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Abstract: Numerical optimization plays more and more important role in the design of antennas and antenna systems. In 
particular, because of lack of design-ready theoretical models, electromagnetic (EM)-simulation-driven adjustment of 
geometry parameters is a necessary step of the design process. At the same time, parameter sweeping traditionally used for 
that purpose cannot handle complex topologies and a large number of variables utilized for antenna parameterization. On 
the other hand, a problem pertinent to conventional optimization routines is their high computational cost, which can be 
reduced using, e.g., surrogate-assisted techniques. Still, direct optimization of EM simulation antenna models is required at 
certain level of fidelity. This work proposes a reduced cost trust-region algorithm with sparse updates of the antenna 
response Jacobian, which are decided based on relocation of the design variable vector between algorithm iterations as well 
as the update history. Our approach permits significant reduction of the number of EM analyses during the optimization run 
without affecting the quality of the final design in a significant manner. Robustness of the proposed technique is validated 
using a set of benchmark antenna structures, statistical analysis of the algorithm performance over multiple initial designs, 
as well as investigating the effects of its control parameters, some of which permit control of efficiency vs. design quality 
trade-off. Selected designs were fabricated and measured to validate the computational models utilized in the optimization 
process. Typical computational savings are around 40 percent as compared to the reference algorithm.  

1. Introduction

Design of contemporary antenna systems heavily 
exploits electromagnetic (EM) simulation tools. Complex 
antenna topologies lack reliable theoretical models and EM-
driven design closure is a necessary step to improve the 
performance figures pertinent to electrical and field 
characteristics of the structure at hand (e.g., impedance 
matching, gain, size, or axial ratio). This is realized by 
adjustment of geometry and/or material parameters [1]. 
Perhaps the most common design closure approach is still 
parameter sweeping guided by engineering experience. 
Practical applicability of this method is limited to relatively 
simple designs. Proper handling of complex antenna 
geometries described by a large number of parameters 
requires formal optimization. Unfortunately, conventional 
algorithms, including both local [2], [3], and global methods 
(the latter mostly involving population-based metaheuristics 
[4]-[6]) are computationally expensive, often to the extent of 
being prohibitive. This high cost originates from a large 
number of full-wave electromagnetic (EM) analyses required 
by the algorithms to converge. At the same time, EM 
simulation is required to ensure sufficient level of accuracy 
of antenna evaluation. 

Clearly, a key prerequisite for solving the high cost 
issue is the reduction of the number of expensive EM 
simulations required by the optimization procedures. Several 
classes of techniques have been developed and applied over the 

years, including, among others, adjoint sentivities [7], [8] and 
a variety of surrogate-assisted methods (e.g. [1]). Until now, 
adjoints have been only supported by only a few commercial 
EM simulation packages (e.g., [9]). Surrogate-assisted 
techniques are founded on the concept of a fast replacement 
model (also referred to as surrogate). The surrogate is 
constructed either from sampled high-fidelity EM model data 
(data-driven models) or an underlying low-fidelity model 
(physics-based surrogates), then iteratively refined and re-
optimized to yield approximations to the optimum design at 
low computational cost [10]. One of the most popular physics-
based surrogate-assisted methods in microwave and antenna 
engineering is space mapping (SM) [11], other techniques 
include various response correction algorithms [12], [13], 
feature-based optimization [14], adaptive response scaling [15], 
as well as combination of deterministic algorithms with 
machine learning procedures (e.g., [16]). The fact that physics-
based surrogates so heavily rely on low-fidelity models is a 
limiting factor from the point of view of antenna applications. 
This is because the low-fidelity antenna models are normally 
obtained through course-mesh EM simulations (thus, they are 
relatively expensive). Data-driven surrogates are more generic 
with practical methods involving kriging interpolation [17] or 
Gaussian Process Regression (GPR) [18]. However, reliable 
data-driven antenna surrogates can only be constructed in low-
dimensional parameter spaces. Another application is 
construction of local surrogates, for example, for the purpose 
of uncertainty quantification [19]. 
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In this paper, a novel gradient-based optimization 
technique with numerical derivatives for reduced-cost 
optimization of antenna structures is presented. It is a 
modification of a conventional trust-region (TR) framework, 
where the antenna response sensitivities (represented by a 
Jacobian matrix) are not updated upon each successful 
iteration, but in a sparse manner which is controlled by 
relative relocation (with respect to the current search region) 
of the design between algorithm iterations. The history of 
Jacobian updates as well as the absolute search region size are 
also taken into account. The updates are put off for variables 
exhibiting limited design relocation, which results in 
lowering the overall optimization cost. 

For the sake of validation, the proposed methodology 
has been tested on a set of benchmark wideband antennas 
from the literature. Optimization runs have been performed 
for a number of random initial designs in order to obtain 
statistical data necessary to assess the algorithm robustness. 
The results indicate consistent behaviour with considerable 
saving of around 40 percent on average as compared to the 
reference algorithm. Additional experiments also indicate a 
possibility of trading-off the computational savings for 
improved design quality. The algorithm described in the 
paper can be utilized to speed up direct optimization of 
antenna structure, but also to accelerate physics-based 
surrogate-assisted procedures, specifically, solving sub-
problems that require multiple evaluations of coarse-
discretization models (e.g., within multi-fidelity design 
frameworks, both single- [1] and multi-objective ones [10]). 

2. Reduced-Cost Antenna Optimization by Sparse
Jacobian Updates

Here, a formulation of EM-driven design closure of 
antenna structures is recalled along with the outline of the 
conventional trust-region gradient-search algorithm. 
Subsequently, the proposed approach is discussed, the key of 
which is a Jacobian update management scheme.  

2.1. Antenna Design Closure as Optimization 
Task 

The response (e.g., reflection or gain characteristics 
versus frequency, etc.) of a full-wave EM-simulation antenna 
model will be denoted as R(x). Design closure is understood 
here as an adjustment of geometry parameter values assuming 
fixed antenna topology. The antenna dimensions are 
represented by the vector x. The optimum design is sought as 
a solution to the following nonlinear minimization problem 

* arg min ( ( ))U
x

x R x  (1) 

In (1), U stands for the objective function. In general, the 
analytical form of U depends on what particular figures of 
interest are considered and what are the design constraints. 
As this work focuses on the algorithmic aspect of the 
optimization process, without loss of generality, we consider 
a specific problem of improving in-band reflection of the 
antenna structure at hand, or, minimization of the maximum 

in-band reflection |S11(x,f)|. In this case, the function U takes 
the form 

11( ( )) max | ( , ) |
f F

U S f


R x x   (2) 

where F is the frequency range of interest (e.g., 3.1 GHz to 
10.6 GHz in case of UWB antennas). The problem (1), (2) is 
formulated in a minimax sense. This type of formulation is 
one of the most popular ones. Other, often used formulations 
include maximization of the antenna bandwidth (at 10 dB 
level), maximization of gain, reducing sidelobe level (for 
array antennas), or explicit reduction of the antenna footprint. 
Particular acceptance thresholds of selected figures of interest 
can also be used as design constraints [20], [21]. 

2.2. Reference Algorithm: Trust-Region Gradient 
Search with Numerical Derivatives 

The starting point for the proposed algorithmic 
solution as well as the reference algorithm is the conventional 
trust-region (TR)-based gradient-search procedure (e.g., [20]). 
The algorithm produces a series x(i), i = 0, 1, …, of 
approximations to the optimum design x* by optimizing the 
linear model 

 L(i)(x) = R(x(i)) + JR(x(i))(x – x(i))  (3) 

of the response R, established at the current iteration point x(i). 
In (3), JR is the Jacobian matrix of R, JR = [J1(x) … Jn(x)] 
= [∂R/∂x1 … ∂R/∂xn], where Jk(x) = ∂R/∂xk represents a vector 
of all antenna response sensitivities w.r.t. the kth parameter. 
If available, JR can be evaluated using adjoint sensitivities [8] 
but, in vast majority of practical cases, it is estimated through 
finite differentiation, which incurs the cost of additional n EM 
analyses (n being dimensionality of the design space) per 
algorithm iteration. In the ith iteration of the TR algorithm, 
the following problem is solved 

( ) ( ) ( )

( 1) ( )

;
arg min ( ( ))

i i i

i iU

   


x d x x d
x L x   (4) 

The vector d(i) is the TR region size adjusted using the 
standard rules [22], i.e., based on the gain ratio  = 
[U(R(x(i+1)))  U(R(x(i)))]/[U(L(i)(x(i+1)))  U(L(i)(x(i)))] (actual 
versus linear-model predicted objective function 
improvement). The inequalities –d(i)  x – x(i)  d(i) in (4) are 
understood component-wise. Because the variable ranges in 
antenna structures may be dramatically different for various 
parameters (e.g., fractions of millimetre for gaps, and tens of 
millimetres for ground plane width), the search region is 
defined here as a hypercube rather than a ball ||x – x(i)||  (i) 
(Euclidean norm with scalar TR radius). This—when setting 
up the initial size vector d(0) proportional to the design space 
sizes—allows for ensuring similar treatment of variables with 
significantly different ranges.  
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2.3. Reduced-Cost Trust-Region Algorithm with 
Jacobian Update Management 

The conventional TR algorithm with numerical 
derivatives updates the entire Jacobian after each successful 
iteration (i.e., when the candidate design found by (4) has 
been accepted due to a positive value of the gain ratio). As 
explained above, Jacobian updates essentially determine the 
computational cost of the optimization process. In the 
modified algorithm discussed here, the Jacobian matrix is 
updated only in part, depending, among others, on the 
relationship between the subsequent design vectors x(i+1) and 
x(i) and the TR region size d, combined into φk

i factors defined 
below  

     1i i ii
k k k kx x d   ,      k = 1, …, n,  (5) 

where xk
(i), xk

(i+1) and dk
(i) are the kth components of vectors 

xk
(i), xk

(i+1), and d(i), respectively. The factors φk
i relate the 

design change of the kth parameter with the TR region size d(i) 
in the ith iteration. A decision about performing the update of 
the Jacobian JR also depends on the optimization run history. 
The update history is examined in order to ensure that the part 
of the Jacobian Jk, pertaining to the kth parameter, is computed 
at least once every few iterations. Other decision factors 
include user defined thresholds 0 < φlow < φhigh < 1, as well as 
the TR region size for the kth parameter dk

(i). 
All the update decision factors are translated into a 

binary Jacobian update matrix AJ that stores the information 
about the future updates. The nonzero entries aJ

k,i refer to the 
Jacobian component Jk(x) that is to be updated in the next (or 
(i+1)th) iteration. If the update is omitted, the Jk value from 
the previous iteration is applied. The matrix AJ is created in 
the first iteration, and it is subsequently extended by adding 
an (i+1)th column upon each successful iteration.  

The flow of the proposed reduced-cost TR region 
algorithm with sparse Jacobian updates is as follows:  

1. Set the iteration index i = 1;
2. Initialize the Jacobian update matrix AJ:

aJ
k,i = 1, k = 1, …,n;

3. Update the Jacobian based on AJ;
4. Find the candidate design xtmp by solving (4);
5. Compute the gain ratio ρ and update the TR region size;
6. Perform a procedure of extending the AJ matrix:

if ρ > 0
set x(i+1) = xtmp; 
for k = 1, …, n, do 

set aJ
k,i+1 = 1, Fk

iter = ∑j=max(1,i-Niter+1), … ,i aJ
k,j;  

if {||d(i+1)|| < TR1 and [(E = = 0) or (E = = 1 and Fk
iter ≥ 

1)]} or {||d(i+1)|| ≥ TR1 and φk
i < φhigh and Fk

iter ≥ 1} 
set aJ

k,i+1 = 0; 
end 

end 
set i = i + 1; 

 else 
if ||d(i+1)|| < TR1 

for k = 1, …, n, do 

set aJ
k,i = 1, Fk

iter = ∑j=max(1,i-Niter+1), … ,i aJ
k,j; 

if φk
i < φlow and Fk

iter ≥ 1 
set aJ

k,i = 0; 
end 

end 
elseif (E = = 1) 

for k = 1, …, n, do 
set aJ

k,i = 1; 
end 

end 
 end 

7. If the termination condition is not satisfied go to 3, else
END.

In Step 2 of the algorithm, the matrix elements aJ
k,i are 

set to 1 for all k = 1, …, n, so the entire Jacobian JR(x(0)) is 
computed through finite differentiation, for both basic and 
extended version of the algorithm. In the next iterations, the JR 
update is performed depending on update matrix AJ (Step 3). 
In Step 4 the candidate design xtmp if found by optimizing the 
objective function U(L(x)) using (4). In Step 5, the gain ratio ρ 
is computed and used to adjust the TR region size. The 
procedure of extending the decision matrix AJ (Step 6) is 
described in detail in the next paragraph.  

In the paper, two versions of the reduced-cost TR 
region algorithm are introduced and compared, we will refer 
to these versions as a basic and extended one. The control 
parameter E is used to choose between the versions, E = 0 
(basic) or E = 1 (extended). Both versions differ in terms of 
the update procedure of the matrix AJ. The differences are 
highlighted in Table 1. In the basic version of the algorithm (E 
= 0), if the iteration is successful (ρ > 0), the update of the 
portion of Jacobian Jk is omitted in the two following cases, 
depending on the TR region size ||d(i+1)||. If ||d(i+1)|| is small, 
below a user-specified threshold TR1, the update is not 
performed for all parameters k = 1, …, n. Additionally, if the 
||d(i+1)|| > TR1, the history of the updates is examined and, for 
each kth parameter, an indicator Fk

iter is calculated as the 
number of performed updates in the last Niter iterations. 
Subsequently, Jk is not computed if Fk

iter ≥ 1 and if the φk
i 

factor is below the user-specified threshold φhigh. 

Table 1 The Comparison between the Basic and the Extended 
Version of the Proposed Algorithm 

Algorithm 
version 

Step accepted (ρ > 0) Step rejected (ρ ≤ 0) 

Add the (i+1)th column  
to the AJ matrix 

Alter the ith column  
of the AJ matrix 

||d(i+1)||<TR1 ||d(i+1)||≥TR1 ||d(i+1)||<TR1 ||d(i+1)||≥TR1 

Basic 
(E = 0) 

Skip update 
for all 

parameters Check:  
update history  

for each 
parameter and 

if φk
i < φhigh 

Check: 
update history  

for each 
parameter and 

if φk
i < φlow 

Do not 
alter the ith
column of 
AJ matrix 

Extended 
(E = 1) 

Check 
update 
history 
for each 

parameter 

Perform 
update  
for all 

parameters 
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For the extended version of the algorithm (E = 1), upon 
successful iteration, the Jacobian update is enforced for the 
small TR region size, ||d(i+1)|| < TR1, if the Jacobian was not 
updated in the last Niter iterations, i.e., the checkup of the 
history of updates is in this case compulsory. If ||d(i+1)|| > TR1, 
both the history of the updates and the inequality φk

i < φhigh are 
checked, just as it is done in the basic version. 

If the candidate design is rejected ( < 0), the AJ matrix 
is extended in neither version of the algorithm. Moreover, in 
both versions, if ||d(i+1)|| < TR1, the respective portion of the 
Jacobian Jk is not calculated if both φk

i < φlow and Jk was 
updated at least once in the last Niter iterations. The threshold 
value φlow < φhigh results in more frequent updates in order to 
make the linear model more accurate if the iterations are 
unsuccessful. If the step is rejected, in the case of large TR 
region size, ||d(i+1)|| ≥ TR1, in the basic version, the old column 
of the AJ matrix is used and the update is performed 
accordingly. However, in the extended version, the update is 
enforced for all parameters, which ensures better accuracy of 
the linear model in the case of failed iteration. 

The sparsity of Jacobian updates, introduced in the 
presented algorithm, allows for considerable reduction of the 
number of EM simulations during the optimization run as 
demonstrated in the next section. The savings are obtained at 
the expense of slight degradation of the design quality. The 
essence of the differences between the basic and the extended 
versions of the algorithm is highlighted below. The first 
difference is in handling the Jacobian updates when the 
algorithm is close to convergence, i.e., the condition 
||d(i+1)|| < TR1 is satisfied. Here, the basic version 
unconditionally skips the finite-differentiation-based 
sensitivity updates and the rationale behind it is that potential 
changes of the Jacobian matrix at this point are minor and 
insignificant. The extended version takes into account the 
update history and carries out the update if it was not 
performed for the last few iterations. The second difference is 
in handling updates upon unsuccessful TR iterations: the basic 
version used the previously available Jacobian, whereas the 
extended version performs the update for all parameters thus 
making the Jacobian estimate more reliable. The implications 
of these differences as the following: (i) the extended 
algorithm performs the updates more often, therefore lower 
computational savings are expected as compared to the basic 
version; (ii) the extended version provides a slightly better 
estimation of the antenna sensitivities, therefore, improved 
quality of the design produced by the algorithm is expected. 
In other words, the two versions of the algorithm offer 
different trade-offs between the computational savings and the 
robustness. These expectations have been fully confirmed by 
the numerical results described in Section 3.  

3. Verification Case Studies

This section provides the results of the numerical and 
experimental validation of the algorithm introduced in 
Section 2. Verification includes multiple optimization runs 
from random initial designs, statistical analysis to confirm the 
algorithm robustness, as well as comparison with the 
reference algorithm. 

3.1. Benchmark Cases 

The benchmark set consists of three UWB antennas 
shown in Fig. 1. Antenna I [23] is implemented on Taconic 
RF-35 substrate (εr = 3.5, h = 0.762 mm). The independent 
geometry parameters for this structure are x = [L0 dR R rrel dL 
dw Lg L1 R1 dr crel]T. Antenna II [24] is implemented on FR4 
substrate (r = 4.3, h = 1.55 mm). The design parameters are x 
= [Lg L0 Ls Ws d dL ds dWs dW a b]T. Antenna III is based on 
the structure of [25] and implemented on RO4350 substrate 
(r = 3.48, h = 0.762 mm); design variables are x = [L0 L1 L2 L 
dL Lg w1 w2 w dw Ls ws c]T. The computational models for all 
structures are implemented in CST Microwave Studio and 
evaluated using its transient solver. The EM models 
incorporate SMA connectors. 

3.2. Numerical Results 

The benchmark antennas (cf. Section 3.1) have been 
optimized to attain minimum in-band reflection within the UWB 
frequency range of 3.1 GHz to 10.6 GHz. Detailed formulation 
of the optimization task has been discussed in Section 2.1. The 
algorithm of Section 2 has been executed with TR1 = 0.1, φlow = 
0.33 and φhigh = 0.66, and several combinations of values of Niter 
= 3, 4, 5, 6 and E = 0, 1. At the same time, the results are 
compared with those obtained using the reference algorithm (cf. 
Section 2.2). Furthermore, in order to carry out meaningful 
performance and robustness assessment, the optimization (for 
each combination of control parameters) has been executed 10 
times with random initial designs. The statistical data has been 
gathered in Tables 2 and 3. Figures 2 through 4 show the initial 
and optimized reflection responses for a particular setup of the 
algorithm (Niter = 5, E = 1). Figure 5 provides exemplary 
convergence plots for all considered antennas. 

3.3. Discussion 

The obtained results indicate that both versions of the 
proposed algorithm allow for considerable reduction of the 
optimization cost. The basic version provides us with savings 
from around 35 percent (for Antenna III) to around 50 percent 
(for Antenna I), with average savings being approximately 40 
percent as compared to the reference algorithm.  

L0

R

2R

dR

rrelR

dL

dw

Lg

L1

R1

dr
R1 crelR1

W0
Lg

L0

a

b

Ws

Ls

dWdL

d

ds

dWs

      a                           b                                   c 
Fig. 1. Antenna structures used for verification of the proposed 
algorithm. Ground plane marked using light gray shade.  
(a) Antenna I [23],
(b) Antenna II [24],
(c) Antenna III [25].

w0
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L2

L
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      a                                               b 
Fig. 2. Reflection responses of Antenna I found using the 
proposed algorithm with Niter = 5 and E = 1. Plots correspond 
to 10 random starting points. Horizontal line marks design 
specifications.  
(a) initial designs,
(b) optimized designs.

      a                                               b 
Fig. 3. Reflection responses of Antenna II found using the 
proposed algorithm with Niter = 5 and E = 1. Plots correspond 
to 10 random starting points. Horizontal line marks design 
specifications.  
(a) initial designs,
(b) optimized designs.

 a  b 
Fig. 4. Reflection responses of Antenna I found using the 
proposed algorithm with Niter = 5 and E = 1. Plots correspond 
to 10 random starting points. Horizontal line marks design 
specifications.  
(a) initial designs,
(b) optimized designs.

For the extended version, the reduction of the number 
of EM simulations is lower (from around 25 percent for 
Antenna III to over 35 percent for Antenna I). On the other 
hand, degradation of the design quality is practically acceptable 
for both algorithms (around 1.2 dB on average, cf. Table 3), yet 
better solution quality is obtained for the extended version 
(around 0.7 dB on average), as expected.  

a 

b 

c 
Fig. 5. Convergence plots for selected algorithm runs: 
reference algorithm (gray) and the proposed algorithm with 
Niter = 5 and E = 1 (black). 
(a) Antenna I,
(b) Antenna II,
(c) Antenna III.

Table 2 Optimization Results for Antennas I through III: 
Algorithm Cost and Objective Function Values 

Algorithm 

Antenna 

I II III 

Cost* 
Max 
|S11|# 

Cost* 
Max 
|S11|# 

Cost* 
max 
|S11|# 

Reference TR 
algorithm 

111.2 14.8 111 13.7 139.7 17.5 

Basic 

Niter = 3 58.3 13.7 73.1 12.7 91.2 16.3 

Niter = 4 52.6 13.6 71.0 12.5 88.8 16.4 

Niter = 5 56.4 13.6 72.7 12.8 87.5 15.8 

Niter = 6 51.7 13.6 62.0 12.5 87.0 15.8 

Exten-
ded 

Niter = 3 73.0 14.2 87.4 12.9 101.5 16.8 

Niter = 4 69.8 14.2 80.6 12.9 104.4 16.9 

Niter = 5 70.3 14.2 74.7 12.9 100.3 16.9 

Niter= 6 70.2 14.2 79.3 12.9 102.4 16.9 
* Number of EM simulations averaged over 10 algorithm runs (random initial points).
# Maximum |S11| within UWB frequency range (averaged over 10 algorithm runs).

It should be mentioned that in many cases, especially 
for variable-fidelity optimization procedures [1], [10], 
reduction of the design cost is of primary importance (e.g., 
when solving sub-problems at lower fidelity of EM models), 
whereas solution accuracy comes secondary due to iterative 
correction procedures utilized in these algorithms. The study of 
the effect of the parameter Niter indicates that, in general, larger 
values are preferred in terms of ensuring better computational 
savings, however, certain fluctuations can be observed for 
some antennas, partially resulting from the statistical nature of 
the results gathered in the tables. 

2 4 6 8 10 12
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The convergence plots shown in Fig. 5 indicate that the 
proposed algorithm exhibits consistent behavior across the 
considered benchmark antennas, in particular, leads to a faster 
termination of the optimization algorithm without compromising 
design quality (as already indicated in Tables 2 and 3). In many 
cases, it also leads to a faster reduction of the objective function 
value as compared with the reference algorithm. 

3.4. Experimental Validation 

 Selected designs of Antennas I, II, and III have been 
fabricated and tested to validate the computational models 
utilized in the optimization process. Figure 6 shows the 
fabricated antenna prototypes, whereas Figs. 7 through 9 
show the simulated and measured reflection responses, 
realized gain characteristics, as well as H- and E-plane 
radiation patterns at 4 GHz, 6 GHz and 8 GHz. The agreement 
between simulations and measurements is good. Some 
discrepancies, particularly for the E-plane patterns, are 
mostly the results of the measurement setup (90-degree bend 
used to mount the antennas). 

 a  b 

c 
Fig. 6. Photographs of fabricated antenna prototypes, front 
(left) and back (right). 
(a) Antenna I,
(b) Antenna II,
(c) Antenna III.

Table 3 Optimization Results for Antennas I through III: 
Computational Savings and Design Quality 

Algorithm 

Antenna 

I II III 

Cost 
sav-
ings* 

[%] 

 max 
|S11|# 
[dB] 

Cost 
sav-
ings* 

[%] 

 max 
|S11|# 
[dB] 

Cost 
sav-
ings* 

[%] 

 max 
|S11|# 
[dB] 

Basic 

Niter = 3 47.6 1.1 34.1 1.0 34.7 1.2 

Niter = 4 52.7 1.2 36.0 1.2 36.4 1.1 

Niter = 5 49.3 1.2 34.5 0.9 37.4 1.7 

Niter = 6 53.5 1.2 44.4 1.2 37.7 1.7 

Exten-
ded 

Niter = 3 34.4 0.6 21.3 0.9 27.3 0.7 

Niter = 4 37.2 0.6 27.4 0.9 25.3 0.6 

Niter = 5 36.8 0.6 32.7 0.9 28.2 0.6 

Niter = 6 36.9 0.6 28.6 0.9 26.7 0.6 
* Percentage-wise cost savings w.r.t. the reference algorithm. 
# Degradation of objective function value w.r.t. the reference algorithm.

a 

b 

c 
Fig. 7. Simulated (gray) and measured (black) reflection 
responses and realized gain characteristics of the fabricated 
antenna prototypes. 
(a) Antenna I,
(b) Antenna II,
(c) Antenna III.

a 

b 

c 
Fig. 8. Simulated (gray) and measured (black) H-plane 
radiation patterns of the fabricated antenna prototypes at 4 
GHz (left), 6 GHz (middle), and 8 GHz (right). 
(a) Antenna I,
(b) Antenna II,
(c) Antenna III.
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a 

b 

c 
Fig. 9. Simulated (gray) and measured (black) E-plane 
radiation patterns of the fabricated antenna prototypes at 4 
GHz (left), 6 GHz (middle), and 8 GHz (right). 
(a) Antenna I,
(b) Antenna II,
(c) Antenna III.

4. Conclusion

In this work, a reduced-cost trust-region-embedded 
gradient search algorithm for design optimization of antenna 
structures has been presented. The foundation of the 
algorithm is sparse updating of the antenna response Jacobian 
matrix with the updates controlled by relative relocation of 
the design variable vectors between algorithm iterations, 
optimization history, as well as the search region size. 
Combination of these factors permits considerable reduction 
of the optimization cost (in terms of the number of EM 
simulations of the antenna at hand). At the same time, the 
final design quality is only slightly degraded as compared to 
the reference algorithm. The speed/quality trade-offs can be 
adjusted using the algorithm control parameters.  

The proposed procedure has been extensively 
validated using a set of benchmark wideband antenna 
structures. The average computational savings are as high as 
40 percent (w.r.t. to the conventional TR algorithm). The 
proposed algorithm can be applied to direct optimization of 
high-fidelity EM simulation models of antennas but also to 
accelerate solving of optimization sub-problems in surrogate-
assisted design procedures, especially those exploiting 
variable-fidelity EM models. These applications will be the 
subject of the future work. 
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