunately,
not all have text transcripts and are labeled with speech disorders. The disadvantage of
this collection is that the pathologies in speech, unlike SEP-28k, are labeled phonetically.
To use the data from FluencyBank, the CLAN program must be employed. There are also
inconsistencies and inaccuracies in the labeling provided by the original data authors [14].
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Repeating the labeling process of the FluencyBank data, analogous to the labeling pro-
cess in SEP28-k, resulted in 4144 short clips (3.5 h) annotated according to the following
categories [14,31]:

• Classes related to speech disorders: breaks (10.3%), prolongations (8.1%), repetitions
of sounds (13.3%), repetitions of words or whole phrases (2.5%), any speech disorder
(46.9%), and interjections (27.3%);

• Classes not related to speech disorders: natural pauses in speech (2.7%), unintelligible
speech (3.0%), and uncertainty of the evaluator (0.4%).

The UCLASS database contains recordings of people who stutter [10]. The authors
have made both phonetic and orthographic transcriptions available. Files containing
information about the recordings, such as the environment and the person’s condition, are
also available. Markers are provided in CHAT SFS and PRAAT TextGrids formats. Three
versions of the data are available. The first is from 2004—in which only one category is
available, a monologue. A total of 138 people were recorded, 18 of whom were women. The
second edition is from 2008—three types of recordings are available: reading, monologue,
and conversation. There are 128 conversational recordings of various people available, of
which 18 are women. For reading, there are 107 people (15 women, 93 men), while for
monologue, there are 82 people (6 women, 76 men). Finally, the third release refers to
modifications to version one by changing the recording frequency.

The LibriSpeech dataset represents a corpus of English for automatic speech recogni-
tion (ASR) research [29]. The LibriStutter collection is a modified subset of the data included
in LibriSpeech. It contains recordings of 23 men and 27 women. Synthetically generated
speech disorder events were added and annotated appropriately. The impairment involves
repetitions of words, sounds, and phrases; prolongations; and interjections. A total of
15,000 excerpts with speech disorders were generated, 3000 for each previously mentioned
class. This collection was created for experiments based on the deep FluentNet model [32].

2.2. Machine Learning Application for Stuttering Detection

Hidden Markov models (HMM) are widely used in event sequence classification.
Therefore, they are particularly well suited for research on speech recognition and related
problems. Among the numerous examples of research in speech disfluency is the work of
Wisniewski et al. [16]. The authors attempted to detect two subclasses of speech disorder,
which were prolongations and pauses in speech. The work included several experiments
based on MFCC features derived from speech, the most successful of which was a model
trained on isolated samples. It achieved an average accuracy for both studied events of 80%.
In conducting the experiments, the authors had at their disposal a database of 500 short
utterances recorded by two people with speech disorders. The researchers emphasized
that HMM can be a universal method in classifying speech impairment due to the lack of a
need to integrate different languages.

Tan et al., in their work [33], sought to distinguish between correct and impaired
speech without categorizing stuttering. In their study, they used recorded utterances from
10 students, who were asked to record the same short utterance. In addition, they created
15 samples employing a computer-generated speech disorder. Of the 35 samples created,
20 served as a training set for estimating model parameters, while the rest were used as a
test set. An accuracy of 93% was achieved using a model based on 12 MFCC features.

It is also worth mentioning the article by Nöth et al. [15], who used the HMM algorithm
to find similarities between speech signals containing speech disorders and those from
speakers without disfluencies in speech. For the data collection, 37 stuttering patients
of ages between 12 and 45 were recorded. They were asked to read excerpts from the
English story “The Northwind and the Sun.” The authors concluded that there was a
strong correlation between the recordings studied. They were able to distinguish between
individuals of different subclasses of speech disorders based on the number and length of
breaks in the signal.
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The Support Vector Machine (SVM) method can be used for both regression and
classification [34]. In 2013, Mahesha and Vinod used a multiclass SVM to classify three cat-
egories of stuttering, i.e., prolongation and word and syllable repetitions [17]. Experiments
were conducted using three different types of acoustic features. These were LPCCs (linear
predictive cepstral coefficient) [35], MFCCs (Mel-Frequency Cepstral Coefficients) [36], and
LPCs (linear predictive coding). They used data from the UCLASS collection. The authors
selected 20 recordings of people between the ages of 11 and 20 for the experiments. The
efficiency the authors achieved was 92%, 88%, and 75%, respectively. The SVM algorithm
was also used by Ravikumar and colleagues [37]. They classified syllable repetition using
MFCC features and dynamic time warping (DTW). They trained and tested the algorithm
on a dataset containing the recorded utterances of 15 different adults with speech disorders.
In the study, the authors achieved an accuracy of 94.35%. Pálfy and Pospíchal [38] compared
the accuracy of SVM using two different kernels of SVM, linear and radial basis function
(RBF). A more favorable result was achieved using the linear kernel; its accuracy was 98%.
While using the RBF kernel, an accuracy of 96.4% was obtained. In the experiments, the
MFCCs coefficients were used as features.

Among the classical machine learning methods, one can also see methods using the
k-nearest neighbor (k-NN) method, including a model presented by Chee et al. based
on a feature vector containing MFCC coefficients developed for detecting repetitions and
prolongations in speech [39]. The model achieved an accuracy of 90.91%. The authors used
ten recorded reading passages from the UCLASS collection. The samples were selected to
cover a wide age range of speech disorders. Among the data chosen, manual segmentation
of the impairment was performed, extracting 55 prolongations and 55 repetitions. The same
authors also investigated the effectiveness of LPCC features for the same speech disorders,
as in the previously mentioned work [40]. The data used in this experiment also overlap
with their previous work. An accuracy of 87.5% was achieved for the linear discriminant
analysis (LDA) model and 89.77% for k-NN [40].

A noteworthy paper using these models is a 2017 paper by Ghonem et al. [41]. The
presented model was capable of distinguishing between several speech disorders simulta-
neously. The model was trained on selected data from the UCLASS collection. Thirty-nine
recordings with 18 participants were used. After averaging, the accuracy was 52.9% for
disorders such as repetitions, prolongations, and fluent speech.

Neural networks were used in speech disorder detection even before today’s level of
technology and computing power were available. As early as 1997, Howell and his team
designed a system for stuttering detection consisting of two stages [42]. The first was a
model whose task was to segment speech into linguistic units, and then, in the second stage,
another model assigned the created segments to the appropriate categories. Recordings
made while reading the fairy tale “Arthur the Rat” were used as a dataset. Twelve children
with speech disorders participated in the study. The story contains 376 words, of which
90% are monosyllabic. An accuracy of 78.01% was achieved on average in classifying the
words spoken incorrectly. Geetha et al. used neural networks to detect stuttering among
children [43]. The dataset contained 51 study participants. The model was trained based on
information such as the type of disorder, its duration, gender, age, family information, and
the child’s behavioral assessment. In the study, the authors declared an accuracy of 92%.
The detection of individual categories of stuttering was also carried out by Szczurowska
and colleagues in 2014 [18]. The result obtained was an accuracy of 76.67% for pauses in
speech. They used 40 fragments of 4 s containing disordered speech and the same number
of recordings of correct speech. Kohonen self-organizing maps (SOM) and a multilayer
perceptron were used for classification.

In 2013, Mahesha and Vinod presented a new type of MFCC based on the linear
prediction-Hilbert transform-based MFCC (LH-MFCC) [44]. The authors declare that the
improved features contain more information related to voice, articulation, and pitch. They
reported a 1.79% improvement in performance over classic MFCC coefficients, measuring
the average accuracy of the model on a test dataset.
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The significant increase in available computing power over the past few years has
led to a considerable increase in interest in deep learning, including in the field related to
signal processing. A number of methods were developed that can effectively handle many
types of tasks, including the classification of speech disorders. In 2021, research work was
published on the development of a deep neural network for classifying subtypes of speech
disorders called StutterNet [25]. The authors used the first release of the UCLASS dataset
for the study, from which they selected recordings of 128 persons. StutterNet contains five
layers of time delay that precede pooling layers, three layers of fully connected artificial
neurons, and a softmax layer. The last layer returns predictions for all diagnosed classes.
In addition, the ReLU activation function and data normalization were used after each of
the mentioned elements. Moreover, after the first two fully connected layers, a dropout
with a likelihood ratio of 0.2 was included. To prepare the data, the authors determined
20 MFCCs from each sample. A k-fold cross-validation method was used, with a k equal to
10. Ten experiments were conducted, in each of which 80% of the samples were randomly
assigned to the training set, 10% to the validation set, and 10% to the test set. The authors
declared that, at the time of publication of the paper, they achieved the highest score on the
UCLASS dataset. The values of the F1-score were 0.27, 0.16, 0.46, and 0.63 for repetitions,
prolongations, blocks, and fluent speech, respectively.

Another paper that used deep learning was published by Alharbi and colleagues [1].
In their work, they employed data from the UCLASS (Release Two) dataset, 25 recordings
of children reading the fairy tale “Arthur the Rat,” 14 recordings of people reading the text
“One more week to Easter,” and 27 recordings from other sources. They investigated two
methods for classifying speech disorders, conditional random fields (CRF), and bidirec-
tional long short-term memory (BLSTM) to detect stuttering events in transcriptions of
stuttering speech. The researchers obtained the highest averaged F1 measure of 0.76 for
the BILSTM model for six different subclasses of speech disorders. Another publication is
the paper by Bhatia and colleagues [3]. They created an automated system for detecting
stuttering and selecting possible therapies based on classification results. They consider
prolongations, repetitions, and abnormal pauses as classes of speech disorders. The au-
thors created and released their own data labels, classifying passages as prolongations or
repetitions. They performed segmentations on each audio sample using a Python language
library, then calculated a 13-dimensional MFCC-based feature vector. The authors noticed
that repetitions differ strongly from prolongations, so they trained two separate models.
Both used an architecture built from modified recurrent blocks, i.e., a gated recurrent
convolutional neural network (GRCNN). They introduced several different types of ma-
chine learning models. The best was GRCNN, trained separately for prolongations and
repetitions, achieving accuracy results of 95% and 92%, respectively. However, these were
the results obtained on a validation set.

There are several publications that measure model performance on the SEP-28k
dataset. Bayerl et al. [45] used the wav2vec2 model and achieved an F1-score equal to
0.22 for blocks, 0.69 for interjections, 0.41 for prolongations, 0.43 for sound repetitions, and
0.46 for word repetitions. An essential element of their publication is that they added semi-
automatically generated samples to the SEP-28k dataset to address the class imbalance
problem. Sheikh et al. [46] investigated the impact of multi-task and adversarial learning.
They achieved F1-scores equal to 0.32, 0.34, 0.12, 0.51, 0.71 for repetitions, prolongations,
blocks, interjections, and general class. The same team of scientists published another paper
related to stuttering detection [47]. They managed to achieve a mean F1-score for all classes
in SEP-28k equal to 0.46 by addressing the class imbalance problem with augmentations
and weighting the contribution of classes in the loss function.

3. Method
3.1. Assumptions

It was assumed that the SEP-28k database was to be employed. It was divided into
a training set and a test set, with 22,523 samples in the training set and 5632 in the test
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set. It was also decided to test the SVM and k-nearest neighbor algorithms, which belong
to the group of classical algorithms. Both algorithms were trained for classes such as
prolongation, blocking, voicing repetition, word repetition, interjection, and a general class
containing all those previously mentioned. MFCCs were derived as features from speech
signals. Before applying the SVM algorithm, a principal component analysis [48] was used
to reduce the dimensionality of the features. The number of components to keep during
the dimensionality reduction was chosen so that the amount of variance that needs to be
explained was greater than 0.85. This resulted in reducing the number of features to 1025,
which is 33% of the original vector. The data were also standardized to obtain a mean
expected value close to zero and a standard deviation of 1. The algorithms were tested for
different values of hyperparameters; the best value of the number of k nearest neighbors in
the case of k-NN was 5, while in the case of SVM, the most promising results were obtained
by using the polynomial kernel function.

The block diagram of the experiments performed is shown in Figure 1.
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3.2. Classical Approach to Stuttering Detection

Figures 2 and 3 present the F1 measure and accuracy results obtained on the test set
of the best-trained versions of the k-nearest neighbor algorithm and the support vector
machine for each of the classes mentioned in the assumptions of the experiments.
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Analyzing Figures 2 and 3, it can be seen that despite high accuracy, the values of the
F1-score for most classes are quite low. This means that the models tend to label positive
samples as negative, a very unfavorable phenomenon in medical pathology detection tasks.
The models achieved the highest results for the general class. High accuracy was achieved
for classes such as word repetition and sound repetition, but the F1 measure score was
very low for them. This may be because the number of these classes in the set was very
low, as presented in Table 1. Interjections and blocks were detected at a similar level, while
prolongations were classified at the F1-score of about 0.6. Both algorithms achieved similar
measures for most classes, but SVM appears slightly more accurate in the speech disorder
classification task.

3.3. Deep Machine Learning Models Employed in Stuttering Detection

As already mentioned, MFCCs are widely used in speech recognition tasks. It is
believed that they can effectively extract signal features associated with speech [49,50].
In the experiments, four deep models available in the literature, i.e., ConvLSTM in two
architecture variants (baseline and the one originally proposed by [14]), ResNetBiLstm,
and ResNet18, were tested as backbones. The general deep model architecture is shown in
Figure 4. Since the source code and weights for none of them were made publicly avail-
able, it was decided to implement it following the information contained in publications
presenting the architectures.
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The baseline architecture consists of the LSTM layer, whose purpose is to model the
dependencies between successive time samples and map these dependencies to particular
types of stuttering. The result of this layer is a sequence of neurons, which is then fed
in parallel to two dense layers. One is responsible for a binary decision on whether a
given sample contains fluent speech or not. At the same time, the other is responsible
for assigning a speech sample to the subclass of speech disorder in the case of dysfluency.
The ConvLSTM model differs from the baseline in the cost functions used, but also in the
number and type of neural layers used. It has a sequence of convolutional layers before the
recursive layer. Their task is to detect complex patterns in the data received at the input. The
weights thus assigned to individual pixels and their groups are then processed analogously
to the basic model by recurrent networks and dense layers. Another difference between
these two backbones is the cost function used. The baseline uses binary cross-entropy (BCE),
shown in Equation (2). The extended version uses a separate cost function for each output
type. The weighted cross entropy combined with the Focal loss function is used for speech
fluency classification. In contrast, speech impairment classification uses the concordance
correlation coefficient (CCC) shown in Equation (3). ResNet18 uses only convolutional
layers, but they are more advanced since residual connections are used. ResNetBiLstm
combines the ResNet network with two bidirectional long short-term memory blocks.

BCE = − 1
N

N

∑
i=1

yi × LOG(p(yi)) + (1 − yi)× LOG(1 − p(yi)) (2)

CCC =
2ρxyσxσy

σ2
x + σ2

y +
(
µx − µy

)2 , (3)

where:
y—label for the given class;
N—number of classes;
p(y)—predicted probability for the given class;
ρ—Pearson coefficient correlation between x and y;
σ—standard deviation;
µ—mean value.
As part of the data preprocessing, it was decided to employ MFCCs since they ap-

peared in the literature in the largest number of papers. For each data sample, 47 MFCCs
were determined and calculated with a window size of 25 ms. All trained models are
capable of simultaneously returning results for both the general class and separately for
each stuttering subclass, i.e., prolongations, blocks, voiced repetitions, word repetitions,
and interjections. The sample size of the data for each model was set to 32, with the
threshold limit at 0.5. Data from the SEP28-k collection were used. They were randomly
divided into training, validation, and test sets, with 22,540 samples in the training set,
2816 in the validation set, and 2818 in the test set. The ratio of the general class to subclasses
of stuttering in the value of the cost function is also an important parameter. It was decided
to assign the general category the same weight as each subclass during the first test. Subse-
quent experiments investigated the effect of different types of data features on the model
performance, changes in model architectures related to the number of neural layers at the
end of the model, the effect of the amount of data in the training set on performance, and
the effect of how the data were partitioned.

The best models for evaluation were selected on the basis of the average score of the
F1 measure for all classes. Table 2 presents the values of the F1 measure and the accuracy
of the models on the test set. In addition, Figures 5 and 6 present a summary of the results.

All the presented models were trained with different values of the learning rate, which
were 3 × 10−4, 1 × 10−5, 1 × 10−6, and 1 × 10−4, respectively, for baseline, ConvLstm,
ResNet18, and ResNetBiLstm. The models were trained for 40 epochs with 32 samples
in each batch. There were two fully connected layers in each classification head, which
consisted of 512 neurons in the hidden layer. The best ratio of the dropout was determined
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between 0.1 and 0.2, depending on the model. The proposed models achieved the highest
values of the F1 measure for a given architecture. After analyzing the presented results,
we concluded that the models are much better at classifying the general class than specific
disorders. The model that seems to be the most promising for further experiments is
ResNetBiLstm. It achieved the highest F1 measure for each class, and achieved comparable
accuracy to other architectures.

Table 2. Values of basic model measures on the test set.

Baseline Prolongation Block Sound Repetition Word Repetition Interjection Disrupted Speech

F1-score 0.258863 0.436660 0.067591 0.109167 0.002066 0.486504

Accuracy 0.699432 0.583392 0.805891 0.828957 0.657204 0.432931

ConvLSTM Prolongation Block Sound repetition Word repetition Interjection Disrupted speech

F1-score 0.245714 0.390687 0.007286 0.083751 0.268041 0.512953

Accuracy 0.718950 0.619233 0.806600 0.828957 0.672463 0.466288

ResNetBiLstm Prolongation Block Sound repetition Word repetition Interjection Disrupted speech

F1-score 0.283465 0.519135 0.256705 0.203620 0.438048 0.845312

Accuracy 0.716290 0.549493 0.697584 0.725643 0.650039 0.746687

ResNet18 Prolongation Block Sound repetition Word repetition Interjection Disrupted speech

F1-score 0.307692 0.472831 0.120635 0.020202 0.349515 0.835989

Accuracy 0.670304 0.568979 0.784100 0.848792 0.634451 0.727202
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3.4. Impact of Feature Types

Spectrograms and mel spectrograms, i.e., 2D feature spaces, are widely used in speech
classification [50], so it is worth employing them as one of the representations incorporated
into the deep models. Moreover, even though chroma features are primarily dedicated to
music analysis [51], such a representation in the form of 2D feature space, i.e., chromagrams,
is employed in speech analysis as well [50], but with less success [52]. One of the properties
of chroma features is that they capture harmonic and melodic characteristics of music while
being robust to changes in timbre and instrumentation [53]. In stuttering detection, this can
be important because of the lack of impact caused by different voice timbre in speakers, so
chromagrams are to be used as well.

Therefore, the performance of the models was examined using selected features as
input and their combination. Spectrograms were created using the libros Python language
library. The window size was set to about 25 ms, taking into account the sampling rate
of 16 kHz. The parameters of the learning rate were chosen based on the results of the
previous study. To perform this experiment, the size of the input data of each model had to
be changed slightly. For the baseline model, which has the LSTM cell first, only the number
of features in the layer input was changed, but the number of consecutive time steps
remained the same. In the case of architectures that have weave layers in the first place,
it was not necessary to change the size of the filters. Only one of the input dimensions
changed, which only affected the output height. The chromagram was considered a
complementary feature, but it was employed to see how deep learning models would
perform with only this information. Finally, mel spectrograms were also tested combined
with the models proposed. Variations in the configurations of model architectures were
analogous to the experiment with spectrograms. An identical strategy was adopted for the
selection of the learning rate. The results are shown in Figures 7–11.

The use of only chromagrams yielded the weakest results, probably because these
features only carry information about the pitch in a given time window. While this is
insufficient data to classify speech disorders effectively, it can be a valuable addition to the
input information.

In addition, the performance of the models was checked using mel-scale-based spec-
trograms as input. Such a representation is often used in speech recognition [50,52], so it
was deemed worth testing (see Figure 11).

After analyzing the results, we can see that the ResNetBiLstm and ResNet18 models
can more accurately recognize speech disfluencies, confirming previous conclusions. The
models seem to classify better when trained on a combination of all features, which are
MFCCs, spectrograms, and chroma features. The exception here is the ResNet18 model,
which is already a complex enough model that it may have been subject to some degree
of overtraining.
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3.5. Impact of the Number of Dense Neural Layers at the End of the Model

In the previous experiments, each model output had two parallel dense neural layers.
One was tasked with binary classification, determining whether the speech in a given
passage was impaired, while the other classified the subcategories of stuttering. It was
decided to investigate modifying the architectures by removing one of the dense layers,
specifically the one responsible for general class classification. In such a variant, the overall
class score is estimated based on the stuttering subclasses. Figure 12 shows this modification
performed on the architectures.
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Another modification in this experiment is the cost function, from which the factor
responsible for classifying correct speech was removed. The results are shown in Figure 13.

Figure 13 clearly shows that each model achieved a significantly higher average F1
measure for stuttering class classification. This leads to the conclusion that those without a
factor in the cost function responsible for general categories can better learn the detection
of individual subclasses.

3.6. Impact of the Amount of Data in the Training Set

In a publication presenting the SEP-28k collection [28], the authors conducted an
experiment to study the effect of the amount of data in the training set on the model
results. We decided to repeat this experiment and verify its assumptions. The average
values of the F1 measure for the subclasses of speech disorders are shown in Figure 14.
The red-color-marked SEP-6k indicates the presence of about 6000 random samples in the
training set. Similarly, SEP-12k and SEP-18k denote 12,000 and 18,000 samples, respectively.
The test set was the same as in the previous experiments. Hence, Figure 14 contains the
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average results of the F1 measure for the models, depending on the number of training
samples in the dataset.
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Analyzing the measure obtained led to the conclusion that we were able to replicate
the results of the experiment included in the publication of the SEP-28k set [14]. However,
each of the models obtains a significantly higher score on the F1 measure, which indicates
higher accuracy in classifying speech disorders. This confirms the need for a dataset as
large as SEP-28k.

3.7. Impact of the Data Division into Training, Validation, and Test Sets

The effect of the level at which the data are divided between the training, validation,
and test sets was also examined. All the previous training was conducted on data divided
into subsets at the level of individual samples. This was an assumption consistent with the
experiments described in the baseline and ConvLSTM model information publication [14].
Splitting the data at the episode level means that recordings belonging to specific programs
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are not repeated in the training and test sets. This limits the model’s ability to learn a
particular person’s voice or way of speaking. Such a restriction should force the model
to better generalize the knowledge it acquires. The last option is to split the data at the
level of the entire algorithm. In this variant, the absence of recordings belonging to the
presenter in the training and test collections is guaranteed. As described in the publication
on the SEP28-k collection, in some series, not only did the recorded individuals have
speech disorders, but the presenter was also affected. In addition, such a division makes it
possible to test the model on recordings created under entirely different conditions. It is
likely that each series was recorded in different rooms, and different microphones were
used. All of these factors may be present in the recorded signals, which means that deep
learning models can learn the features associated with them. Partitioning was performed
to replicate the previous sizes of specific subsets as much as possible. In the end, there were
18,449 samples in the training set, 4643 samples in the validation set, and 5063 samples in
the test set. The series chosen as the validation set were “My Stuttering Life” and “Strong
Voices.” The test collection included a program called “StutterTalk.” Table 3 shows the
distribution of classes in every split.

Table 3. Class distributions after different splits.

Split Variant Class Train Val Test

Split by samples

Prolongation 6849 850 847

Block 9626 1183 1161

Sound repetition 4485 582 547

Word repetition 3694 445 482

Interjection 7770 921 967

Split by episode

Prolongation 6941 787 715

Block 9522 1156 1132

Sound repetition 4507 529 515

Word repetition 3678 441 444

Interjection 7680 981 873

Split by show

Prolongation 5723 1486 1353

Block 7848 2093 2027

Sound repetition 4120 589 903

Word repetition 3270 420 931

Interjection 6780 1016 1862

Figure 15 shows the results of the described study. After analyzing them, we concluded
that the way the data are divided has a significant impact on the results of the models.
Unfortunately, in the experiment, each of the test sets has different samples. Nonetheless, it
can be seen that the models perform best when split at the sample level. This may be due
to the fact that in such a situation, the training set has the greatest diversity in samples.
Another interpretation could be that the models are learning how specific individuals
speak, which would have a negative impact on the generalization of such a system.

3.8. Implementation of Wav2Vec

Recently, transformers have outperformed RNNs and CNNs in many tasks related to
natural language processing and computer vision. It was decided to check the performance
of one of the transformer-based architectures, named Wav2Vec2, developed and pre-trained
by Facebook [54]. The model was implemented in the same way as other deep learning
backbones, with the exception of extracting features. Wav2Vec2 has its own built-in feature
extractors, so it needs only a raw audio signal as input. The results compared to the best-
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performing ResNetBiLstm and ResNet18 are shown in Figure 16. The best model out of all
the Wav2Vec2 experiments was trained for 40 epochs with 32 samples in every batch. The
initial weights come from Facebook’s pretraining, so the model was only fine-tuned for this
specific classification task. The learning rate was set to 5e-06. According to the results, the
transformer-based model did not outperform previous methods. It achieved better results
only for word and sound repetitions, which is promising for further research as there were
issues with satisfactory results in those classes.
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It is worth noting that the ResNet18 model achieved an F1 measure score of 0.932 for
the overall (disrupted) class. This is the highest score obtained in the studies conducted
that has been seen in the literature.

3.9. Testing Algorithms on the FluencyBank Dataset

While working on deep learning models, it is important to check their performance
on an external dataset that was excluded from the training set. The FluencyBank dataset
was chosen for this purpose as it has annotations made by the authors of the SEP-28k
paper. The best-performing models from the previous experiments were selected for this
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benchmark. Those models are ResNet18 and ResNetBiLstm with the modified architecture
from Section 3.5 and Wav2Vec2 from Section 3.8. The F1-scores for specific speech disorders
are shown in Figure 17. The performance of ResNet18 is the worst among the other models.
ResNetBiLstm achieved the highest mean F1-score, but this is because Wav2Vec2 performed
poorly in detecting blocks. Nevertheless, Wav2Vec2 was the best model in four out of six
speech disorders.
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4. Conclusions

The results of the experiments indicate that SVM proved to be more effective than
k-NN. Among the deep models tested, ResNet18 achieved the highest values on the SEP-
28k dataset, and the ResNetBiLstm model achieved the best results on the FluencyBank
dataset. It should be noted that the deep models are capable of simultaneously making
predictions for each of the classes, unlike the SVM algorithm, which had to be trained
separately for each class. The deep learning model achieved significantly higher values for
the F1 measure. The most challenging classes to discern were found to be repetitions of both
sounds and whole words. One reason may be the small number of positive samples for
these classes in the dataset. Interjections and blocking were recognized with similar success.
Prolongations are also among the more difficult subcategories to detect. The reason behind
this may be the annotations available in the SEP-28K collection. It should be remembered
that they were made by individuals who do not work with stuttering people daily. They
only received training under the guidance of clinicians. However, their annotations are
independent of each other, and the final grade assigned to a given fragment resulted from
averaging these labels. A real benefit of making the SEP-28K collection available is the
amount of data it contains. The experiments show that the number of samples in the test
set significantly impacts the final result. Therefore, this is one of the constraints that was
uncovered in the study. Moreover, some other limitations of such a study can be discerned.
The most important seems to lie in the nature of the stuttering phenomenon. Some classes
of disfluencies are less commonly seen than others, so the datasets contain imbalanced data.
Moreover, if such stuttering-like events are searched automatically, then pauses, repetitions,
hesitation in talking, etc., will also be treated as stuttering occurrences, even if they are not.
One solution seems to be a multimodal approach in which disfluency events in speech are
checked against blocks appearing on the speaker’s face.

The study found that the way the data are divided has a significant impact during
training. An experiment on the effect of particular features showed that they carry addi-
tional information about the data, which translates favorably into the final result of speech
disorder detection. Therefore, this is another constraint limiting the study. There are a
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plethora of features and feature/algorithm combinations that will influence the outcome of
the study.

It was also found that it was not necessary to separate the model into two branches,
one to make a binary prediction of the speech disorder and the other to classify specific
subcategories of stuttering. A better result was achieved on the test set by models with
a single path for predicting particular classes, with the prediction for the general class
determined based on that. This led to a reduced model, which translates into a shorter
inference time. Moreover, less training time and computational resources are required. All
the experiments were performed on a laptop with a single NVIDIA RTX3070-class graphics
card with 8 GB of built-in RAM. It should, however, also be mentioned that each model
could be trained for a much larger number of epochs. Moreover, the ResNet18 model could
be extended to include more convolutional layers, depending on the resources available.

5. Summary

In this work, a series of algorithms were implemented to classify speech disorder
in a speech signal for categories such as prolongation, blocking, sound repetition, word
repetition, interjection, and a general type of stuttering, the last one including all those
previously mentioned. The experiments tested algorithms such as SVM, the k-nearest
neighbor algorithm, the ResNet18 residual network, the ResNetBiLstm deep network, and
Wav2vec2 and ConvLSTM in two variants. The ResNet18 deep network architecture was
found to be the best among the tested algorithms. It achieved an F1 measure value of
0.93 on the test set. Even though results from state-of-the-art works cannot be directly used
(different algorithms, datasets, data partitions, etc.), the result is still high compared to
the literature, and it outperforms earlier outcomes. In addition, several experiments were
conducted to study the impact of elements such as model architecture, data partitioning,
amount of data, and use of individual features to check which MFCCs combined with the
given algorithm handled classification the best.
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