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Abstract— The problem of identification of a time-varying
FIR system is considered and solved using the local basis
function approach. It is shown that the estimation (tracking)
results can be improved by means of regularization. Two
variants of regularization are proposed and compared: the
classical L2 (ridge) regularization and a new, reweighted L2

one. It is shown that the new approach can outperform the
classical one and is computationally attractive.

I. INTRODUCTION

When parameters of the identified dynamic system vary
slowly with time, their estimation can be carried out suc-
cessfully using the time-localized versions of the classical
estimation methods, such as least squares or maximum like-
lihood [1] - [3]. Such an approach is based on the (implicit)
assumption that the analyzed system is “locally stationary”,
i.e., that its parameters can be regarded as constant in
sufficiently long time intervals [4], [5].

When system parameters vary at a fast rate, like in the
case of some rapidly fading telecommunication channels, the
simple solution described above may fail to provide estimates
of sufficient accuracy [6], [7]. The well-known way out of
difficulty is via incorporation in the system description an
explicit model of parameter time-variation. Such a model,
often referred to as a hypermodel, can be deterministic
or stochastic. In the first case, parameter trajectories are
approximated by linear combinations of known functions of
time, called basis functions (BF). This allows one to convert
the problem of estimation of time-varying parameters into a
simpler problem of estimation of constant hyperparameters
– coefficients characterizing the adopted hypermodel. Such
a problem can be easily solved using the classical estimation
methods [8] - [15].

In the case of stochastic hypermodels, the problem of
identification of a time-varying system can be regarded as
a problem of filtration/smoothing in the state space. It can
be solved using Kalman filtering techniques [16] - [19].

In the majority of studies devoted to the BF approach,
which is also a theme of the current work, basis functions
are used to generate interval estimates of parameter tra-
jectories. Recently a new class of identification algorithms
was described, which combines the BF approach with the
local estimation technique [20], [21]. The proposed local
basis function (LBF) and fast local basis function (fLBF)
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estimators provide a sequence of point estimates of system
parameters corresponding to different locations of a sliding
analysis window of a fixed width. As shown in [20], such
a point approach yields more accurate estimates than the
interval one, favorably comparing with the state-of-the-art
multi-wavelet estimation scheme proposed in [14] - see [23].

The current contribution aims to show that accuracy of
LBF/fLBF estimators can be further increased by means of
regularization. Regularization is a well established technique
in estimation and machine learning. In system identification,
regularization, achieved by adding to the minimized cost
function a term penalizing the norm of the solution, allows
one to improve the estimation bias-variance trade-off which
decides upon accuracy of the identified model [24], [25]. So
far most of the work performed in this area was restricted
to identification of time-invariant systems. We will show
that similar advantages can be reached when regularization
is incorporated in LBF-based identification of time-varying
systems. Two variants of regularization will be proposed and
compared: the classical L2 regularization, often referred to as
ridge regression [26], and the reweighted L2 regularization,
which can be regarded as the “first order approximation” of
the L1 regularization, known also as LASSO (least absolute
shrinkage and selection operator) [27]. It will be shown that
in both cases optimization of regularization gains can be
carried out in a computationally efficient way using the leave-
one-out cross-validation approach.

All algorithms presented in this paper are noncausal,
i.e., they yield parameter estimates that depend on both
“past” and “future” input/output data (relative to the time
instant of interest) so they cannot be used in real time
applications such as prediction or control. However, they
can be applied whenever the model-based decisions can be
delayed by a certain number of sampling intervals. Channel
equalization and self-interference mitigation in full-duplex
communication systems are examples of such feasible almost
real time applications [28].

II. LOCAL BASIS FUNCTION AND FAST LOCAL BASIS
FUNCTION ESTIMATORS

Consider the problem of identification of a time-varying
complex-valued finite impulse response (FIR) system gov-
erned by

y(t) =
n∑

j=1

θ∗j (t)u(t− j + 1) + e(t)

= θH(t)φ(t) + e(t) (1)
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where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, y(t) denotes the complex-valued output signal, φ(t) =
[u(t), . . . , u(t − n + 1)]T denotes regression vector made
up of past samples of the complex-valued input signal u(t),
θ(t) = [θ1(t), . . . , θn(t)]

T is the vector of time-varying
system coefficients, and {e(t)} denotes measurement noise.
The symbol ∗ stands for complex conjugate and H – complex
conjugate transpose (Hermitian transpose). We will assume
that
(A1) {e(t)}, independent of {u(t)}, is a sequence of zero-

mean independent and identically distributed random
variables.

(A2) {θ(t)} is a uniformly bounded sequence, independent
of {u(t)} and {e(t)}.

The LBF/fLBF identification technique is based on the
assumption that in the local analysis interval T (t) = [t −
k, t + k] of length K = 2k + 1, centered at t, system
parameters can be expressed as linear combinations of a
certain number of linearly independent real-valued functions
of time f1(i), . . . , fm(i), i ∈ Ik = [−k, k], further referred
to as basis functions, namely

θj(t+ i) =
m∑
l=1

fl(i)ajl(t) = fT(i)αj(t)

i ∈ Ik, j = 1, . . . , n, αj(t) = [aj1(t), . . . , ajm(t)]T
(2)

where f(i) = [f1(i), . . . , fm(i)]T.
In agreement with the local estimation paradigm, estima-

tion of parameter trajectories, based on the hypermodel (2), is
carried out independently for each localization of the analysis
interval T (t), i.e., it is performed in the sliding window
mode. Note that even though system hyperparameters ajl
are assumed to be constant in the interval [t−k, t+k], their
values are allowed to change along with the position of the
analysis window. For this reason they are written down as
functions of t.

Denote by w(i), i ∈ Ik, w(0) = 1, a symmetric, nonnega-
tive, bell-shaped window which will be used to put more
emphasis on data gathered at instants close to t than on
instants far from t. For convenience, but without any loss of
generality, we will assume that the adopted basis functions
are w-orthonormal, namely

k∑
i=−k

w(i)f(i)fT(i) = Im . (3)

where Im denotes the m × m identity matrix. The most
common choices of basis functions prior to normalization
are powers of time (Taylor series approximation) and cosine
functions (Fourier series approximation).

A. LBF approach

Note that the hypermodel (2) can be expressed in a more
compact form

θ(t+ i) = F(i)α(t), i ∈ Ik

α(t) = [αT
1 (t), . . . ,α

T
n (t)]

T
(4)

where F(i) = In ⊗ fT(i) and ⊗ denotes the Kronecker
product of the corresponding vectors/matrices. Using (4), the
system equation (1) can be written down in the form

y(t+ i) = αH(t)ψ(t, i) + e(t+ i), i ∈ Ik (5)

where ψ(t, i) = φ(t + i) ⊗ f(i) denotes the generalized
regression vector.

The LBF estimator has the form [20]

α̂LBF(t) = argmin
α

k∑
i=−k

w(i)|y(t+ i)−αHψ(t, i)|2

= P−1(t)p(t)

θ̂LBF(t) = F0α̂
LBF(t) (6)

where

P(t) =
k∑

i=−k

w(i)ψ(t, i)ψH(t, i)

p(t) =
k∑

i=−k

w(i)y∗(t+ i)ψ(t, i)

(7)

and F0 = F(0) = In ⊗ fT0 , f0 = f(0).
For recursively computable basis and window functions

the mn × mn generalized regression matrix P(t) and the
mn × 1 vector p(t) can be evaluated in a recursive way
[20]. However, since the matrix P(t) must be inverted every
time instant t, the computational burden associated with LBF
estimators may be substantial.

B. fLBF approach

As shown in [21], [23], under assumptions (A1), (A2) and
(A3) {u(t)} is a zero-mean wide sense stationary Gaussian

sequence with an exponentially decaying autocorrela-
tion function

the LBF estimates α̂LBF(t) and θ̂LBF(t) can be approxi-
mated by the following computationally fast formulas

α̂fLBF(t) =
[[
α̂fLBF

1 (t)
]T

, . . . ,
[
α̂fLBF

n (t)
]T]T

θ̂fLBF(t) =
[
θ̂fLBF
1 (t), . . . , θ̂fLBF

n (t)
]T

α̂fLBF
j (t) = argmin

αj

k∑
i=−k

w(i)|θ̃j(t)− fT(i)αj |2

=
k∑

i=−k

w(i)θ̃j(t)f(i)

θ̂fLBF
j (t) = fT0 α̂

fLBF
j (t) =

k∑
i=−k

h(i)θ̃j(t+ i)

j = 1, . . . , n

(8)

where

h(i) = w(i)fT0 f(i), i ∈ Ik (9)

denotes the impulse response of the FIR filter associated
with the LBF estimator and {θ̃j(t)} denotes the prees-
timated trajectory of the j-th system parameter, obtained
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by means of “inverse filtering” of the estimates yielded
by the short-memory exponentially weighted least squares
(EWLS) algorithm. The EWLS estimates θ̂EWLS(t) =[
θ̂EWLS
1 (t), . . . , θ̂EWLS

n (t)
]T

, defined as

θ̂EWLS(t) = argmin
θ

t−1∑
i=0

λi
0|y(t− i)− θHφ(t− i)|2 (10)

where λ0, 0 < λ0 < 1, denotes the so-called forgetting
constant, can be computed using the well-known recursive
algorithm [1]

ε(t) = y(t)−
[
θ̂EWLS(t− 1)

]H
φ(t)

k(t) =
R(t− 1)φ(t)

λ0 +φH(t)R(t− 1)φ(t)

θ̂EWLS(t) = θ̂EWLS(t− 1) + k(t)ε∗(t)

R(t) =
1

λ0

[
In − k(t)φH(t)

]
R(t− 1)

(11)

with initial conditions θ̂EWLS(0) = 0 and R(0) = cIn,
where c denotes a large positive constant. The inverse
filtering formula has the form

θ̃j(t) = Ltθ̂
EWLS
j (t)− λ0Lt−1θ̂

EWLS
j (t− 1) (12)

where Lt =
∑t−1

i=0 λ
i
0 = λ0Lt−1 + 1, L0 = 1, denotes the

effective width of the exponential window. For large values
of t, when the effective window width reaches its steady state
value L∞ = 1/(1 − λ0), the formula (12) can be replaced
with

θ̃j(t) =
1

1− λ0

[
θ̂EWLS
j (t)− λ0θ̂

EWLS
j (t− 1)

]
(13)

Since under assumptions (A1) - (A3) each preestimate θ̃j(t)
can be written down in the form

θ̃j(t) ∼= θj(t) + zj(t) (14)

where zj(t) denotes zero-mean white noise with large vari-
ance, the fLBF estimate θ̂fLBF

j (t) can be regarded as a result
of “denoising” θ̃j(t) using the basis function approach [21].

The recommended choice of the forgetting factor is λ0 =
max{0.9, 1− 2/n} so that the number of estimated param-
eters is not larger than the so-called equivalent width of the
applied exponential window equal to (1 + λ)/(1 − λ) ∼=
2/(1 − λ) [3]. Since the resulting effective memory L∞
of the EWLS algorithm is usually short, or very short, the
assumption about stationarity of the input signal postulated in
(A3) is by no means critical - local (“L∞-wide”) stationarity
is sufficient to guarantee good preestimation results. The
same applies to the assumption about Gaussianity of u(t).

In spite of its computational simplicity, the fLBF scheme
has similar parameter tracking capabilities as the LBF
scheme. As a matter of fact in many cases the fLBF estimates
are almost indistinguishable from the LBF ones [21].

III. REGULARIZED LBF AND fLBF ESTIMATORS

The main goal of identification is to minimize the mean
squared parameter estimation (tracking) error (MSE). It is
well-known that MSE can be written down as a sum of its
bias and variance components. Hence, minimization of the
MSE requires finding a good trade-off between estimation
bias and estimation variance. Very often, an improvement of
this trade-off can be achieved by means of regularization.
Probably the simplest approach is to add to the minimized
cost function, such as (6) or (8), an additional term that
penalizes large values of the estimated parameters.

A. Ridge LBF and fLBF estimators

Denote by ||x||2 =
√∑n

i=1 |xi|2 the L2 norm of a
complex-valued vector x = [x1, . . . , xn]

T. When the penalty
mentioned above is proportional to ||α||22, the technique is
called ridge regression. The resulting ridge LBF (RLBF)
estimates can be obtained from

α̂RLBF(t) = argmin
α

{ k∑
i=−k

w(i)|y(t+ i)−αHψ(t, i)|22

+ µ||α||22
}

= S−1(t)p(t),

θ̂RLBF(t) = F0α̂
RLBF(t), (15)

where µ > 0 denotes regularization gain (which will be
optimized later on) and S(t) = P(t) + µImn. Note that,
unlike P(t), the matrix S(t) is guaranteed to be nonsingular
and hence invertible, which is a clear advantage of regular-
ization. For m = 1 the necessary and sufficient conditions
of stochastic inveribility of P(t) are given in [22] but it
seems that an extension of this result to the m > 1 case
has not yet been worked out. However, from the practical
viewpoint, invertibility of P(t) is not a problem unless the
ratio K/(mn) becomes too close to 1.

In a similar way, one may design the ridge version of the
fLBF estimator, further denoted by fRLBF

α̂fRLBF
j (t) = argmin

αj

{ k∑
i=−k

w(i)|θ̃j(t)− fT(i)αj |22

+ µ||αj ||22
}

=
α̂fLBF

j (t)

1 + µ

θ̂fRLBF
j (t) = fT0 α̂

fRLBF
j (t) =

θ̂fLBF
j (t)

1 + µ

j = 1, . . . , n

(16)

Since µ > 0, the fRLBF estimates θ̂fRLBF
j (t) can be obtained

directly by shrinking the corresponding fLBF estimates, i.e.,
there is no need to evaluate α̂fRLBF

j (t).
Note that, unlike RLBF, in the fRLBF case system param-

eters are estimated independently of each other. This means
that, in principle, one could incorporate in (16) different
regularization gains µ1, . . . , µn instead of a single gain
µ. Since for large values of n the price that has to be
paid for this increased estimation flexibility is a dramatic
increase of the gain optimization cost (which is typical of
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all combinatorial optimization problems), here and later we
will not take advantage of this opportunity.

B. Reweighted LBF and fLBF estimators

While ridge regression reduces (shrinks) the values of
parameter estimates, in many cases a better bias-variance
trade-off can be reached by setting some of them (the least
“informative” ones) to zero. This can be achieved if the L2

penalty terms in (15) and (16) are replaced with the L1

ones, leading to the well-known LASSO approach [27]. The
LASSO variants of the minimization problems carried out in
(15) and (16) take the form

argmin
α

{ k∑
i=−k

w(i)|y(t+i)−αHψ(t, i)|2+µ||α||1
}

(17)

and

argmin
αj

{ k∑
i=−k

w(i)|θ̃j(t)− fT(i)αj |2 + µ||αj ||1
}

j = 1, . . . , n,

(18)

respectively, where ||x||1 =
∑n

i=1 |xi| denotes the L1 norm
of a complex-valued vector x = [x1, . . . , xn]

T.
In the time-varying estimation context the problem with

LASSO emerges when it comes to optimization of the reg-
ularization gain µ. The presence of the weighting sequence
{w(i)} in (17) and (18) prevents the application of the so-
called empirical Bayesian approach [29], based on stochastic
embedding/reinterpretation of the minimized cost function
(unless some heuristic techniques are used). Although ap-
plicable, the second, frequently used optimization approach,
based on cross-validation, is computationally very expensive
(especially in the LBF case). This is a serious drawback when
estimation is performed in the sliding window mode, i.e.,
when it must be repeated for consecutive values of t.

The gain optimization problem mentioned above is a
motivation to replace the L1 regularization terms in (17)
and (18) with the appropriately reweighted L2 regularizers.
Reweighting is a well-known optimization technique [30],
[31]. Note that the L1 norm of x can be written down in the
form

||x||1 =

n∑
i=1

x∗
i xi

|xi|
= xHWx = ||W1/2x||22 (19)

where

W = diag

{
1

|x1|
, . . . ,

1

|xn|

}
.

Since in the case considered the values of the hyperparame-
ters making up the vector α are not known, one can proceed
in two steps as follows:

Step 1

Compute the LBF/fLBF estimates of α using (6)/(8).

Step 2

Solve (17)/(18) after replacing the L1 penalty terms with
their first order approximations ||W1/2(t)α||22 ∼= ||α||1 and
||W1/2

j (t)αj ||22 ∼= ||αj ||1, where

W(t) = diag

{
|âLBF

11 (t)|−1, . . . , |âLBF
1m (t)|−1, . . . ,

|âLBF
n1 (t)|−1, . . . , |âLBF

nm (t)|−1

}
,

Wj(t) = diag

{
|âfLBF

j1 (t)|−1, . . . , |âfLBF
jm (t)|−1

}
.

(20)

Using this technique, the reweighted LBF (rLBF) estima-
tors can be obtained in the form

α̂rLBF(t) = argmin
α

{ k∑
i=−k

w(i)|y(t+ i)−αHψ(t, i)|22

+ µ||W1/2(t)α||22
}

= Q−1(t)p(t)

θ̂rLBF(t) = F0α̂
rLBF(t), (21)

where Q(t) = P(t) + µW(t).
Similarly, the fast reweighted LBF (frLBF) estimators can

be evaluated using

α̂frLBF
j (t) = argmin

αj

{ k∑
i=−k

w(i)|θ̃j(t)− fT(i)αj |22

+µ||W1/2(t)αj ||22
}

= [Im + µWj(t)]
−1α̂fLBF

j (t)

θ̂frLBF
j (t) = fT0 α̂

frLBF
j (t) (22)

j = 1, . . . , n.

Since it holds that

V−1
j (t) = [Im + µWj(t)]

−1

= diag

{
|âfLBF

j1 (t)|
µ+ |âfLBF

j1 (t)|
, . . . ,

|âfLBF
jm (t)|

µ+ |âfLBF
jm (t)|

}
(23)

evaluation of (22) does not require matrix inversion.
In the next section we will show that the problem of

optimization of the regularization gain µ for the proposed
reweighted LBF/fLBF estimators can be solved in a pretty
straightforward and computationally efficient way using the
localized version of the cross-validation approach.

Remark 1

Reweighted L2 regularization does not retain the thresh-
olding property of LASSO, owing to which some of the
estimated coefficients may be completely discarded. Note,
however, that when the estimated values of the hyperparam-
eters ajl are close to zero, the corresponding weights in (20)
take very large values, which strengthens the shrinking effect
compared to LBF/fLBF.
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Remark 2

Similar to the approach taken in [30], [31], the two-
step procedure described above can be easily extended to
the multi-step (iterative) one. The iterative frLBF estimation
algorithm can be obtained by replacing (22) with

α̂frLBF
j (t, i+ 1) = [Im + µWj(t, i)]

−1α̂frLBF
j (t, i)

θ̂frLBF
j (t, i+ 1) = fT0 α̂

frLBF
j (t, i+ 1)

where i denotes the iteration number,

Wj(t, i) = diag

{
|âfrLBF

j1 (t, i)|−1, . . . , |âfrLBF
jm (t, i)|−1

}
and initial conditions are set to Wj(t, 1) = Wj(t) and
α̂frLBF

j (t, 1) = α̂fLBF
j (t).

In this way one can get closer to the results that would
have been provided by the LASSO approach. As shown
below, the iterative procedure can improve the MSE score
by setting the values of less important coefficients closer
to zero, while, unlike LASSO, allowing one to evaluate the
leave-one-out cross-validation statistic in a computationally
efficient way. The same technique can be used to extend the
rLBF estimates, but in this case the associated computational
burden is much higher.

IV. OPTIMIZATION

Optimization of the regularization gain µ can be performed
by a grid search. In this case several estimation algorithms,
equipped with different regularization gains, are run simul-
taneously and compared. As a selection rule one can use
the leave-one-out cross-validation approach, which is a time-
localized version of the cross-validation test used for time-
invariant systems. In this framework, the degree of fit of
the model is defined as a local sum of squared unbiased
interpolation errors (deleted residuals)

ε0(t|µ) = y(t)− [θ̂0(t|µ)]Hφ(t) (24)

where θ̂0(t|µ) is the holey estimate of θ(t), obtained by
excluding from the estimation process the “central” mea-
surement y(t). At each time instant the best fitting gain is
chosen according to

µ(t) = argmin
µ∈M

L∑
i=−L

|ε0(t+ i|µ)|2 (25)

where L determines the size of the local decision window
and M = {µ1, . . . , µN} denotes the set of grid points.

A. rLBF and RLBF estimators

The holey rLBF estimator has the form

α̂rLBF
0 (t|µ) = argmin

α

{ k∑
i=−k
i ̸=0

w(i)|y(t+ i)−αHψ(t, i)|2

+ µ||W−1/2(t)α||22
}

= Q−1
0 (t)p0(t)

where, due to the fact that w(0) = 1, it holds that

Q0(t) = Q(t)−ψ(t, 0)ψH(t, 0)

p0(t) = p(t)− y∗(t)ψ(t, 0)

Using the matrix inversion lemma [1], one arrives at

Q−1
0 (t) = Q−1(t) +

Q−1(t)ψ(t, 0)ψH(t, 0)Q−1(t)

1−ψH(t, 0)Q−1(t)ψ(t, 0)

Straightforward calculations yield

α̂rLBF
0 (t|µ) = α̂rLBF(t|µ)− Q−1(t)ψ(t, 0)[εrLBF(t|µ)]∗

1− β(t)

where

εrLBF(t|µ) = y(t)− [α̂rLBF(t|µ)]Hψ(t, 0)

and β(t) = ψH(t, 0)Q−1(t)ψ(t, 0).
Since

[εrLBF
0 (t|µ)]∗ = y∗(t)−ψH(t, 0)α̂rLBF

0 (t|µ),

one finally obtains

[εrLBF
0 (t|µ)]∗ = [εrLBF(t|µ)]∗ + β(t)

1− β(t)
[εrLBF(t|µ)]∗

=
[εrLBF(t|µ)]∗

1− β(t)
,

which is equivalent to

εrLBF
0 (t|µ) = εrLBF(t|µ)

1− β(t)
. (26)

The analogous expression for the RLBF scheme can be
obtained by setting Q(t) = S(t).

B. frLBF estimator

The holey frLBF estimator has the form

α̂frLBF
j0 (t|µ) = argmin

αj

{ k∑
i=−k
i ̸=0

w(i)|θ̃j(t)− fT(i)αj |2

+ µ||W−1/2
j (t)α||22

}
= [Vj(t)− f0f

T
0 ]−1[α̂fLBF

j (t)− f0θ̃j(t)]

Using the matrix inversion lemma, one gets

α̂frLBF
j0 (t|µ) =

[
Im +V−1

j (t)
f0f

T
0

1− fT0 V−1
j (t)f0

]
α̂frLBF

j (t)

−
V−1

j (t)f0

1− fT0 V−1
j (t)f0

θ̃j(t)

Since θ̂frLBF
j0 (t|µ) = fT0 α̂

frLBF
j0 (t|µ), one obtains

θ̂frLBF
j0 (t|µ) = 1

1− cj(t)
[θ̂frLBF

j (t|µ)− cj(t)θ̃j(t)] (27)

where cj(t) = fT0 V−1
j (t)f0.
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C. fRLBF estimator

In this case

α̂fRLBF
0 (t|µ) = argmin

α

{ k∑
i=−k
i̸=0

w(i)|θ̃(t)− FT(i)α|2

+ µ||α||22
}

= [(1 + µ)Imn − F0F
T
0 ]

−1[α̂fLBF(t)− F0θ̃(t)],

Using the matrix inversion lemma [1] and exploiting the
well-known property of Kronecker products (A ⊗ B)(C ⊗
D) = AC⊗BD, one obtains

[(1 + µ)Imn − F0F
T
0 ]

−1 =
1

1 + µ
Imn+

+
1

(1 + µ)2
[In − 1

1 + µ
In ⊗ fT0 f0]

−1 ⊗ f0f
T
0

=
1

1 + µ
In ⊗

[
Im +

f0f
T
0

1 + µ− fT0 f0

]
.

Note also that
1

1 + µ
In ⊗

[
Im +

f0f
T
0

1 + µ− fT0 f0

]
F0θ̃(t) =

=

[
In ⊗ f0

1 + µ− fT0 f0

]
θ̃(t)

Since θ̂fRLBF
0 (t|µ) = FT

0 α̂
fRLBF
0 (t|µ), after straightforward

calculations one obtains

θ̂fRLBF
0 (t|µ) = 1

1 + µ− fT0 f0
[θ̂fRLBF(t|µ)− fT0 f0θ̃(t)],

which finally leads to

εfRLBF
0 (t|µ) = εfRLBF(t|µ)− fT0 f0ε̃(t) + µy(t)

1 + µ− fT0 f0
(28)

where εfRLBF(t|µ) = y(t)− [θ̂fRLBF(t|µ)]Hφ(t) and ε̃(t) =
y(t)− θ̃H(t)φ(t).

Remark 3

Note that in all cases discussed above, the leave-one-out
interpolation errors can be determined without the need to
implement the corresponding holey estimation schemes.

V. SIMULATION RESULTS

Computer simulations were arranged to compare the plain
LBF and fLBF algorithms with their regularized (ridge
and reweighted) versions. A simulated underwater acoustic
(UWA) communication channel, described in [28], was used
as a testbed for comparison. Such a system can be modeled
as a 50-tap FIR system with time-varying impulse response.
Following [28], the complex-valued impulse response co-
efficients θj(t), j = 1, . . . , 50, varying independently of
each other, were generated by lowpass filtering of a circular
white Gaussian noise. The cutoff frequency of the forming
filter was set to 1 Hz under 1 kHz sampling. The resulting
parameter changes, shown in Fig. 1, can be regarded as fast
in the UWA case. Each parameter trajectory was randomly
scaled. To reflect the exponentially decaying power delay

Fig. 1: Real and imaginary parts of a typical parameter
trajectory prior to scaling.

profile, caused by the spreading and absorbtion loss [7], the
scaling coefficients were chosen so that

var[θj(t)] = γj−1, (29)

where γ = 0.69. Under such settings the ratio between the
variance of the first arrival (j = 1) and the last arrival
(j = 50) is equal to 80 dB. A snapshot of the time-varying
impulse response of the simulated underwater communi-
cation channel and its rLBF/frLBF estimates obtained for
SNR=20 dB are shown in Fig. 2.

The input signal was circular white binary u(t) = ±1± i
and the measurement noise was circular white Gaussian
with variance σ2

e equal to 0.65, 0.065 and 0.0065 which
corresponds to the signal-to-noise ratio (SNR)

SNR =
E[|θHφ(t)|2]

σ2
e

=
σ2
u

σ2
e

50∑
j=1

var[θj(t)] (30)

equal to 10, 20 and 30 dB respectively.
To avoid boundary problems, data generation was started

1000 time instants prior to t = 1 and was continued for
1000 time instants after t = Ts, where Ts = 10000 denotes
the simulation time. The preestimation forgetting constant
was set to λ0 = 0.96 and the adopted weighting sequence
had the form w(i) = cos πi

2k , i ∈ Ik (recursively computable
cosinusoidal window). Prior to orthonormalization the basis
set was made up of powers of time: gl(i) = il−1, l =
1, . . . ,m, i ∈ Ik. The LBF and fLBF algorithms were run
with k = 100, m = 3, and the choice of µ was restricted to
the set M = {0.1, 0.2, 0.4, 0.8, 1.6}. The half-width of the
decision window was set to L = 30.

Performance of the compared algorithms was evaluated
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Fig. 2: A snapshot of the time-varying impulse response
of the simulated underwater communication channel (top
figure) and the corresponding parameter estimation errors
obtained using the frLBF approach and rLBF approach,
respectively (two lower figures).

using the FIT measure, defined as follows [24]

FIT(t) = 100

1−

[∑50
j=1 |θj(t)− θ̂j(t)|2∑50
j=1 |θj(t)− θj(t)|2

]1/2
 , (31)

where θj(t) = 1
50

∑50
j=1 θj(t). The maximum value of this

measure, equal to 100, corresponds to the perfect match
between the true and estimated impulse responses. The
final scores, further referred to as FIT (%), were obtained
by combined time averaging (over [1, Ts]) and ensemble
averaging (over 20 independent realizations of θ(t)).

According to the simulation results, summarized in Tab.
I, ridge regularization noticeably improves the MSE score
only in the low SNR case. For SNR>10 dB, a very small
improvement of approximately 0.02% can be observed in
the range of very small values of µ (around 0.002). Since
improvement of this order is negligible from the practical
viewpoint, it was not included in our comparison. On the
other hand, the well-tuned reweighted L2 regularization
yields improvement for all considered SNR’s. As expected,
the greatest performance gain can be observed in the low
SNR range.

Fig. 3 shows the time-averaged FIT scores obtained for
the adaptive rLBF/frLBF algorithms for all 20 realizations
of parameter trajectories (corresponding to different sets
of randomly selected scaling coefficients). Note that the
adaptive algorithms with regularization yield consistently
better results (better in all cases) than the not regularized
ones.

TABLE I: Average FIT [%] scores obtained for
LBF/fLBF estimators and their regularized versions:
ridge (RLBF/fRLBF) and reweighted (rLBF/frLBF). The
algorithm with adaptive choice of the regularization gain is
labelled by A.

Method \µ 0.1 0.2 0.4 0.8 1.6 A

10 dB

LBF 57.51
RLBF 63.52 63.48 60.13 52.60 41.84 64.49
rLBF 65.65 69.40 73.48 76.79 77.45 74.55

fLBF 65.83
fRLBF 67.33 66.36 61.45 50.65 36.12 67.34
frLBF 69.55 72.09 75.16 77.10 74.83 74.81

20 dB

LBF 86.56
RLBF 82.96 77.24 68.30 56.69 43.61 82.96
rLBF 90.76 91.55 91.30 89.09 84.41 91.39

fLBF 85.71
fRLBF 83.71 78.87 68.92 54.07 37.38 83.71
frLBF 87.93 88.52 87.85 84.55 77.83 88.36

30 dB

LBF 95.74
RLBF 86.63 79.27 69.30 57.14 43.79 86.63
rLBF 96.77 95.84 93.86 90.51 85.27 96.77

fLBF 89.76
fRLBF 86.51 80.65 69.81 54.44 37.51 86.51
frLBF 91.01 90.73 89.03 85.01 77.97 91.04

In the second experiment the same data set was used to
check whether the iterative multi-step procedure, described
in the previous section (see Remark 2), can improve the MSE
scores. The obtained results, shown in Tab. II, confirm that
this is the case provided that the regularization gain is well
tuned (if not, the results deteriorate as the number of itera-
tions grows). Since the adaptive algorithm always picks the
best variant, successive iterations improve its performance –
steadily albeit not significantly.

Finally, we note that the situation does not change if the
design parameters k and m are chosen in an adaptive manner
described in [20] – the regularized algorithms continue to
perform better than the not regularized ones.

TABLE II: Average FIT [%] scores obtained for the iterative
multi-step frLBF algorithm (the number of iterations is given
next to the method label).

Method \µ 0.1 0.2 0.4 0.8 1.6 A

10 dB

fLBF 65.83
frLBF 1 69.55 72.09 75.16 77.10 74.83 74.81
frLBF 2 70.06 73.35 77.35 78.59 72.55 75.61
frLBF 3 70.15 73.73 78.19 78.99 71.27 75.56
frLBF 4 70.18 73.87 78.57 79.14 70.59 75.48
frLBF 5 70.19 73.93 78.78 79.21 70.19 75.42

20 dB

fLBF 85.71
frLBF 1 87.93 88.52 87.85 84.55 77.83 88.36
frLBF 2 88.41 89.05 87.61 82.63 73.42 88.73
frLBF 3 88.56 89.25 87.47 81.88 71.75 88.84
frLBF 4 88.63 89.34 87.39 81.53 70.96 88.88
frLBF 5 88.66 89.39 87.33 81.33 70.52 88.90

30dB

fLBF 89.76
frLBF 1 91.01 90.73 89.03 85.01 77.97 91.04
frLBF 2 91.24 90.71 88.22 82.79 73.46 91.27
frLBF 3 91.33 90.68 87.90 82.00 71.79 91.36
frLBF 4 91.37 90.66 87.75 81.63 71.00 91.40
frLBF 5 91.39 90.65 87.66 81.44 70.56 91.42
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Fig. 3: Time-averaged FIT [%] scores obtained for all 20
realizations of parameter trajectories. Upper figure shows the
results obtained for the fLBF algorithm and its adaptively
reweighted version. Lower figure shows the analogous results
obtained for the LBF algorithm and its adaptively reweighted
version (SNR=20 dB).

VI. CONCLUSION

The problem of identification of a time-varying FIR sys-
tem was considered. It was shown that accuracy of the
recently proposed local basis function (LBF) estimators and
their computationally fast versions (fLBF) can be improved
by means of regularization. Two variants of regularization
were examined: the classical L2 (ridge) regularization and a
new, reweighted L2 regularization. In both cases optimization
of the regularization gain was carried out using the time-
localized version of the cross-validation approach. As shown
in a realistic underwater acoustic channel identification
experiment, the reweighted LBF/fLBF estimators perform
better, in terms of the FIT measure, than their original
and ridge versions. One of the interesting directions of the
future research would be to include in the identification
process some prior knowledge (whenever available) about the
estimated impulse response, such as degree of its smoothness
or the rate of decay.
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