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Reduced‑cost microwave modeling 
using constrained domains 
and dimensionality reduction
Slawomir Koziel 1,2, Anna Pietrenko‑Dabrowska 2* & Ubaid Ullah 3

Development of modern microwave devices largely exploits full‑wave electromagnetic (EM) 
simulations. Yet, simulation‑driven design may be problematic due to the incurred CPU expenses. 
Addressing the high‑cost issues stimulated the development of surrogate modeling methods. 
Among them, data‑driven techniques seem to be the most widespread owing to their flexibility and 
accessibility. Nonetheless, applicability of approximation‑based modeling for real‑world microwave 
components is hindered by a high nonlinearity of the system characteristics, dimensionality issues, 
and broad ranges of operating parameters the model should cover to make it practically useful. 
Performance‑driven modeling frameworks deliver a partial mitigation of these problems through 
appropriate spatial orientation of the metamodel domain, which only encapsulates high‑quality 
designs and not the entire space. Unfortunately, the initial model setup cost is high, as defining the 
domain requires database designs that need to be a priori acquired. This paper introduces a novel 
approach, where the database designs are replaced by random observables, and dimensionality of 
the domain is reduced using spectral analysis thereof. The major contributions of the work include 
implementation of the explicit dimensionality reduction of the confined surrogate model domain 
and introducing this concept into a complete cost‑efficient framework for modeling of microwave 
components. Comprehensive benchmarking demonstrates excellent performance of the introduced 
framework, both in terms of predictive power of the rendered surrogates, their scalability properties, 
as well as low computational overhead associated with the model setup.

Geometrical complexity of microwave passive components and devices has been recently growing to meet the 
demands of various application areas (space  communications1, mobile  communications2, automotive  radars3, 
internet of things,  IoT4, microwave  imaging5, energy  harvesting6, wireless power  transfer7, etc.), and to provide 
the required functionalities (e.g., multi-band  operation8, harmonic  suppression9,  reconfigurability10). Accurate 
evaluation of circuits is instrumental in their design processes, yet, analytical and equivalent network models, 
traditionally used for this purpose, are no longer reliable in many cases. This is especially true for compact 
structures featuring strong cross-coupling effects, which is a result of tightly arranged layouts rendered by min-
iaturization techniques such as folding of transmission  line11, or employment of slow-wave phenomenon (e.g., 
compact microwave resonant cells,  CMRCs12). Full-wave electromagnetic (EM) simulations provide the only 
versatile means that can be used for reliable evaluation of arbitrary circuit geometries, also at the existence of 
environmental components (nearby devices or connectors), while accounting for the coupling effects, dielectric 
and radiation losses, substrate anisotropy, and others.

EM simulations have been omnipresent in the design of microwave components, yet their utilization for solv-
ing tasks that require multiple circuit evaluations may be hindered by the incurred computational expenses. This 
might be a limiting factor even when local search is concerned (e.g., gradient-based  procedures13), whereas it is 
particularly troublesome for global  optimization14,15, uncertainty quantification, UQ (e.g., statistical  analysis16, 
yield  maximization17), or multi-criterial  design18,19. Many of these tasks require hundreds and thousands of 
system evaluations when solved using conventional methods, such as Monte Carlo simulation in statistical 
 design20, or direct EM-driven global optimization using bio-inspired population-based  algorithms21,22. There 
have been plenty of methods developed to expedite simulation-based design procedures, including simplistic 
approaches, e.g., supervised parametric  studies23,24 (still widely used in practice), or worst-case analysis for  UQ25. 
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Still, rigorous numerical methods have also gained an increased popularity, especially in the context of local 
search (adjoint  sensitivities26, sparse gradient updating  techniques27–29, mesh  deformation30,  parallelization31). 
Nevertheless, the class of procedures that have been attracting particular attention in the recent years are surro-
gate-based  algorithms32–35. These can be categorized as physics-based36, and data-driven37. Physics-based methods 
(space  mapping38–40, shape-preserving response  prediction41, adaptive response  scaling42, manifold  mapping43) 
rely on an underlying low fidelity model, which, for microwave components, is typically an equivalent  network44, 
but it can also be coarse-discretization EM  model30. The problem-specific knowledge encoded therein permits 
constructing reliable surrogates using only a small number of EM-evaluated samples. Still, physics-based models 
are not as flexible as data-driven  ones45, thus they are more frequently used for local rather than global search. 
Data-driven surrogates are significantly more popular as they are easy to handle, versatility, and a plethora 
of third-party implementations (e.g.,46,47) available free of charge. Among widely used techniques  kriging48, 
neural  networks49–51, radial basis  functions52, support vector  machines53, Gaussian process regression (GPR)54, 
ensemble  learning55, polynomial chaos expansion (PCE)56 may be listed. Surrogate-based design frameworks 
often incorporate machine learning  schemes57 and sequential  sampling58, either to diminish the cost of acquir-
ing training data or to enable global search capabilities under more challenging  scenarios59. Other acceleration 
methods that do not directly fall into any of the two aforementioned categories, are feature-based optimization 
(FBO)60, along with cognition-driven  design61, exploiting a particular shape of the component’s outputs (e.g., 
allocation of  resonances62, local pass-band  maxima63, etc.). Therein, reformulating the design task in terms of 
suitably defined characteristic (feature) points, allows for reducing the nonlinearity of the associated objective 
functions, thereby leading to faster convergence of the optimization procedures.

Replacing EM simulations by fast surrogates to facilitate design procedures that require massive system 
evaluations is the main rationale behind surrogate-assisted  methods64. However, the curse of dimensionality and 
high nonlinearity of microwave component outputs hinder a construction of stand-alone surrogates that would 
be valid over broad ranges of system parameters and its operating conditions. Availability of the latter could 
potentially simplify EM-driven design procedures by eliminating the need for iterative prediction-correction 
schemes pertinent to most optimization frameworks that rely on surrogate  models65–67. Instead, the employ-
ment of conventional algorithms would be sufficient. Due to the issues mentioned above, library-like reusable 
metamodels can only be built for simple components characterized by a small number of parameters, often in 
tight ranges of  these68,69. At this point, one should mention available mitigation methods, e.g., orthogonal model 
 pursuit70, or high-dimensional model representation (HDMR)71. Still, these techniques are not multipurpose 
ones. On the other hand, variable-fidelity methods (two-stage GPR,73, co-kriging72, Bayesian model  fusion74]) 
are more versatile at the expense of implementation complexity.

The recent performance-driven (or constrained) modeling  methods75–79 present a conceptually different 
approach to alleviating the difficulties pertaining to approximation techniques. The focus is on a proper defini-
tion of the metamodel domain, which is restricted to the regions accommodating designs of superior quality 
with regard to the intended design targets. The volume of such a domain is to a large extent smaller than that of 
the conventional design space (typically, an interval delimited by the lower and upper variable bounds), which 
permits a rendition of accurate models at low computational cost. The preeminent performance-driven technique 
is the nested kriging  framework76, and its enhancements using variable-fidelity  models80, and dimensionality 
 reduction81. At the same time, as constrained modeling methods rely on pre-optimized reference design sets to 
identify the regions of interest, the initial model setup cost may be high (at least a few hundreds of EM simula-
tions). This may be somewhat mitigated by utilization of sensitivity  data82, which leads to a reduction of the 
required number of reference designs.  In83, an advanced constrained modeling approach has been proposed, 
where the reference designs are replaced by random observables, and the model domain is defined using infor-
mation extracted therefrom. As demonstrated, this leads to a significant reduction of the initial costs without 
being detrimental to the model predictive power.

This paper introduces a novel technique that belong to performance-driven modeling frameworks. It employs 
the concepts presented  in83 while bringing in additional advances, specifically a reduction of the domain dimen-
sionality. The latter is carried out by means of the principal component analysis of the observable data, and 
spanning the domain along the most important eigenvectors of the covariance matrix corresponding to this data. 
The modeling framework implemented based on these concepts retains the overall benefits of the reference-
design-free confined modeling, including the low setup cost, while enabling enhanced scalability (with respect 
to the cardinality of training data set), and even further improved modeling accuracy. Numerical experiments 
conducted for three microwave components (compact couplers and a power divider) fully demonstrate these 
advantages, as well as corroborate that the proposed technique outperforms both conventional modeling methods 
and the previously reported performance-driven frameworks. Furthermore, suitability of surrogate models con-
structed using our method for design purposes is illustrated by means of a variety of application studies involv-
ing parameter tuning of the considered circuits under different design scenarios. The novel contributions of the 
work include: (i) explicit dimensionality reduction of the confined surrogate model domain using the principal 
components of the observable set, (ii) implementation of a complete cost-efficient framework for modeling of 
microwave components, (iii) demonstrating the ability of setting up reliable models valid over a wide range of 
geometric parameters and operating conditions using small training data sets, (iv) demonstrating accuracy and 
scalability improvements enabled by dimensionality reduction, (v) demonstrating superior performance of the 
proposed technique in terms of accuracy of the constructed surrogates and computational efficacy over several 
state-of-the-art benchmark techniques.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18509  | https://doi.org/10.1038/s41598-023-45890-x

www.nature.com/scientificreports/

Reference‑design‑free domain‑confined modeling with dimensionality reduction
This section introduces the proposed approach to modeling of microwave components. Its fundamental com-
ponents include domain confinement realized by means of information garnered from a collection of random 
observables spread over the design space, as well as a reduction of the domain dimensionality realized using the 
principal component analysis of the observable set. The section is organized as follows. The reference-design-free 
constrained modeling approach is recalled in “Reference-Design-Free Domain-Confined Modeling” Section. A 
definition of a reduced-dimensionality domain is provided in “Reduced-Dimensionality Model Domain. Con-
struction of Final Surrogate” Section, whereas the complete modeling framework is summarized in “Proposed 
Modeling Procedure: Complete Workflow” Section.

Reference‑design‑free domain‑confined modeling
The modeling approach introduced in this paper falls into the category of performance-driven  techniques75. The 
fundamental concepts of this paradigm are outlined in brief in this section for the convenience of the reader. 
The vast majority of data-driven modeling methods focus on the best possible exploration of available  data65, as 
well as improvements concerning design of  experiments46, e.g., to allocate additional points in the regions cor-
responding to higher nonlinearity of the circuit outputs. However, from the perspective of design utility of the 
model, most of the traditionally defined parameter space, i.e., an interval demarked by lower and upper bounds 
on the system variables, comprises inferior-quality designs. Performance-driven modeling attempts to identify 
the subsets containing high-quality designs and only construct the surrogate model therein. The designs that are 
superior from the viewpoint any given set of performance requirements (e.g., required return loss levels, power 
split, phase relations, etc., over target operating frequencies or bandwidths) normally occupy low-dimensionality 
manifolds, the volume of which is tiny in comparison to the original (interval-like) design space. This leads to 
the following  benefits75:

• The metamodel can be established with the use of a considerably smaller number of data samples, in contrast 
to conventional domains;

• The curse of dimensionality can be overcome to a large extent;
• Domain confinement does not limit neither the ranges of the design variables nor the operational conditions 

the surrogate is valid within.

The notation has been explained in Table 1 75. Among the listed items, the main principle adopted by perfor-
mance-driven modeling is the space F of design requirements. Specifically, the validity region of the metamodel 
is determined with respect to F rather than the design space X. This is because our goal is to construct the model 
that—for the sake of its design utility—adequately represents the system responses over the required ranges of 
performance figures. This puts the modeling process in a different perspective, in which the particular subset 
of the parameter space to become the domain of the model is secondary with respect to the objective space.

In order to clarify the matter, consider a microstrip coupler whose performance figures include the operational 
frequency f0 along with the power split ratio KP. If the aim is to improve the matching and port isolation at f0, 
and also to ensure the assumed power split, the possible formulation of the function U is

Here, the goal is minimization of |S11| and |S41| at f0 (in a minimax sense), whereas the second term is used 
to assess the deviation between the actual and target power split at the center frequency.

The performance metric U(x,f) serves to determine the solution x* that is optimum for a given objective vector 
f ∈  F. We will use notation x∗ = UF(f ) = argmin

x∈X
U(x, f ) . It should be observed that the notation 

x* = UF(f) = argmin{x ∈ X : U(x,f)} constitutes a simplification with the underlying assumption that the solution 
to this minimization problem is unique. In practice, the uniqueness is not always guaranteed, although non-
uniqueness is unlikely for the class of problems considered in the work, where design specifications are imposed 
on vector-valued system outputs, thereby making the optimization task heavily overdetermined. Nonetheless, 
possible non-uniqueness might be readily addressed by using regularization. The set comprising all optimal 
designs obtained for all f ∈ F is referred to as the optimum design manifold MF = UF(F)76, and it constitutes an 

(1)
U(x, f ) = U(x, [f0 KP]

T ) = max
{

|S11(x, f0)|, |S41(x, f0)|
}

+ β
[

(|S31(x, f0)| − |S21(x, f0)|)− KP

]2

Table 1.  Basic notation utilized in domain-confined modeling.

Design objectives Circuit parameters

fk, k = 1, …, N Performance figures encoding design objectives (e.g., operating fre-
quency/frequencies, bandwidth, substrate permittivity) xi, i = 1, …, n Parameter of the circuit under design (typically, independent dimen-

sions that undergo refinement)

F
fk.min ≤ fk ≤ fk.max
k = 1, …, N

Objective space (space of objective vectors defined by ranges for per-
formance figures the surrogate is to cover)

X = [l u]
l = [l1 …, ln]T

u = [u1 …, un]T

li ≤ xi ≤ ui
i = 1, …, n

Conventional parameter space delimited by lower and upper bounds l 
and u on circuit parameters

f = [f1 … fN]T Objective vector (set of performance figures) x = [x1 … xn]T Parameters vector (set of circuit dimensions)
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N-dimensional entity within the space X. From the design applications standpoint, it suffices to render the sur-
rogate on the manifold MF only, as such a model would be sufficient to represent all designs of satisfactory quality 
for any objective vector within F. However, spatial allocation of MF is unknown, only individual vectors can be 
identified for specific objective vectors f.

Recently, a modeling approach has been  introduced83, where determination of the surrogate model domain 
relies on statistical methods.  In83, the approximation of MF has been performed with the use of randomly allo-
cated trial points (observables) in the design space X, specifically, using information about the operating condi-
tions at these points, obtained from EM-simulated system responses. Yet, as the random points are unlikely to be 
of good quality, the optimum design manifold is approximated using a regression model sr(f) of limited number 
of degrees of  freedom83, which yields the trend functions established in the least-square sense. Subsequently, the 
metamodel domain is identified through appropriate orthogonal extension of the initial  approximation83 in XS 
using any approximation technique of choice, e.g.,  kriging84 or neural  networks85. In this work, we advance over 
the technique presented  in83 by enhancing it with dimensionality reduction mechanisms.

In the nested kriging, domain definition procedure based on pre-optimized reference designs, the acquisition 
cost of which was substantial, despite the fact that some methods for accelerating reference design acquisition 
have been available (e.g.,86). Here, instead, the initial step of defining the model domain is to render a set of 
trial points xr

(j), j = 1, 2, …, in the original parameter space X, referred to as observables. The points are allo-
cated within the respective ranges for all parameters, using uniform probability distribution. Each observable 
is associated with the EM evaluation of the circuit at the respective vector xr

(j). This data is used to extract the 
corresponding performance figure fr

(j).
Let us now go back to the microwave coupler example, where the objective space is two-dimensional and 

contains the intended operating frequency and target power split ratio. If the design is away from the optimum, 
the frequencies representing the minimum of matching |S11| and isolation |S41| characteristics may be severely 
misaligned, and the actual operating frequency may be taken as the average of the two values with the power split 
ratio calculated at this very frequency. If the extracted performance figure vector fr

(j) is within the assumed space 
of design objectives F, the observable xr

(j) is accepted; otherwise, it is rejected. Figure 1 graphically illustrates of 
the random sampling process described above. 

The required number Nr of accepted samples is a control parameter of the modeling procedure, which is 
normally set to 50 or 100. This is sufficient to yield reasonable approximation of the manifold where the opti-
mum designs reside for microwave circuits described by up to ten or so parameters. At the same time, the actual 
number of observables that need to be generated to obtain Nr accepted ones is typically 2Nr to 3Nr, primarily 
depending on the size of the objective space F (i.e., the ranges of the operating conditions). 

Together with the vectors comprising objectives fr
(j), the observables are also used to extract additional infor-

mation pertaining to the quality of the design xr
(j). This information is then encoded in the scalar coefficients 

pr
(j), j = 1, …, Nr, defined in such a way that smaller coefficient values are assigned to better designs. This is to 

distinguish between designs that reside in the proximity to the optimal design manifold MF (these will have a 
higher impact on the inverse model to be constructed therefrom), and others, being farther away from MF. In 
the consider example, where the aim was to improve impedance matching and port isolation of the component 
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Figure 1.  Generation of observables (left panel) for a microstrip coupler (three-dimensional design space X, 
two-dimensional objective space F); sample selection (middle panel): observables whose operating frequency 
and power split ratio fall into F are kept, the remaining samples are not taken into account; inverse model sr(⋅) 
construction utilizing the set of observables {xr

(j)}j = 1,…,Nr, (right panel) for a single component of sr.j, representing 
parameter x1 (marked as gray manifold). 
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at the operating frequency, and also to enforce equal power split. Thus, the coefficient pr
(j) may be taken as the 

maximum of |S11| and |S41| at the assessed operating frequency, the latter being the first entry of the vector fr
(j).

In83, the observable data is utilized to render the inverse regression surrogate sr: F → X approximating the set 
of optimum designs MF. Next, the image sr(F) is extended to become the domain of the final surrogate model. In 
this work, it will become the foundation for the spectral analysis, thereby leading to a dimensionality-reduced 
domain, as described in “Reduced-Dimensionality Model Domain. Construction of Final Surrogate” Section.

Reduced‑dimensionality model domain. Construction of final surrogate
The goal is to identify a domain that has a lower dimensionality with respect to that of the conventional design 
space X. The anticipated benefits are lower computational expenses associated with the setting up the surro-
gate, and improved scalability, i.e., more advantageous relationship between the training dataset cardinality and 
modeling error.

Let us define a rectangular grid Fg ⊂ F, as a set of all objective vectors fg = [fg.1 … fg.n]T of the form

where mk ∈ {0, 1, …, M – 1}, k = 1, …, N. To put it another way, the grid Fg contains MN vectors fg
(j), j = 1, …, 

MN, uniformly distributed in F. The grid density M is a control parameter of the modeling procedure, typically 
set to M = 5, but its specific value is not critical. The purpose of Fg is to gather a collection of parameter vectors 
xg

(j) = sr(fg
(j)), j = 1, …, MN, which serves to approximate the optimum design manifold. In order to define dimen-

sionality-reduced domain of the surrogate model, we perform principal component  analysis87 of {xg
(j)}j = 1, …, M 

N, 
as presented in Fig. 2.

Because the set Xp (see Fig. 2) is spanned by the most significant eigenvectors, it accounts for the majority 
of parameter variations within the set  sr(F). In practice, it is sufficient to use the first few vectors because the 
eigenvalues are quickly decreasing. For all verification examples of “Validation Experiments and Benchmarking” 
Section, we use p = 3. Needless to say, maintaining low dimensionality of the domain permits radical reduction 
in the number of training data points required to build an accurate surrogate. Figure 2 illustrates the procedure 
for surrogate model domain rendition. The surrogate itself is identified utilizing kriging  interpolation88, based 
on the training samples allocated in Xp using Latin Hypercube Sampling (LHS)89, the details on design of experi-
ment strategy can be found  in87.

Proposed modeling procedure: complete workflow
This section puts together all components of the modeling procedure introduced here. Before presenting the 
workflow, we briefly summarize the input and control parameters. The input variables, provided by the user, 
are the following:

• Original parameter space X. This is a conventional, interval-like set, determined by the lower and upper 
bounds on design variables, represented as vectors l and u, respectively;

• Objective space F. This is the fundamental entity, derived from the formulation of the design task for which 
the surrogate is intended to be applied. The values of fk.min and fk.max, being lower and upper bounds for the 
figures of interest, are decided upon to determine the surrogate’s region of validity.

The control parameters of the modeling procedure are outlined in Table 2. Observe that we only have three 
parameters, all straightforward to set up. One of these is the cardinality of the training dataset, which may be 
fixed, or adjusted adaptively, e.g., to reach a specific value of the modeling error. For the latter, the LHS-based 
design of experiments should be replaced by an appropriate sequential sampling methodology (e.g.,90).

Figure 3 summarizes the modeling process workflow. Although it is not explicitly mentioned in Fig. 3, the 
training data set {xB

(j)} is supplemented by observables {xr
(j)}, because this data is already available and allocated 

in the vicinity of the model domain. This will slightly improve the predictive power of the model, particularly 
for smaller training data sets. As a matter of fact, this improvement has been demonstrated  in83. However, a 
similar effect is not expected to be as much pronounced within the introduced approach owing to a reduction 
of the domain dimensionality.

The proposed procedure exploits the performance-driven modeling  paradigm75. As a result, it will exhibit 
similar characteristics as compared to conventional techniques operating in interval-like domains. These include:

• Improved immunity against the curse of dimensionality;
• A significant reduction of the domain volume translating into a smaller number of training data samples 

necessary to render high-accuracy surrogate;
• The ability to construct surrogates over extended ranges of both operational and geometry parameters.

Because of abandoning the concept of reference designs, similarly as  in83, an additional advantage is the low 
initial cost of the model setup. Now, dimensionality reduction incorporated in this work leads to two additional 
benefits that are expected:

(2)f g =
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• Further improvement of the model predictive power without increasing the training data set size;
• Enhancement of the model scalability, that is, faster reduction of the modeling error as a function of increas-

ing number of training samples.

All of these advantages are thoroughly demonstrated in the next section.
At this point, it should be mentioned that a possible limitation of the presented technique is that for exces-

sively large parameter spaces, the observable set gathered in the pre-screening stage of the modeling process may 

Figure 2.  Procedure for identification of the dimensionally-reduced surrogate domain.

Table 2.  Dimensionality-reduced domain-confined modeling: Control parameters.

Parameter Description and recommendations

Nr
Cardinality of the observable set

Recommended value: from 50 to 100; the higher the design space dimensionality n, the larger Nr should be used

P
Dimensionality of the surrogate domain

Recommended value: p = 3 (in order to ensure good model scalability as a function of the number of training samples; should 
take into account the eigenvalues λk)

NB
Cardinality of the training data set (for surrogate model construction)

Recommended values enabling to ensure relative RMS error of a few percent: from 200 to 500
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be insufficient to cover the entire objective space. On the other hand, the likelihood of this to occur would be 
low if the original parameter space is established using engineering experience (as opposed to setting up exces-
sively broad parameter ranges). At the same time, because normally weakly-nonlinear relationships between 
operating figures (e.g., center frequencies) and geometry/material parameters of the circuits, even if some parts 
of the objective space are left out in the sampling process, they may be recovered by evaluating the image of the 
regression model sr for the objective space F. In other words, the regression model might extrapolate the missing 
parts, thereby providing the coverage of the entire optimum design manifold MF.

Validation experiments and benchmarking
Here, we validate the modeling procedure introduced in “Reference-Design-Free Domain-Confined Modeling 
with Dimensionality Reduction” Section, and benchmark it against both conventional and performance-driven 
modeling methods. Numerical experiments are based on the following microstrip circuits, including two cou-
plers: a rat-race and branch-line one, along with a dual-band power divider. The factors of interest are the 
modeling accuracy, computational cost of surrogate setup, as well as model scalability, i.e., dependence of the 
predictive power on the training data set cardinality. Furthermore, the surrogate constructed using the proposed 
approach is employed for circuit optimization to demonstrate its design utility.

Verification circuits
Figure 5 shows the microwave components utilized in our verification experiments. Circuit I is a miniaturized 
rat-race coupler based on transmission line  folding91. Circuit II is a compact branch-line  coupler92, whereas the 
last circuit (Circuit III) is a dual-band power  divider93. The information about the considered devices is gathered 
in Table 3.

In all cases, the goal is to model the scattering parameters of the respective circuits as a function of frequency. 
The objective spaces are determined by the operating frequency and the target power split ratio (Circuit I), 
operating frequency and permitivity of the substrate used to fabricate the coupler (Circuit III), and target oper-
ating frequencies (Circuit III). In all cases, the relevant scattering characteristics are subject to the modeling 
process (e.g., S11, S21, S31, and S41 for the coupling structures). The modeling problems are demanding because of 
dimensionalities of the parameter spaces (up to ten), and also because of broad ranges of design variables. The 
latter can be measured using the average ratio of the upper to lower parameter bounds, which is about three for 
Circuits I and II, and as much as nine for Circuit III.

Experimental setup
The proposed framework has been applied to construct surrogate models for all three circuits shown in Fig. 4. 
The control parameter Nr (the required number of accepted observables) is set to hundred in the case of Circuits 
I and II, whereas for Circuit III, it is fifty. The number of random points actually generated to reach Nr was 116, 
226, and 78, for Circuit I, II, and III, respectively. The dimensionality of the design space is set to p = 3 (Circuits 
I and II), and p = 2 (Circuit III), which is because the last structure is a considerably more difficult as shown later 
on. Furthermore, the surrogate models were built for different training sets comprising the following numbers 
of samples: NB = 50, 100, 200, 400, and 800. The purpose was to look into the scalability of the modeling error, 
i.e., its dependence on the number of training samples.

Figure 3.  Operating flow of the introduced modeling procedure with domain confinement and dimensionality 
reduction.
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Table 4 outlines the benchmark methods employed in our comparative experiments. These include five 
state-of-the-art models established in the design space X, and also two performance-driven models rendered in 
confined domains, defined according to the particular modeling method. It should be reiterated that the paper 
addresses behavioral (data-driven) modeling, therefore, all benchmark techniques belong to this category. Fur-
thermore, we do not take into account sequential sampling methods.

The predictive power of the constructed metamodels has been assessed as a relative RMS error, defined as 
||Rs(x) − Rf(x)||/||Rf(x)||, in which Rs and Rf are the frequency characteristics rendered by the model and full-wave 
simulations, respectively. The calculation of the error involves one hundred random testing samples, independ-
ent of the training ones.

Table 3.  Verification circuits. $ Dimensions in mm.

Parameter

Circuit structure

Circuit  I91 Circuit  II92 Circuit  III93

Substrate RO4003
(εr = 3.38, h = 0.76 mm)

εr—operating parameter
h = 0.76 mm

AD250
(εr = 2.5, h = 0.81 mm)

Design  parameters$ x = [l1 l2 l3 d w w1]T x = [g l1r la lb w1 w2r w3r w4r wa wb]T x = [l1 l2 l3 l4 l5 s w2]

Other  parameters$ d1 = d +|w − w1|, d = 1.0, w0 = 1.7, and l0 = 15
L = 2dL + Ls, Ls = 4w1 + 4 g + s + la + lb, 
W = 2dL + Ws, Ws = 4w1 + 4 g + s + 2wa, l1 = lbl1r, 
 w2 = waw2r, w3 = w3rwa, w4 = w4rwa

w1 = 2.2 mm, g = 1 mm

EM model CST Microwave Studio CST Microwave Studio CST Microwave Studio

Figures of interest Operating frequency f0 Power split ratio KP Operating frequency f0 Substrate permittivity εr

Lower band operating frequency f1 ratio 
Kf = f2/f1 between upper operating frequency 
f2 and f1

Objective space GHz ≤ f0 ≤ 2.0 GHz
–6.0 dB ≤ KP ≤ 0 dB

1.0 GHz ≤ f0 ≤ 2.0 GHz
2.0 ≤ εr ≤ 5.0

2.5 GHz ≤ f0 ≤ 5.0 GHz
2.5 ≤ εr ≤ 4.5

Design optimality
Minimize matching and isolation at the target 
operating frequency f0
Maintain required power split ratio KP

Minimize matching and isolation at the target 
operating frequency f0
Maintain equal power split ratio

Minimize matching and isolation at both 
target frequencies f1 and f2
Maintain equal power division ratio

Conventional parameter space X l = [2.0 7.0 12.5 0.2 0.7 0.2]T,
u = [4.5 12.5 22.0 0.65 1.5 0.9]T

l = [0.4 0.43 5.9 7.7 0.68 0.28 0.1 0.1 2.0 0.2]T,
u = [1.0 0.86 14.0 16.5 1.5 0.99 0.65 0.25 5.5 
0.8]T

l = [14.5 1.1 13.0 0.5 1.6 0.19 3.9]T,
u = [37.0 16.6 35.0 15.0 5.6 1.5 5.8]T

Modelled characteristics S-parameters: S11, S21, S31, S41, S-parameters: S11, S21, S31, S41, S-parameters: S11, S21, S31, S41,

(a)

wc

Ws

lb

la

wa

dL w2

l1

w1

g

s
Ls

W

L

w3
w4

wb

1

2

3

4

w1

w1

s

w2

1

2 3R

l1
l2

l3l4
g
l5

(b)                                                          (c)

1 2

3 4

l
1

l
2 l

3

dw
1

ww
d

1

Figure 4.  Microwave components used for verification of the introduced modeling framework: (a) Circuit I: 
rat-race coupler, (b) Circuit II: branch-line coupler, (c) Circuit III: dual-band power divider.
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Results
Tables 5, 6, and 7 show the results achieved for Circuit I through III. Meanwhile, Figs. 5, 6, and 7, present the 
juxtaposition of the model-predicted and EM-evaluated outputs of the respective structures, each for five selected 
test points. Based on the results, one can make the following observations:

• The surrogates’ predictive power constructed with the proposed approach is considerably improved w.r.t. 
conventional metamodels (kriging, RBF, ANN, CNN, Ensemble learning), all set up over unconfined design 
space X. Moreover, the predictive power of conventional surrogates is far from satisfactory even for the 

Table 4.  Benchmark techniques.

Modeling technique Domain Comments

Kriging interpolation Conventional (parameter space X) Gaussian correlation function, second-order polynomial used as a trend function

Radial basis functions (RBF) Conventional (parameter space X) Gaussian correlation function, scaling coefficient determined through cross-validation

Artificial neural networks (ANN) Conventional (parameter space X) Feedforward network with two hidden layers, model training using backpropagation

Convolutional neural networks (CNN) Conventional (parameter space X) Model with 4 filters with the filter sizes of [64 128 256 512] trained with the ADAM algorithm

Ensemble learning Conventional (parameter space X) Least-squares boosting with 500 learning cycles, Learning rate optimized through Bayesian optimi-
zation

Nested  kriging76 Confined domain XS

Thickness parameter T = 0.1, the following number of reference designs used:
 Circuit I (12 designs, acquisition cost 779 EM analyses)
 Circuit II (9 designs, acquisition cost 1014 EM analyses)
 Circuit III (9 designs, acquisition cost 923 EM analyses)

Reference-design-free  modeling83 Confined domain XS

Thickness parameter T = 0.05 (Circuits I and II) and T = 0.025 (Circuit III), the following numbers of 
EM simulation used to identify Nr = 50 accepted observables:
 116 (Circuit I)
 226 (Circuit II)
 78 (Circuit III)

Table 5.  Circuit I: Modeling results. $ The cost includes acquisition of the reference designs, which is 779 EM 
simulations of the circuit. # The cost includes generation of random observables, here, 116 simulations in total 
to yield Nr = 100 accepted samples.

Modeling method

Number of training samples

50 100 200 400 800

Kriging

 Modeling error 25.7% 17.9% 13.5% 9.9% 8.0%

 Model setup cost 50 100 200 400 800

 RBF

 Modeling error 28.3% 19.1% 13.9% 10.3% 8.9%

 Model setup cost 50 100 200 400 800

ANN

 Modeling error 18.2% 12.2% 8.0% 7.8% 6.5%

 Model setup cost 50 100 200 400 800

CNN

 Modeling error 22.9% 12.7% 8.0% 5.5% 4.5%

 Model setup cost 50 100 200 400 800

Ensemble learning

 Modeling error 32.7% 28.1% 25.0% 22.8% 19.1%

 Model setup cost 50 100 200 400 800

Nested  kriging76

 Modeling error 6.9% 5.7% 3.8% 3.5% 3.1%

 Model setup  cost$ 829 879 979 1,179 1,579

No-reference-design  modeling83

 Modeling error 4.8% 4.2% 3.3% 3.2% 2.6%

 Model setup  cost# 166 216 316 516 916

No-reference-design reduced- dimensionality modeling (this work)

 Modeling error 2.9% 2.6% 2.2% 1.5% 1.3%

 Model setup  cost# 166 216 316 516 916
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training sets of largest cardinalities (NB = 400 and 800), which indicates that the considered modeling tasks 
are challenging;

• Our surrogate is also superior over the nested kriging framework. On the one hand, this is due to incorporat-
ing the observable data into the training set, which is especially pronounced for reduced-number training 
sets (NB = 50 and 100). On the other hand, it is because of lower dimensionality of the surrogate domain 
(p = 3; in the case of Circuits I and II, whereas p = 2 has been used for Circuit III), which translates into a 
faster decrease of the modeling error for larger training sets (NB = 200, 400, and 800). For the same reason, 
the decrease is much slower for the nested kriging.

• When compared to the reference-design-free  method83, the proposed surrogate is slightly worse in terms of 
accuracy only for the smaller training data sets (NB = 50). Although both techniques incorporate observable 
data into the training set, it is more beneficial for the  model83 due to full dimensionality of its domain. For 
larger training sets, i.e., NB ≥ 100, the predictive power of our surrogate is superior  over83, primarily due to 
improved scalability.

• Reduced computational cost of constructing the model is another advantage of the proposed approach. As 
no reference designs are required, the expenses related to domain definition are dramatically lower than for 
the nested kriging  framework76. The relative savings are as high as 80, 74, and 87% for NB = 50, for Circuit I, 
II, and III, respectively. The savings for NB = 800 are 42, 43, and 4% for the respective circuits. As indicated 
in “Reference-Design-Free Domain-Confined Modeling with Dimensionality Reduction” Section, the setup 
cost is the same for the presented technique and the modeling approach  of83, as both methods utilize the 
same preliminary steps for domain rendition.

Design applications: circuit optimization
Surrogate models are constructed to facilitate EM-driven design procedures, primarily parametric optimization. 
In this section, we illustrate utilization of the models obtained using the proposed approach for optimization of 
Circuits I through III for various conditions. In particular, Circuit I has been optimized for a set of target opera-
tional frequencies and power split ratios, Circuit II for different operating frequencies and substrate permittivity, 
whereas Circuit III for different pairs of target frequencies corresponding to the lower and upper operating band. 
The notion of design optimality for the considered circuits has been explained in Table 3.

Table 6.  Circuit II: modeling results. $ The cost includes acquisition of the reference designs, which is 1,014 
EM simulations of the circuit. # The cost includes generation of random observables, here, 226 simulations in 
total to yield Nr = 100 accepted samples.

Modeling method

Number of training samples

50 100 200 400 800

Kriging

 Modeling error 52.3% 38.3% 31.0% 27.3% 23.3%

 Model setup cost 50 100 200 400 800

RBF

 Modeling error 51.8% 40.5% 37.4% 32.8% 27.2%

 Model setup cost 50 100 200 400 800

ANN

 Modeling error 29.9% 22.2% 15.2% 10.5% 9.8%

 Model setup cost 50 100 200 400 800

CNN

 Modeling error 51.9% 39.9% 30.7% 19.7% 11.5%

 Model setup cost 50 100 200 400 800

Ensemble learning

 Modeling error 53.1% 44.4% 41.6% 38.7% 33.3%

 Model setup cost 50 100 200 400 800

Nested  kriging76

 Modeling error 10.0% 7.4% 6.8% 5.1% 4.8%

 Model setup  cost$ 1,064 1,114 1,214 1,414 1,814

No-reference-design  modeling83

 Modeling error 7.6% 6.2% 4.7% 4.5% 3.4%

 Model setup  cost# 276 326 426 626 1,026

No-reference-design reduced- dimensionality modeling (this work)

 Modeling error 9.2% 5.6% 3.9% 2.8% 2.5%

 Model setup  cost# 276 326 426 626 1,026
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Table 7.  Circuit III: modeling results. $ The cost includes acquisition of the reference designs, which is 923 EM 
simulations of the circuit. # The cost includes generation of random observables, here, 78 simulations in total to 
yield Nr = 50 accepted samples.

Modeling method

Number of training samples

50 100 200 400 800

Kriging

 Modeling error 63.6% 53.8% 45.2% 40.0% 35.1%

 Model setup cost 50 100 200 400 800

RBF

 Modeling error 68.9% 55.2% 43.9% 40.8% 37.2%

 Model setup cost 50 100 200 400 800

ANN

 Modeling error 36.7% 33.2% 24.6% 20.8% 20.3%

 Model setup cost 50 100 200 400 800

CNN

 Modeling error 89.6% 44.7% 26.0% 17.8% 15.8%

 Model setup cost 50 100 200 400 800

Ensemble learning

 Modeling error 47.8% 40.6% 38.1% 36.2% 33.6%

 Model setup cost 50 100 200 400 800

Nested  kriging76

 Modeling error 32.3% 19.2% 18.1% 15.2% 12.9%

 Model setup  cost$ 973 1,023 1,123 1,323 1,723

No-reference-design  modeling83

 Modeling error 23.7% 15.7% 10.8% 7.2% 6.1%

 Model setup  cost# 128 178 278 478 878

No-reference-design reduced- dimensionality modeling (this work)

 Modeling error 25.1% 15.4% 8.4% 3.6% 1.6%

 Model setup  cost# 128 178 278 478 878

Figure 5.  Circuit I: S-parameters for the representative test designs: full-wave simulated (—), and surrogate-
predicted response (o). NB = 400 training samples have been used to identify the model.
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The numerical data has been provided in Tables 8 through 10, which summarize the optimization goals, as 
well as geometry parameter values of the surrogate-optimized circuits. Circuit responses at the optimal designs 
are provided in Figs. 8, 9, and 10, for Circuit I, II, and III, respectively. Observe that the design objectives have 
been reached in all cases. Furthermore, the agreement between system responses predicted by the surrogates and 
those rendered through EM analysis is excellent. This indicates design utility of the models constructed using 
the proposed framework, in particular, their suitability to assist in designing the circuits within wide ranges of 
operating conditions without the necessity of further correction (Tables 9 and 10).

Conclusion
This work introduced a novel technique for surrogate modeling of microwave passive components. Our meth-
odology capitalizes on performance-driven modeling paradigm to define a low-volume domain utilizing a set of 
random observables and EM simulation data extracted therefrom, as well as the principal component analysis 
to enable a reduction of domain dimensionality. Incorporation of the aforementioned algorithmic tools permits 

Figure 6.  Circuit II: S-parameters for the representative test designs: full-wave simulated (—), and surrogate-
predicted response (o). NB = 400 training samples have been used to identify the model.

Figure 7.  Circuit III: S-parameters for the representative test designs: full-wave simulated (—), and surrogate-
predicted response (o). NB = 400 training samples have been used to identify the model.
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a construction of reliable surrogate models valid over broad ranges of system parameters and its operating con-
ditions, in particular, the operational frequency and material parameters (relative permittivity of the substrate 
the circuit is fabricated on). Furthermore, explicit dimensionality reduction significantly improves scalability 
properties of the surrogate, especially in terms of ensuring rapid increase in the model predictive power upon 
enlarging the training data set size. Extensive numerical experiments involving two microstrip couplers and a 
dual-band power divider demonstrate the improved predictive power of the proposed model as compared to 
several benchmark methods, both conventional and performance-driven. In particular, it allows achieving rela-
tive RMS error at the level of one to 3%, which is unattainable for the benchmark surrogates. At the same time, 
the computational cost of the model setup is significantly lower than the cost of the nested kriging framework, 
and it is the same as for the reference-design-free approach. This means that the accuracy improvement does not 
compromise the computational efficiency. Finally, a number of application case studies (circuit optimization), 
conducted for all three circuits, demonstrate practical usefulness of the proposed surrogate under a variety of 
design scenarios. A possible limitation of the presented technique is surrogate model scalability with respect to 
the number of performance figures. This is because the effective dimensionality of the domain is more or less 
equal to the number of those figures, which was two for all considered test cases. Increasing this number to three 
or four would considerably enlarge the effective domain dimensionality, which is expected to be detrimental to 
the scalability of the modelling error. On the other hand, scalability with respect to the number of the circuit 
parameters is expected to be much better due to the same reasons (low effective domain dimensionality). This was 
corroborated by comparing, e.g., modelling error for Circuit I (six parameters) and Circuit II (ten parameters), 
where the degradation of the predictive power of the surrogate was minor for the proposed technique, which 
was not the case for the majority of benchmark techniques.

Table 8.  Optimization results of Circuit I.

Target operating 
conditions Geometry parameter values (mm)

f0 (GHz) KP (dB) l1 l2 l3 d w w1

1.2 0 3.56 8.62 18.77 0.42 0.94 0.76

1.5 − 3 3.43 9.45 15.45 0.39 1.00 0.53

1.7 − 2 3.45 9.23 13.96 0.35 0.87 0.54

1.8 0 3.82 8.67 13.52 0.33 0.78 0.73

(a)                                      (b)

(c)                                      (d)

Figure 8.  Circuit I (Fig. 4a). Surrogate-predicted S-parameters (gray lines) at the design rendered by optimizing 
the introduced domain-confined model with dimensionality reduction, built using NB = 800 training samples. 
For comparison, EM-simulated design shown using black lines. The target operating frequencies are indicated 
by vertical lines: (a) f0 = 1.2 GHz, KP = 0 dB, (b) f0 = 1.5 GHz, KP = − 3 dB, (c) f0 = 1.7 GHz, KP = − 2 dB, (d) 
f0 = 1.8 GHz, KP = 0 dB.
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The future work will include extension of the presented modelling technique to the class of physics-based 
surrogates such as space mapping. Another interesting topic for future studies would be to combine domain 
confinement methodology with sequential sampling techniques, e.g., Gaussian process regression with expected 
improvement as an infill criterion, which might lead to further improvements in terms of lowering the cost of 
graining data acquisition.

(a)                                                               (b)

(d)

(c)                                                          

Figure 9.  Circuit II (Fig. 4b). Surrogate-predicted S-parameters (gray lines) at the design rendered by 
optimizing the introduced domain-confined model with dimensionality reduction, built using NB = 800 training 
samples. For comparison, EM-simulated design shown using black lines. The target operating frequencies 
are indicated by vertical lines: (a) fO = 1.0 GHz, εr = 3.0, (b) fO = 1.2 GHz, εr = 3.0, (c) fO = 1.5 GHz, εr = 3.0, (d) 
fO = 1.7 GHz, εr = 2.0.

(a)                                                               (b)

(c)                                                               (d)

Figure 10.  Circuit III (Fig. 4c). Surrogate-predicted S-parameters (gray lines) at the design rendered by 
optimizing the introduced domain-confined model with dimensionality reduction, built using NB = 800 training 
samples. For comparison, EM-simulated design shown using black lines. The target operating frequencies are 
indicated by vertical lines: (a) fl = 1.5 GHz, Kf = 1.63, (b) fl = 1.8 GHz, Kf = 1.67, (c) fl = 2.45 GHz, Kf = 1.71, (d) 
fl = 2.45 GHz, Kf = 1.47.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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