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Reduction restrictions of Darboux and Laplace
transformations for the Goursat equation

S. B. Leble®
Theoretical Physics and Mathematical Methods Department,
Technical University of Gdansk, Poland

A. V. Yurov”
Theoretical Physics Department, Kaliningrad State University, Russia

(Received 13 June 2001; accepted for publication 25 October)2001

We study Darboux and Laplace transformations of the solutions and potentials of
the Goursat equation which is equivalent to one of the Lax pair equations for the
2D-MKdV hierarchy. The reduction restrictions for these transformations are con-
sidered. The derived reduction equations are generalizations of the Liouville and
sinh-Gordon equation. The integrability of these equations by the ST method is
proved. The binary Darboux transformation for the Goursat equation is suggested.
We find exact rational nonsingular solutions of the 2D-MKdV equations via the
Moutard transformation for the Goursat equation. 2002 American Institute of
Physics. [DOI: 10.1063/1.1427761

[. INTRODUCTION

A covariance of general Lax pairs leads to abundant but generally useless integrable systems
while reductions of them may have straight applications in mathematical pHykic&+1 or
higher dimensions there exists the problem of an elaboration of similar or another approach to
classification or at least of a choice of invariant subsets by some ke¢ 8uleh a rule is directly
connected with discrete covariance of Lax equafiadhat appears in the classic Laplace scheme
developed by Darboux, Moutard, and Le Rdaxd investigated recently from different points of
view (e.g., Refs. 5 and)6We consider subclasses of Lapla@arboux-covariant “potentials,”
i.e., introduce a notion of “reduction equation” that follows directly from the constraint form
invariance. It means that Darboukaplace transforms together with the appropriate partial so-
lutions of a basic equation determine some discrete symmetry and chains of solutions. Let us
demonstrate this by an example.

It is known that the Laplace transformatididl’) of the equation

Yyytag,+by=0 (1)
has the form
a—a_j;=a—dIn(b—ay,), b—b_;=b-a,, Y-y _1=¢+ay, (2
_ _ _y
a—a;=a+dyInb, b—b;=b+d(a+dsInb), 1//—>zjfl—F, 3

and plays a significant role in the theory of soliton equation development.
The Goursat equatiofGE) has the form

gxy=2 \/7\§x§y,
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wherel={(x,y) andA=\(X,y). We call\ a potential function. This equation can be linearized
by the substitutiony= /¢, and x=/,. We get

‘/’y: \/XX, Xx:\/xdf

or

'r/fxy: %(ln)\)xl/fy—i_)\lr/fv (4)

and the similar equation for the but we will not need one.
Equation(4) is the particular case of Eql) with two potentialsa=a(x,y) andb=b(x,y).
This equation has two types of local discrete symmetries:

(1) Laplace transformation&) and(3), mentioned above, and
(2) Darboux transformation@T):

a—a=a—dlIn(a+r), b—b=b+r, ¢Y—ih=¢—1y (5
a—j@a=—(7+bp), b—ib=b—(bp)y, Y—1¥=piy—1i, (6)

wherer= ¢,/ ¢, p= ¢l $,, and ¢ are particular solutions dfl) by preassigned and
b, and we call¢ the support function of the DT.

The aim of this work is to study the validity of LT and DT for the GE. It is clear that after
single DT or LT the reduction restriction

a=—dyInb (7)

will be true only for the special class of potentials and we will specify it in Sec. II.

Our interest in the GE is connected with the two applications of this equation in geometry and
in the solitons theory, respectively.

(1) Let x be the complex coordinatg= —X, VA is the real-valued function, an@and y from
(1) are complex-valued functions. Then one defines three real-valued funétions=1,2,3,
which are the coordinates of surfaceRr:®

X1+|X2:2|f (de,_?dxl):

r

Xl—ixzz_zif (y2dy’ = x*dx'), 8
r

x3=—2fr(Zxdy'+de'>,

wherel is an arbitrary path of integration in the complex plane. The corresponding first funda-
mental form, the Gaussian curvatufe and the mean curvatui¢ yield

) 1
ds?=4U2dxdy, K=Faxay|nu, H=

where
U =g+ |xI?,

and any analytic surface iR® can be globally represented K§) (see Ref. &
(2) The system of the 2D-MKdV equations looks like:
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ANZ(N = AN+ BNy = Nge— N3y) HANI[ (20 +B)y+ (2N —A),]
BNyt AN — 3O GHA]) =0, (93
By=3Ny—Ax, Ay=\,—3\,.

Herex=\(x,y,t), A=A(X,y,t), B=B(x,y,t). If we introduce the functiom= \/\ then we can
rewrite (9) in the more customary forrteee Ref. 10

Up+ 2u(Uy+Uy) + 5 (By—A)u+Buy—Alc—Ugy— Uz, =0
(9b)
By=(3dy—du?, Ay=(dy—3d,)u?.
The reduction conditions
A=-B=-2u% u,=uy,
lead us to the MKdV equation,
U+ 120U, — 2ug,=0,

so we call(9a) the 2D-MKdV equations.
The 2D-MKdV equationg9) is the compatibility condition of the linear systeiso-called L,
A] pair) which contains Eq(4) and

1
‘r/fy+(A_)\)'7[’x+ E(Ax_)\x)w-

3Ny 3(Ny\?
'pt:lr//'o’x_"')[fa’y_zrdfyy—i_ Z T —\—B

We will study (99 in the last sectior{Sec. V).

Remark 11In Ref. 11 A. I. Zenchuk studied the discrete transformat®n(3), (5), and(6) of
solutions and potentials in the general case of the linear second order partial differential equation
with two independent variables. The simplekt=(2) closed chains of these transformations are
considered and the author obtain a noweégrable equation:

1Sy—e5—e [ Cy—Cyuiy *(e 9),]=0, (10

whereC,>0.

In the present work we use reduction restrict{@n as a(weak condition of closing. In Sec.
Il we will obtain a new integrable equatigsee(19)] which looks like(10) and it is a somewhat
two-dimensional generalization of the sinh-Gordon equation. In Sec. Il we suggest the binary DT
for a construction of explicit solutions of the GE. These transformations allow one to obtain new
solutions of the GE without solving some reduction equation. We also discuss the transformation
for Laplace invariants.

II. THE REDUCTION EQUATIONS

The reduction restrictiof7) is valid only for special types of potentials. These functions are
solutions of the special equations which we aalluction equations In this section we will
obtain these equations for the LT and DT.

(I) Let us consider the Laplace transformatid®s The invariance of the reduction constraint
means

1 C
No1=A= S ddyInh= o (12)
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It is obvious that Eq(11) is valid for the LT (3) because the one is inverse to the transformation

2.

It easy to show that the reduction equation for this transformation is the well-known sinh-

Gordon equation:
C
dxdyINA =2\ =+, 12

whereC=const, and the new potential , is a solution of(12) too.

Let us remark that in the case 6=0 we obtain\ _;=0 and the Liouville equation instead

of (12). In this case the GE may be integrated and

f!g/

1
)\ZW, §=—@&yln(f+g)+v,

where f=f(x) and g=g(y) are arbitrary differentiable functions€g=const,V=V(y) is the
function such that

V,_ 1 I ,,2_ 1 g/IZ
—%(ng) =ac? ,

9’
and
Vi'g' 1 1
==, x===0d/In| —d7—|.
C(f+9) 2CY Yf+g

Proposition 1 Let M andL be two Laplace invariants of E@4). It means that
M=3ddyINA—X\, L=—NX\.

Using the reduction equatiofil) we get

Mz—ﬁ, LZ_)\

and
M,l:M]_:L, L,]_:Ll:M.

(II) Let us consider the DT5). Inserting both transforms into the reduction conditi@h
yields

A
)\1=)\—7'y=)\<7'— ﬁ) (13)

Denote nowa=1In ¢, A=In\. Since
A= ry=(— 3t a)ay,
and 7= a, one gets from the transforfl3) the condition forA:
(ay—3A)[ ey —exp(\) (ax—3A,)]=0. (14
The setting zero for the first parentheses yields

Ayy=2exp(A),
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and «=A/2—c(y), wherec(y) is arbitrary function. But in this case we get=0, and the
Liouville equation is in the realm of the reduction equation.
Setting equal to zero the square bracket§lid) one arrives at the relevant equation

(exp(—2a)N)y=(exp(—2a))y, (15
therefore
1 F,+C
GX: 1102: ) )\ = Y ! ]
F.+C, F.+C,

whereF=F(x,y) is any differentiable function an@, ,= const. Substituting15) into (4) we get
2(Cot F ) CE 4 [(Fyuxt 4F ) Cot FyFy it 4F  F = F o F 5 1C1 + (FyxFy— 3F 5, + 2F2)C,
+2F IF = 3F o Fx— FyFxFyut FxFyFyx=0. (16)
We define new fields:
F,=P-C,, F,=Q-C;.
Then(16) can be split into the system
2Q,QPx—(2Q,Q~ Q5 +4Q*)P=0, Py=Q,. 17

After integration of the first equation we get

CQy Q
exp(G), Gy=2—,
Q& Q.

whereC is the third constant of integration. It is necessary that the second equatibp inill be
true. Let

pP=

Q=n? G=Inm,
wherem=m(x,y) andn=n(x,y). The reduction equation takes the simple form
(n),=2C(mn,),, myn,=mn. (18
This system can be rewritten in more convenient form. Let
n,=nexp(sS), m=mexp(—S),

S=95(x,y). After substituting into(18) we get

B 1n |
SV_EE dyIn(mn),
therefore
S,y=4 sinhSa,d; * coshS. (19

Equation (19) is the reduction equation for the D{B). It looks like Eq.(10) and it is the
generalization ofl=2 sinh-Gordon equation. We will present the Lax pair analog for(E). by
the following proposition:

Proposition 2:Let us introduce th¢L,A] pair for Eq.(19) in the form
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K¢y=0, K,Dy=0
where

Ax

1Ny
—Eyay—)\, K1:(9x(9y—

K=axay E)\—lﬂy—)\l, D=ody,—,

the variables\ and\ ; are defined by the equalities

B (Sc+2 coshs),
" 4sinhS

_(Sx+2 coshS),

and
TyE)\_)\l.

It is possible to check the statement by direct substitution. Thus the reduction equations for the
DT (5) has either the form of Eq19) or the Liouville equation.
We can study the reduction equations for the (BY analogously. As a result we get

C1Cy¢?
by

where ¢ is the support function of the D1B) and the reduction equation can be written like the
system:

AN=Cipyexp(F), 1A=

exp(F), (21

bxy= Py [Fxt+2C1pexp(F)],  Fypy—Cyo.
Proposition 3:By the constructior{20) for the DT (5) we get
M=—\y, L=-X\,
and
M;=M exp(—2S), L;=Lexp(29).
Quite similar for the DT(6) the use of(21) gives

. CZ(_ ¢x+ ¢FX+C1¢2 exP(F)) L

M= 3 =—Cy¢yexp(F),
y
and
b; C,¢?
M=—-—75M, L=——>L.
T Gt By

The multiple of the Laplace invariantdL is invariant in both cases.

lll. BINARY DT

In Ref. 12 Ganzha studied the analog of the Moutard transformation for the Goursat equation.
This transformation is valid without a reduction restriction and reduction equations. In this section
we obtained binary Darboux transformation for the GE with the same property.

We introduce new variablesand 7:

Gy=0,— e, Ox=0,F ¢,
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and rewrite(4) in the matrix form

V,=o3¥ +UV, (22
where
TR
\p:( ' 2), U= Noy, (23
X1 X2

=€, 1), xx=xk(€, ) with thek=1,2 particular solutions dfL) with some\(¢, »), ando 3
are the Pauli matrices. Ldt; some solution of Eq.22) andV # V¥, . We define a matrix function
=¥,V !, Equation(22) is covariant with respect to DT:

P[1]=D;— 7P, U[1l]=U+[0o3,7]. (29

Remark 21t is not difficult to check that the DT24) is the superposition formula for the two
simpler Darboux transformations given by formul&$ and (6).
Remark 3:Equation(22) is the spectral problem for the Davey—Stewartéds) equations=

The LTs produce an explicitly invertible BRlund autotransformation for the DS equations. In
Ref. 14 we showed that these transformations allow one to construct solutions to the DS equations

that fall off in all directions in the plane according to exponential and algebraic law.
Let us consider a closed one-form

dQ=dedW +dypd oV, szdﬂ,

where a 2<2 matrix function® solves the equation
®,=P.053—PU. (25

We shall apply the DT fok22). One can verify by immediate substitution tH@6) is covariant
with respect to the transform if

O[+1]=Q(D,¥,) ¥, .
Now we can alternatively affedtl by the following transformation:
U[+1,—1]=U+[03,¥,Q 1®].
The particular solution of Eq25) has the form

Si1TSoth,  —Six1—Sox2

Y sspn sy —Ssxa—Saxa)’ o
wheres,=const k=1,...,4). It is convenient to choose one in the form
®,=Vios, 27
whereW¥] is the transposed matri¥, [(27) is the particular case aB6)].
In this case
U[+1,-1]=U—2A¢, (28)

whereA¢ is the off-diagonal part of the matrik:

A=¥,Q T
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Q=0(®,,¥,), and
Af=Ag=fo, (29

wheref=f(¢,#) is a some function.
Using (23), (28), and(29) we can see thdl[ +1,— 1] has the same form as the initial matrix
uU:

U[+1,-1]=

0 \/x[+1,—1])_( 0 JX—N)
UN[+1,-1] 0 S\ h-2f o /)

thus the reduction restriction is valid without the reduction equations.
The new function®[ +1,—1] has the form

D[+1,-1]=0—-Q(D,V)(Q¥,, V) D, (30)

where® is arbitrary solution of Eq(25).

Using binary DT(28) and(30) we can construct a new solution of the GE from understanding
particular solutions of one.

As a result we get the following theoretim the old variablex andy):

Theorem: Let

‘ﬂk,y:\/x)(ki Xiox= VA e, ak,y:_\/K,Bki Bix=—1\ay,

wherek=1,2. Then new functions

, A +Axi, , Arx1tAxx2
alzal_T7 B1:B1+T

are solutions of the equations
ai,y: \/7181 ) ﬂi,X: \/Fai )
where

- Pax1 Qo0 Yax 21— (axat ax1) Qi
=+ . ,

and
Qn:J dxyi+dyx7, 0122921:f dxiipotdyxixz,
szzf dxg5+dyxs D=0105-05,
Allzf dxay iy +dyBixy, AlZZJ dxay i, +dyBixa,

A21=J dxa, iy +dyBoxs, Azsz dxazipo+ Baxa,

AlellﬂZZ_Alﬁlb A2:A12£)11_A11912-
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Here [= [ wherel is an arbitrary path of integration in the plane. It is easy to obtain the
expressions for the functions, and 35, but we will not do it.

Thus the binary DT allows one to construct explicit solutions of the GE without the solving of
some reduction equation.

IV. THE MOUTARD TRANSFORMATION FOR THE 2D-MKdV EQUATIONS
The Lax (L,A]) pair for the 2D-MKdV equation$9a) has the form

Uy 2
(ﬂxy:U ¢y+ usy,
(31)

3 ﬂ)z_uz_B P+ (A—U?) +E(A—u2) v
u y x5 x¥-

u
= hayt ¢3y_ 3 Uy wyy"'

In Ref. 12 Ganzha studied the one of analog of the Moutard transformation for the Goursat
equation. To use this transformation for obtaining exact solution®@a&fwe must complete a
definition of the Moutard transformation. It is easy to do. Pdbe the second solution ¢81) (the
support function Then we have a closed one-form,

d0=dX01+dy02+dt63, QEJ dt9,

where

o

0,= ¢?, 92:( 0

(2¢payby— oy~ B U= 2udy(Uyby)y+3(Uycby)?
u? '

O3=(A—U") "= §y— b+ 24 ot
We define thegeneralizedMoutard transformation in the following way:
u—T=u—(In0),(In0),, A—A=A—(3,3,~333)Iné,

B—B=B+(ddy—30) In0, y—y= §,

(32

where
Q= J dQ,
dQ=dxQ;+dyQ,+dtQg,
and W= y/ ¢)
63(1/6) . W
Q].: GWX’ Q2:_ 0 atd yy
Xy
Q3= W3+ C1 W3y + CoWy, + CaWyy+ C4Wy + CsWy

with
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c1=—%yz+a, cz=g¢9(lnax)x—6x, c4=(3ZXX+A—u2)0—07XX,
3:u2y§§y+ ¢Z§2W_ 31y0+3 g(ln Oy)y— Hy),
Cs=— %jL %(exyuyﬁ Uydbyy) + % 30u;— Pyt % B— %} 0Xy)
+ %’—B)Jr%(%y— 3foy)+&—u20.

The one-formdQ is closed,

Ql,y: Q2x, Q1t=Qszx, Q2= Qs,y .

It is easy to verify that théL,A] pair (31) is covariant with respect to the generalized Moutard
transformation(32).

Now we use these transformations to construct exact solutions of the 2D-MKdV equations
(9a). First we would mention the known localized solutions from Ref. 10. Let us choose
=const,A=B=0. We will consider two examples.

(1) If we take the solution of31) as ¢=sinh¢, where

u2 (u2_a2)(u4_a4)
3

E=ax+ Ey+ a t, (33

with the reala=const, then using32) we get new solutions of the 2D-MKdV equations,

u[2p—a3sinh(2¢)]
2p+a’sinh(2¢)

16a° sinh&[3a® sinhé— (u?—3a?) 5 cosh¢]

A= 27+ a3sinh(28))2 !

=

16av? coshé[ 3au? coshé — (3u?—a?)  sinh£]

B= 27+ a3sinh(2))2 :

where
p=a%(u’y—a?x) + (u?>—a?)(3u*+3a*+2a%u)t. (34)

(2) To construct the algebraic solutions (&) we choose the solutions ¢81) as

B d"
o=(=1" | " dke(h) expe(ho) gz 50 ko)
with £(k) from (33), a=a(k), B>ky>a>0, and{(k) is some arbitrary differentiable function.
Forn=1, /=1, we get

u(ab—27%°—2a3y)
2np°+2acp+ad

8a(u?+3a?) p(n+ad)

A=- (2772+ 2a37;+ a%?

=
(39
8u?a*(3u’+a?) p(p+ad)

B= (2n°+2ap+a®?

with the z» from (34) anda=a(kg). Equation(35) is a simple nonsingular algebraic solution of the
2D-MKdV.
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