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Abstract

Reducible representations of CAR and CCR are applied to second quantization of
Dirac and Maxwell fields. The resulting field operators are indeed operators and not
operator-valued distributions. Examples show that the formalism may lead to a finite
quantum field theory.

1 Reducible representation of CAR

The main objective of the paper is to discuss a reducible representation of canonical anti-
commutation relations (CAR) which generalizes to Dirac electrons the construction pre-
viously employed in [1, 2, 3] to electromagnetic fields. The case of canonical commutation
relations (CCR) is briefly discussed in the last section.

Beginning with the CAR operators b±, d± of an irreducible representation we introduce
the following four operators

b(~p,±) = |~p〉〈~p| ⊗ b± = c1(~p,±), d(~p,±) = |~p〉〈~p| ⊗ d± = c2(~p,±) (1.1)

satisfying a reducible representation of CAR. The momentum eigenvectors are normalized
by 〈~p|~p ′〉 = δΓm

(~p, ~p ′) = (2π)32
√

~p2 +m2δ(3)(~p−~p ′).The reducible representation of CAR
can be written in a compact form as

{
cj(~p, s), cj′(~p

′, s′)†
}

= δjj′δss′δΓm
(~p, ~p ′)|~p〉〈~p| ⊗ 1 = δjj′δss′δΓm

(~p, ~p ′)I~p, (1.2)

the remaining anti-commutators vanishing. The identity 1 in (1.2) is the one occurring

in the CAR relations {b±, b†±} = {d±, d†±} = 1 and the RHS of (1.2) is in the center of
the CAR algebra. Similarly to [1, 2, 3] we have introduced the operator I~p = |~p〉〈~p| ⊗ 1
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satisfying the resolution of unity
∫
dΓm(~p)I~p =

∫
dΓm(~p)|~p〉〈~p| ⊗ 1 = I. We define the

single-oscillator Dirac field operator by

Ψ(x) =
∑

s

∫

dΓm(~p)
(

u(~p, s)b(~p, s)e−ip·x + v(~p, s)d(~p, s)†eip·x
)

. (1.3)

In order to perform the second step of quantization we introduce I0 =
∫
dΓm(~p)|~p〉〈~p|⊗ 10

where 10 is a Hermitian operator satisfying 12
0 = 1, {b±, 10} = {d±, 10} = 0. A fermionic

N -oscillator Jordan-Wigner-type extension is defined by

b(~p, s) =
1√
N

N∑

n=1

N
︷ ︸︸ ︷

I0 ⊗ · · · ⊗ I0
︸ ︷︷ ︸

n−1

⊗ b(~p, s) ⊗ I ⊗ · · · ⊗ I = c1(~p, s), (1.4)

d(~p, s) =
1√
N

N∑

n=1

N
︷ ︸︸ ︷

I0 ⊗ · · · ⊗ I0
︸ ︷︷ ︸

n−1

⊗ d(~p, s) ⊗ I ⊗ · · · ⊗ I = c2(~p, s), (1.5)

Ψ(x) =
∑

s

∫

dΓm(~p)
(

u(~p, s)b(~p, s)e−ip·x + v(~p, s)d(~p, s)†eip·x
)

. (1.6)

The reducible representation of CAR reads
{
cj(~p, s), cj′(~p

′, s′)†
}

= δjj′δss′δΓm
(~p, ~p ′)I~p, (1.7)

I~p =
1

N

N∑

n=1

N
︷ ︸︸ ︷

I ⊗ · · · ⊗ I
︸ ︷︷ ︸

n−1

⊗I~p ⊗ I ⊗ · · · ⊗ I,

∫

dΓm(~p)I~p = I. (1.8)

In order to verify that Ψ(x) is an operator it is sufficient to check this property for Ψ(x).
The choice of the representation implies that

Ψ(x) =
∑

s

(

u(~̂p, s)e−ip̂·x ⊗ bs + v(~̂p, s)eip̂·x ⊗ d†s

)

where p̂a =
∑

s

∫
dΓm(~p)pa|~p〉〈~p| is the spectral representation of the unbounded operator,

and u(~̂p, s), v(~̂p, s) are functions of the operator ~̂p in the sense of spectral theory. All
these objects are well defined and there is no problem with products of fields taken at
the same point x of the configuration space. The difference between fields taken in our
reducible representation and those arising from the standard irreducible one is analogous
to this between the unitary operator e−ip̂·x =

∫
dΓm(~p)e−ip·x|~p〉〈~p| and the distribution

∫
dΓm(~p)e−ip·x. Unitary representation of the Poincaré group

U−1
Λ,yΨα(x)UΛ,y = Sα

βΨβ

(
Λ−1(x− y)

)
(1.9)

is explicitly constructed in [4]. Our representation of CAR written in terms of Dirac fields
reads (the superscripts (+) or (−) denote the parts of field operators containing only
creation or annihilation operators, respectively)

S
(±)
αβ (x− y)

def
= i{Ψ(∓)

α (x), Ψ̄
(±)
β (y)} =

1

N

N∑

n=1

N
︷ ︸︸ ︷

I ⊗ · · · ⊗ I
︸ ︷︷ ︸

n−1

⊗S(±)
αβ (x− y) ⊗ I ⊗ · · · ⊗ I

S
(±)
αβ (x− y)

def
= i{Ψ(∓)

α (x), Ψ̄
(±)
β (y)} = i(γ · p̂±m)αβe

∓ip̂·(x−y) ⊗ 1. (1.10)
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Neither anti-commutators nor products of fields evaluated at x = y lead to any difficulty.
The essence of the new representation is in the replacement of ordinary integrals over
momenta by spectral integrals (e.g. regularization of zero-point energy in a finite volume
would take the form

∑
n → ∑

n|n〉〈n|). The limit N → ∞ provides a correspondence
principle analogous to ~ → 0 or c→ ∞. For physical aspects of the modification cf. [1, 2].

2 Vacuum and multi-electron states

The vacuum consists of a Hilbert space of all the states which are annihilated by all
annihilation operators. We begin with a “single-oscillator vacuum”

|O〉 =

∫

dΓm(~p)O(~p)|~p〉 ⊗ |0〉, (2.1)

where bs|0〉 = ds|0〉 = 0, i.e. |0〉 is the vacuum of the irreducible representation of CAR.
The multi-oscillator vacuum is defined at the N -oscillator level as the tensor product of
one-oscillator vacua |O〉 = |O〉 ⊗ · · · ⊗ |O〉. As expected b(~p, s)|O〉 = d(~p, s)|O〉 = 0. Let us
stress that the vacuum space as a whole is Poincaré invariant, whereas a concrete vector |O〉
is only covariant: The wave function transforms as a mass-m scalar field which carries the

unitary representation O(~p) 7→ e−2ip·yO(
−−−→
Λ−1p) [2, 4]; the exponent comes from the vacuum

part of 4-momentum and can be removed by a unitary transformation. The vacuum space
plays a role of a base space in a bundle whose fibers are Fock spaces generated in the usual
way in terms of the representation of CAR. The structure of the fibers is characterized
by a theorem on the thermodynamic limit N → ∞ (the proof is exactly analogous to the
bosonic case explained in detail in [2, 3]). Let cj(f) =

∑

s

∫
dΓm(~p)f(~p, s)cj(~p, s). The

scalar product of two unnormalized one-electron states is

〈O|cj(f)cj′(g)
†|O〉 = δjj′

∑

s

∫

dΓm(~p)Z(~p)f(~p, s)g(~p, s)
def
= δjj′〈f |g〉Z (2.2)

where Z(~p) = |O(~p)|2. The scalar product 〈f |g〉Z reappears in the thermodynamic limit
N → ∞ for arbitrary multi-electron states.

Theorem 1. Let |O〉 = |O〉 ⊗ · · · ⊗ |O〉
︸ ︷︷ ︸

N

. Then

lim
N→∞

〈O|cj(f1) . . . cj(fM )cj(g1)
† . . . cj(gM )†|O〉 =

∑

σ

δσ〈f1|gσ(1)〉Z . . . 〈fM |gσ(M)〉Z

=
∑

σ

δσ
∑

s1...sM

∫

dΓm(~p1) . . .

∫

dΓm(~pM )

× Z(~p1) . . . Z(~pM )f1(~p1, s1) . . . fm(~pM , sM )gσ(1)(~p1, s1) . . . gσ(m)(~pM , sM )

where δσ is the sign of the permutation σ.

Let us note that the weights Z(~p) = 〈O|I~p|O〉 occur here automatically and regularize
ultraviolet divergences since

∫
dΓm(~p)Z(~p) = 〈O|

∫
dΓm(~p)I~p|O〉 = 〈O|I |O〉 = 1 implies

that Z(~p) decays at infinity. Furthermore, the Poincaré transformation Z(~p) 7→ Z(
−−−→
Λ−1p)
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implies that Z = max~p{Z(~p)} is a nonvanishing invariant. This allows us to introduce
the cut-off functions χ(~p) = Z(~p)/Z, 0 ≤ χ(~p) ≤ 1. Quantum electrodynamic regime is
defined as a condition on supports of wave packets: f(~p, s)χ(~p) = f(~p, s). For any two such
wave packets one finds 〈f |g〉Z = Z〈f |g〉 and the thermodynamic limit simply redefines a
bare charge by a multiple of the invariant Z, as we shall see explicitly in the next section.

3 Interaction Hamiltonian

For Dirac electrons interacting with classical electromagnetic fields the departure point is
the interaction-picture Hamiltonian

H(x0) = e0

∫

d3xΨ̄(x)γaΨ(x)Aa(x) (3.1)

Let us note that H(x0) = −i(2π)3e0S
(−)
αβ (0)γαβ

a Ãa(x0, 0)+ : H(x0) : where Ãa(x0, ~k) is the
3-dimensional Fourier transform. The difference between : H(x0) : and H(x0) is a well
behaved element of the center of CAR if the Fourier transform is not singular at ~k = 0.
This shows that the Coulomb field leads to an infrared vacuum divergence. However, if
one restricts Aa(x) to solutions of free Maxwell equations then Ãa(x0, 0) = 0 since the
origin of the light cone is excluded. We shall return to this question in the next section.

As a first purely fermionic modification consider the vacuum average

〈O|S(±)(x)|O〉 =

∫

dΓm(~p)〈O|I~p|O〉(γ ·p±m)e∓ip·x = Z

∫

dΓm(~p)χ(~p)(γ ·p±m)e∓ip·x.

This is the usual-looking expression but with the cut-off function χ(~p) and the “renormal-
ization constant” Z automatically built-in. The regularization by χ(~p) is a straightforward
consequence of reducibility: For irreducible representations one finds 〈O|I~p|O〉 = 1.

A first-order correction in a S-matrix element evaluated between two single-electron
wave packets reads

〈φ|S(1)|ψ〉 = −ie0
∑

s,s′

∫

dΓm(~p)

∫

dΓm(~p ′)

×〈O|Ip ′Ip|O〉
︸ ︷︷ ︸

modification

φ(~p ′, s′)ψ(~p, s)ū(~p ′, s′)γau(~p, s)

∫

d4xei(p
′−p)·xAa(x).

(3.2)

The underbraced expression, equal to 1 in the standard irreducible representation, is the
only modification we encounter. Explicitly

〈O|Ip ′Ip|O〉 = Z
1

N
δΓm

(~p, ~p ′)χ(~p) + Z2
(

1 − 1

N

)

χ(~p)χ(~p ′). (3.3)

Keeping in mind that one power of Z gets absorbed into normalization of single-electron
states, assuming |

∫
d4xAa(x)| <∞ we find, in the thermodynamic limit N → ∞ and for

wave packets satisfying the QED regime condition, that 〈φ|S(1)|ψ〉 = Z〈φ|S(1)|ψ〉standard.
For finite N there are additional corrections arising from the term proportional to 1/N .

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


82 M Czachor

As a next exercise consider the vacuum polarization tensor which appears in second-
order calculation of vacuum polarization. The standard expression is here replaced by

Tr
(

〈O|S(−)(x2 − x1)γ
aS(+)(x1 − x2)γ

b|O〉
)

= −Z

N

∫

dΓm(~p)χ(~p)e2ip·(x2−x1)Tr
(

(γ · p−m)γa(γ · p+m)γb
)

− Z2
(

1 − 1

N

)∫

dΓm(~p)

∫

dΓm(~p ′)

× χ(~p)χ(~p ′)ei(p+p′)·(x2−x1)Tr
(

(γ · p−m)γa(γ · p′ +m)γb
)

.

The expression which survives the thermodynamic limit is a regularized version of the
standard formula, multiplied by Z2.

4 Reducible representation of CCR

The automatic appearance of the cut-off functions χ(~p) = |O(~p)|2/Z was a consequence of
replacing at the RHS of CAR the identity operator by I~p. The claim is that an analogous
effect occurs for reducibly quantized electromagnetic fields [1, 2, 3].

The strategy is similar to the CAR case. One starts with

a(~k,±) = |~k〉〈~k| ⊗ a± (4.1)

where [as, a
†
s′ ] = δss′1 is an irreducible representation of CCR and then performs a bosonic

Ñ -particle extension a(~k,±) 7→ a(~k,±). The parameters N and Ñ representing the num-
bers of fermionic and bosonic oscillators are in principle unrelated. A theorem analogous
to Theorem 1 holds for the Ñ → ∞ limit. Coherent states of light are defined in the
standard way in terms of a displacement operator

D(f) = ea(f)†−a(f), a(f) =
∑

s

∫

dΓ0(~k)f(~k, s)a(~k, s), (4.2)

D(f)†a(~k,±)D(f) = a(~k,±) + f(~k,±)I~k
. (4.3)

Let us note the important difference with respect to the irreducible representation: The
shift in (4.3) is proportional to I~k

and not to the identity operator. For Ñ → ∞ the
statistics of excitations of a coherent state is Poissonian, as it should be for physical
reasons. Now assume we have a classical transverse current Ja(x) and the interaction-
picture Hamiltonian

H(x0) =

∫

d3xJa(x)A
a(x) (4.4)

where Aa(x) is a reducibly quantized vector potential in a Lorenz gauge. A simple calcu-
lation shows that the S matrix, up to a unitary operator which belongs to the center of
CCR, is given by the displacement operator and

a(~k,±)out = S†a(~k,±)inS = a(~k,±)in + j(~k,±)I~k
= D(j)†a(~k,±)inD(j) (4.5)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Reducible representations of CAR and CCR 83

where j(~k,±) are amplitudes of the two transverse components of the 4-dimensional
Fourier transform of Ja(x), restricted to the light cone, i.e. the same functions one finds
in the standard formalism. But there is also a difference: The irreducible formalism would
have produced j(~k,±)I and not j(~k,±)I~k

.

The vacuum space of the representation is constructed in analogy to the CAR case.
One begins with |Õ〉 =

∫
dΓ0(~k)Õ(~k)|~k〉 ⊗ |0〉, where as|0〉 = 0, and the Ñ -oscillator

extension is |Õ〉 = |Õ〉 ⊗ · · · ⊗ |Õ〉. The “renormalization constant” Z̃ = max~k
{|Õ(~k)|2} is

a nonvanishing Poincaré invariant and thus the cut-off function χ̃(~p) = |Õ(~p)|2/Z̃ is well
defined. What is important, the field Õ(~k) is now massless and therefore vanishes not only
at infinity but also at ~k = 0.

Having the “out” fields we can compute their (“in”-)vacuum averages. The result
is analogous to the standard one, but now the Fourier transform of the field involves
the amplitude f(~k,±) = 〈Õ|I~k

|Õ〉j(~k,±) = |Õ(~k)|2j(~k,±) = Z̃χ̃(~k)j(~k,±) and not

f(~k,±) = j(~k,±) which would have occurred in the irreducible formalism. The differ-
ence is subtle but of crucial importance since the property χ̃(0) = 0 can regularize the
infrared divergence. In the irreducible case the radiation field produced by an accelerated
pointlike charge involves the amplitude j(~k,±) which instead of vanishing blows up at
~k = 0. In the reducible case we obtain a regularization which eliminates the infrared
divergence if the vacuum Õ(~k) is correctly chosen. The same concerns the average number
of photons of the radiated field [2, 3]. Let us mention that the operators I~k

appear also
in reducibly quantized solutions of Maxwell equations with classical currents and thus
regularize classical divergences.

To conclude, the reducible representations seem to produce the cut-off functions in
exactly those places one expects them to occur. This is a consequence of the RHS of CAR
and CCR where instead of identities one finds I~p and I~k

. At the level of amplitudes and in

thermodynamic limits one finds the effective rule I~p → Zχ(~p), I~k
→ Z̃χ̃(~k). The analogy

to renormalized fields1 whose CAR and CCR relations involve at RHS the renormalization
constants Z2 and Z3 supplemented by cut-offs is probably not accidental. An argument
in favor of our approach is that the RHS of CAR and CCR are Poincaré covariant [2, 4]
since U−1

Λ,yI~pUΛ,y = I−−−→
Λ−1p

, U−1
Λ,yI~k

UΛ,y = I−−−→
Λ−1k

, which would not be possible if I~p and I~k

were simply replaced in CAR and CCR by the functions Zχ(~p) and Z̃χ̃(~k). Our theory is
nonlocal [5] but in an unusual sense.

The above representations have a status of toy models. The main message we have
tried to convey is that reducibility of some type may be crucial for a consistent QFT, a
viewpoint advocated also by Dirac in his last paper [6]. Generalizations to more abstract
formalisms may be essential for the issue of gauge invariance, which is beyond our reach at
the moment. In this context let us note the recent paper [7] where a similar representation
of CCR is discussed at the level of correlation-function approach to photons.

My understanding of the problem was influenced by numerous discussions with Jan
Naudts. I am grateful to UIA, Antwerp, for a financial support of this work.

1I am indebted to prof. H. Grosse for drawing my attention to this point during our discussion in

Bia lowieża
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