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Reduction restrictions of Darboux and Laplace
transformations for the Goursat equation

S. B. Leblea)

Theoretical Physics and Mathematical Methods Department,
Technical University of Gdansk, Poland

A. V. Yurovb)

Theoretical Physics Department, Kaliningrad State University, Russia

~Received 13 June 2001; accepted for publication 25 October 2001!

We study Darboux and Laplace transformations of the solutions and potentials of
the Goursat equation which is equivalent to one of the Lax pair equations for the
2D-MKdV hierarchy. The reduction restrictions for these transformations are con-
sidered. The derived reduction equations are generalizations of the Liouville and
sinh-Gordon equation. The integrability of these equations by the ST method is
proved. The binary Darboux transformation for the Goursat equation is suggested.
We find exact rational nonsingular solutions of the 2D-MKdV equations via the
Moutard transformation for the Goursat equation. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1427761#

I. INTRODUCTION

A covariance of general Lax pairs leads to abundant but generally useless integrable s
while reductions of them may have straight applications in mathematical physics.1 In 211 or
higher dimensions there exists the problem of an elaboration of similar or another appro
classification or at least of a choice of invariant subsets by some key rule.2 Such a rule is directly
connected with discrete covariance of Lax equations3 that appears in the classic Laplace sche
developed by Darboux, Moutard, and Le Roux4 and investigated recently from different points
view ~e.g., Refs. 5 and 6!. We consider subclasses of Laplace~Darboux!-covariant ‘‘potentials,’’
i.e., introduce a notion of ‘‘reduction equation’’ that follows directly from the constraint fo
invariance. It means that Darboux~Laplace! transforms together with the appropriate partial s
lutions of a basic equation determine some discrete symmetry and chains of solutions.
demonstrate this by an example.

It is known that the Laplace transformation~LT! of the equation

cxy1acy1bc50 ~1!

has the form

a→a215a2]x ln~b2ay!, b→b215b2ay , c→c215cx1ac, ~2!

a→a15a1]x ln b, b→b15b1]y~a1]x ln b!, c→c15
cy

b
, ~3!

and plays a significant role in the theory of soliton equation development.
The Goursat equation~GE! has the form7

zxy52Alzxzy,

a!Electronic mail: leble@mifgate.pg.gda.pl
b!Electronic mail: yurov@freemail.ru
10950022-2488/2002/43(2)/1095/11/$19.00 © 2002 American Institute of Physics
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wherez5z(x,y) andl5l(x,y). We calll a potential function. This equation can be lineariz
by the substitutionc5Azx andx5Azy. We get

cy5Alx, xx5Alc

or

cxy5
1
2~ ln l!xcy1lc, ~4!

and the similar equation for thex but we will not need one.
Equation~4! is the particular case of Eq.~1! with two potentialsa5a(x,y) andb5b(x,y).

This equation has two types of local discrete symmetries:

~1! Laplace transformations~2! and ~3!, mentioned above, and
~2! Darboux transformations~DT!:

a→a15a2]x ln ~a1t!, b→b15b1ty , c→c15cx2tc, ~5!

a→1a52~t1br!, b→1b5b2~br!y , c→1c5rcy2c, ~6!

wheret5fx /f, r5f/fy , c andf are particular solutions of~1! by preassigneda and
b, and we callf the support function of the DT.

The aim of this work is to study the validity of LT and DT for the GE. It is clear that a
single DT or LT the reduction restriction

a52]x ln b ~7!

will be true only for the special class of potentials and we will specify it in Sec. II.
Our interest in the GE is connected with the two applications of this equation in geometr

in the solitons theory, respectively.
~1! Let x be the complex coordinate,y52 x̄, Al is the real-valued function, andc andx from

~1! are complex-valued functions. Then one defines three real-valued functionsXi , i 51,2,3,
which are the coordinates of surface inR3:8

X11 iX252i E
G
~c2dy82x2dx8!,

X12 iX2522i E
G
~c2dy82x2dx8!, ~8!

X3522E
G
~c̄xdy81x̄cdx8!,

whereG is an arbitrary path of integration in the complex plane. The corresponding first fu
mental form, the Gaussian curvatureK, and the mean curvatureH yield

ds254U2dxdy, K5
1

U2 ]x]y ln U, H5
Al

U
,

where

U5ucu21uxu2,

and any analytic surface inR3 can be globally represented by~8! ~see Ref. 9!.
~2! The system of the 2D-MKdV equations looks like:

http://mostwiedzy.pl
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4l2~l t2Alx1Bly2l3x2l3y!14l3@~2l1B!y1~2l2A!x#

16l~lylyy1lxlxx!23~lx
31ly

3!50, ~9a!

Bx53ly2lx , Ay5ly23lx .

Herel5l(x,y,t), A5A(x,y,t), B5B(x,y,t). If we introduce the functionu5Al then we can
rewrite ~9! in the more customary form~see Ref. 10!:

ut12u2~ux1uy!1 1
2 ~By2Ax!u1Buy2Aux2u3y2u3x50

~9b!
Bx5~3]y2]x!u

2, Ay5~]y23]x!u
2.

The reduction conditions

A52B522u2, uy5ux ,

lead us to the MKdV equation,

ut112u2ux22u3x50,

so we call~9a! the 2D-MKdV equations.
The 2D-MKdV equations~9! is the compatibility condition of the linear system~so-called@L,

A# pair! which contains Eq.~4! and

c t5c3x1c3y2
3

2

ly

l
cyy1F3

4 S ly

l D 2

2l2BGcy1~A2l!cx1
1

2
~Ax2lx!c.

We will study ~9a! in the last section~Sec. IV!.
Remark 1: In Ref. 11 A. I. Zenchuk studied the discrete transformation~2!, ~3!, ~5!, and~6! of

solutions and potentials in the general case of the linear second order partial differential eq
with two independent variables. The simplest (k52) closed chains of these transformations a
considered and the author obtain a novelintegrable equation:

1
2Sxy2eS2e2S@C12C2]x

21~e2S!y#50, ~10!

whereC2.0.
In the present work we use reduction restriction~7! as a~weak! condition of closing. In Sec.

II we will obtain a new integrable equation@see~19!# which looks like~10! and it is a somewha
two-dimensional generalization of the sinh-Gordon equation. In Sec. III we suggest the bina
for a construction of explicit solutions of the GE. These transformations allow one to obtain
solutions of the GE without solving some reduction equation. We also discuss the transform
for Laplace invariants.

II. THE REDUCTION EQUATIONS

The reduction restriction~7! is valid only for special types of potentials. These functions
solutions of the special equations which we callreduction equations. In this section we will
obtain these equations for the LT and DT.

~I! Let us consider the Laplace transformations~2!. The invariance of the reduction constrai
means

l215l2
1

2
]x]y ln l5

C

2l
. ~11!

http://mostwiedzy.pl
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It is obvious that Eq.~11! is valid for the LT~3! because the one is inverse to the transformat
~2!.

It easy to show that the reduction equation for this transformation is the well-known
Gordon equation:

]x]y ln l52l2
C

l
, ~12!

whereC5const, and the new potentiall21 is a solution of~12! too.
Let us remark that in the case ofC50 we obtainl2150 and the Liouville equation instea

of ~12!. In this case the GE may be integrated and

l5
f 8g8

~ f 1g!2 , z52
1

C2 ]y ln ~ f 1g!1V,

where f 5 f (x) and g5g(y) are arbitrary differentiable functions,C5const, V5V(y) is the
function such that

V85F 1

2C
~ ln g8!8G2

5
1

4C2 S g9

g8D
2

,

and

c5
Af 8g8

C~ f 1g!
, x5

1

2C
]y ln S 2]y

1

f 1gD .

Proposition 1: Let M andL be two Laplace invariants of Eq.~4!. It means that

M5 1
2]x]y ln l2l, L52l.

Using the reduction equation~11! we get

M52
C

2l
, L52l

and

M 215M15L, L215L15M .

~II ! Let us consider the DT~5!. Inserting both transforms into the reduction condition~7!
yields

l215l2ty5lS t2
lx

2l D . ~13!

Denote nowa5 ln f, L5 ln l. Since

l2ty5~2 1
2Lx1ax!ay ,

andt5ax one gets from the transform~13! the condition forL:

~ax2 1
2Lx!@ay2exp~l!~ax2 1

2Lx!#50. ~14!

The setting zero for the first parentheses yields

Lxy52 exp~L!,

http://mostwiedzy.pl
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and a5L/22c(y), wherec(y) is arbitrary function. But in this case we getl150, and the
Liouville equation is in the realm of the reduction equation.

Setting equal to zero the square brackets in~14! one arrives at the relevant equation

„exp~22a!l…x5„exp~22a!…y , ~15!

therefore

ux5c25
1

Fx1C2
, l5

Fy1C1

Fx1C2
,

whereF5F(x,y) is any differentiable function andC1,25const. Substituting~15! into ~4! we get

2~C21Fx!C1
21@~Fyxx14Fy!C21FxFyxx14FyFx2FxxFyx#C11~FyxxFy2 1

2Fyx
2 12Fy

2!C2

12Fy
2Fx2 1

2Fyx
2 Fx2FyFxxFyx1FxFyFyxx50. ~16!

We define new fields:

Fx5P2C2 , Fy5Q2C1 .

Then ~16! can be split into the system

2QxQPx2~2QxxQ2Qx
214Q2!P50, Py5Qx . ~17!

After integration of the first equation we get

P5
CQx

AQ
exp~G!, Gx52

Q

Qx
,

whereC is the third constant of integration. It is necessary that the second equation in~17! will be
true. Let

Q5n2, G5 ln m,

wherem5m(x,y) andn5n(x,y). The reduction equation takes the simple form

~n2!x52C~mnx!y , mxnx5mn. ~18!

This system can be rewritten in more convenient form. Let

nx5n exp~S!, mx5m exp~2S!,

S5S(x,y). After substituting into~18! we get

Sy5
1

C

n

m
2]y ln ~mn!,

therefore

Sxy54 sinhS]y]x
21 coshS. ~19!

Equation ~19! is the reduction equation for the DT~5!. It looks like Eq. ~10! and it is the
generalization ofd52 sinh-Gordon equation. We will present the Lax pair analog for Eq.~19! by
the following proposition:

Proposition 2:Let us introduce the@L,A# pair for Eq.~19! in the form

http://mostwiedzy.pl
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Kc50, K1Dc50

where

K5]x]y2
1

2

lx

l
]y2l, K15]x]y2

1

2

l1,x

l1
]y2l1 , D5]x2t,

the variablesl andl1 are defined by the equalities

l5
~Sx12 coshS!y

4 sinhS
exp~2S!, l15

~Sx12 coshS!y

4 sinhS
exp~S!, ~20!

and

ty[l2l1 .

It is possible to check the statement by direct substitution. Thus the reduction equations
DT ~5! has either the form of Eq.~19! or the Liouville equation.

We can study the reduction equations for the DT~6! analogously. As a result we get

l5C1fy exp~F !, 1l52
C1C2f2

fy
exp~F !, ~21!

wheref is the support function of the DT~6! and the reduction equation can be written like t
system:

fxy5fy@Fx12C1f exp~F !#, Fyfy2C2f.

Proposition 3:By the construction~20! for the DT ~5! we get

M52l1 , L52l,

and

M15M exp~22S!, L15L exp~2S!.

Quite similar for the DT~6! the use of~21! gives

M52
C2„2fx1fFx1C1f2 exp~F !…

fy
, L52C1fy exp~F !,

and

1M52
fy

2

C2f2 M , 1L52
C2f2

fy
2 L.

The multiple of the Laplace invariantsML is invariant in both cases.

III. BINARY DT

In Ref. 12 Ganzha studied the analog of the Moutard transformation for the Goursat equ
This transformation is valid without a reduction restriction and reduction equations. In this se
we obtained binary Darboux transformation for the GE with the same property.

We introduce new variablesj andh:

]y5]h2]j , ]x5]h1]j ,

http://mostwiedzy.pl
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and rewrite~4! in the matrix form

Ch5s3Cj1UC, ~22!

where

C5S c1 c2

x1 x2
D , U5Als1 , ~23!

ck5ck(j,h), xk5xk(j,h) with thek51,2 particular solutions of~1! with somel~j, h!, ands1,3

are the Pauli matrices. LetC1 some solution of Eq.~22! andCÞC1 . We define a matrix function
t[C1,jC1

21. Equation~22! is covariant with respect to DT:

F@1#5Fj2tF, U@1#5U1@s3 ,t#. ~24!

Remark 2:It is not difficult to check that the DT~24! is the superposition formula for the tw
simpler Darboux transformations given by formulas~5! and ~6!.

Remark 3:Equation~22! is the spectral problem for the Davey–Stewartson~DS! equations.13

The LTs produce an explicitly invertible Ba¨cklund autotransformation for the DS equations.
Ref. 14 we showed that these transformations allow one to construct solutions to the DS eq
that fall off in all directions in the plane according to exponential and algebraic law.

Let us consider a closed one-form

dV5djFC1dhFs3C, V5E dV,

where a 232 matrix functionF solves the equation

Fh5Fjs32FU. ~25!

We shall apply the DT for~22!. One can verify by immediate substitution that~25! is covariant
with respect to the transform if

F@11#5V~F,C1!C1
21.

Now we can alternatively affectU by the following transformation:

U@11,21#5U1@s3 ,C1V21F#.

The particular solution of Eq.~25! has the form

F15S s1c11s2c2 2s1x12s2x2

s3c11s4c2 2s3x12s4x2
D , ~26!

wheresk5const (k51,...,4). It is convenient to choose one in the form

F15C1
Ts3 , ~27!

whereC1
T is the transposed matrixC1 @~27! is the particular case of~26!#.

In this case

U@11,21#5U22AF , ~28!

whereAF is the off-diagonal part of the matrixA:

A5C1V21C1
T ,

http://mostwiedzy.pl
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V5V(F1 ,C1), and

AF
T5AF5 f s1 , ~29!

where f 5 f (j,h) is a some function.
Using ~23!, ~28!, and~29! we can see thatU@11,21# has the same form as the initial matr

U:

U@11,21#[S 0 Al@11,21#

Al@11,21# 0
D 5S 0 Al22 f

Al22 f 0
D ,

thus the reduction restriction is valid without the reduction equations.
The new functionF@11,21# has the form

F@11,21#5F2V~F,C1!~V~C1 ,C1!!21F1 , ~30!

whereF is arbitrary solution of Eq.~25!.
Using binary DT~28! and~30! we can construct a new solution of the GE from understand

particular solutions of one.
As a result we get the following theorem~in the old variablesx andy!:
Theorem: Let

ck,y5Alxk , xk,x5Alck , ak,y52Albk , bk,x521Alak ,

wherek51,2. Then new functions

a185a12
A1c11A2c2

D
, b185b11

A1x11A2x2

D

are solutions of the equations

a1,y8 5Al8b18 , b1,x8 5Al8a18 ,

where

Al852Al1
c1x1V221c2x2V112~c1x21c2x1!V12

D
,

and

V115E dxc1
21dyx1

2, V125V215E dxc1c21dyx1x2 ,

V225E dxc2
21dyx2

2, D5V11V222V12
2 ,

L115E dxa1c11dyb1x1 , L125E dxa1c21dyb1x2 ,

L215E dxa2c11dyb2x1 , L225E dxa2c21b2x2 ,

A15L11V222L12V12, A25L12V112L11V12.

http://mostwiedzy.pl
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Here *5*G where G is an arbitrary path of integration in the plane. It is easy to obtain
expressions for the functionsa28 andb28 , but we will not do it.

Thus the binary DT allows one to construct explicit solutions of the GE without the solvin
some reduction equation.

IV. THE MOUTARD TRANSFORMATION FOR THE 2D-MKdV EQUATIONS

The Lax (@L,A#) pair for the 2D-MKdV equations~9a! has the form

cxy5
ux

u
cy1u2c,

~31!

c t5c3x1c3y23
uy

u
cyy1F3S uy

u D 2

2u22BGcy1~A2u2!cx1
1

2
~A2u2!xc.

In Ref. 12 Ganzha studied the one of analog of the Moutard transformation for the Go
equation. To use this transformation for obtaining exact solutions of~9a! we must complete a
definition of the Moutard transformation. It is easy to do. Letf be the second solution of~31! ~the
support function!. Then we have a closed one-form,

du5dxu11dyu21dtu3 , u[E du,

where

u15f2, u25S fy

u D 2

,

u35~A2u2!f22fy
22fx

212ffxx1
~2f3yfy2fyy

2 2Bfy
2!u222ufy~uyfy!y13~uyfy!2

u4 .

We define thegeneralizedMoutard transformation in the following way:

u→ũ5u2A~ ln u!x~ ln u!y, A→Ã5A2~]x]y23]x
2! ln u,

~32!

B→B̃5B1~]x]y23]y
2! ln u, c→c̃5

fQ

u
,

where

Q[E dQ,

dQ5dxQ11dyQ21dtQ3 ,

and (w5c/f)

Q15uwx , Q252
u3~1/u!xywy

uxy
,

Q35uw3x1c1w3y1c2wxx1c3wyy1c4wx1c5wy ,

with

http://mostwiedzy.pl
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c152
uxy

2u2 1u, c25
3

2
u~ ln ux!x2ux , c45S 3fxx

f
1A2u2D u2

uxx

2
,

c35
uyuxy

2u3 1
ffyy

u2 2
3uyu

u
13S u

2
~ ln ux!y2uyD ,

c552
3uy

2uxy

2u4 1
1

u3 ~uxyuyy1uyffyy!1
1

u2 S 3uuy
22ff3y1

1

2 FB2
fyy

f GuxyD
1S 3fyy

f
2BD1

uy

u S 2uy2
3uuxy

ux
D1

uxy

2
2u2u.

The one-formdQ is closed,

Q1,y5Q2,x , Q1,t5Q3,x , Q2,t5Q3,y .

It is easy to verify that the@L,A# pair ~31! is covariant with respect to the generalized Mouta
transformation~32!.

Now we use these transformations to construct exact solutions of the 2D-MKdV equa
~9a!. First we would mention the known localized solutions from Ref. 10. Let us choosu
5const,A5B50. We will consider two examples.

~1! If we take the solution of~31! asf5sinhj, where

j5ax1
u2

a
y1

~u22a2!~u42a4!

a3 t, ~33!

with the reala5const, then using~32! we get new solutions of the 2D-MKdV equations,

ũ5
u@2h2a3 sinh~2j!#

2h1a3 sinh~2j!
, Ã5

16a3 sinhj@3a5 sinhj2~u223a2!h coshj#

„2h1a3 sinh~2j!…2
,

B̃5
16av2 coshj@3a3u2 coshj2~3u22a2!h sinhj#

„2h1a3 sinh~2j!…2
,

where

h5a2~u2y2a2x!1~u22a2!~3u413a412a2u2!t. ~34!

~2! To construct the algebraic solutions of~9a! we choose the solutions of~31! as

f5~21!nE
a

b

dkz~k! exp„j~k!…
dn

dkn d~k2k0!,

with j(k) from ~33!, a5a(k), b.k0.a.0, andz(k) is some arbitrary differentiable function
For n51, z51, we get

ũ5
u~a622h222a3h!

2h212a3h1a6 , Ã52
8a6~u213a2!h~h1a3!

~2h212a3h1a6!2 ,

~35!

B̃5
8u2a4~3u21a2!h~h1a3!

~2h212a3h1a6!2 ,

with theh from ~34! anda5a(k0). Equation~35! is a simple nonsingular algebraic solution of th
2D-MKdV.

http://mostwiedzy.pl


me-
ssian
s, and

e

1105J. Math. Phys., Vol. 43, No. 2, February 2002 Reduction restrictions of Darboux and Laplace

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

ACKNOWLEDGMENTS

One of the authors~A.Y.! wishes to acknowledge financial support extended within the fra
work of the RFBR, Grant No. 00-01-00783 and the Grant of Education Department of the Ru
Federation, No. E00-3.1-383. S.L. thanks E. Ganzha for preliminary discussion, explanation
notes, and the support of the KBN Grant No. 5PO3B 04020.

1A. Mikhailov, Physica D3, 73 ~1981!.
2C. Athorne, Phys. Lett. A206, 162 ~1995!.
3S. Leble, ‘‘Darboux transforms algebras in 211 dimensions,’’ inProceedings of NEEDS-91 Workshop~World Scientific,
Singapore, 1991!, pp. 53–61.

4J. Le Roux, Comptes Rend. Acad. Sci. Paris143, 820 ~1906!.
5V. V. Sokolov and A. V. Zhiber, Phys. Lett. A208, 303 ~1995!.
6E. Ferapontov, ‘‘Laplace transformations of hydrodynamic type systems,’’preprint No. 265 sfb 288.math.tu-berlin.d
~1997!, J. Phys. A30, 6861~1997!; Diff. Geom. Applic.11, 117 ~1999!.

7E. Goursat, Bull. Soc. Math. France25, 36 ~1897!; 28, 1 ~1900!.
8B. G. Konopelechenko, Stud. Appl. Math.96, 9 ~1996!.
9B. G. Konopelechenko and G. Landolfi, Mod. Phys. Lett. A12, 3161~1996!.

10M. Boiti, J. Leon, L. Martina, and F. Pempinelli, Phys. Lett. A132, 432 ~1988!.
11A. I. Zenchuk, Theor. Math. Phys.110, 233 ~1997!.
12E. I. Ganzha, Theor. Math. Phys.122, 39 ~2000!.
13S. B. Leble, M. A. Salle, and A. V. Yurov, Inverse Probl.4, 207 ~1992!.
14A. V. Yurov, Theor. Math. Phys.112, 395 ~1997!.
 22 M
ay 2024 09:34:55

http://mostwiedzy.pl

