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ABSTRACT This paper aims to propose a novel approach to the algorithmic design of Schroeder acoustic
diffusers by employing a deep learning optimization algorithm and a fitness function, which are based
on a computer simulation of the propagation of acoustic waves. The deep learning method employed for
the research consists of a deep policy gradient algorithm. It is used as a tool for carrying out a sequential
optimization process, which seeks to maximize the fitness function based on parameters characterizing the
autocorrelation diffusion coefficient of the designed acoustic diffuser. As the autocorrelation acoustic diffu-
sion coefficients are calculated based on the polar response of a diffuser, the finite-difference time-domain
(FDTD) simulation method is used to obtain a set of impulse responses, which are necessary to calculate
the polar responses of the optimized Schroeder diffusers. The results obtained from the optimization derived
from the deep learning algorithm were compared with the outcomes of a similar algorithm by employing
a genetic algorithm and based on random selection of the Schroeder diffuser well-depth pattern. We found
that the best result was achieved by the deep policy gradient, as it produced outcomes that, in terms of the
provided autocorrelation diffusion coefficient, were statistically better than the properties of the designs
supplied by two other baseline approaches.

INDEX TERMS Schroeder diffuser optimization, acoustic simulation, finite-difference time-domain
(FDTD), reinforcement learning.

I. INTRODUCTION
The main goal of the experiments reported in this paper
is to use an acoustic simulation approach for the auto-
mated optimization of a Schroeder diffuser based on machine
learning. Acoustic simulations are extensively used in
acoustics for tasks such as auralization [1], noise predic-
tion [2], simulation-driven optimization of room acoustics,
and designing acoustic devices [3]–[7]. Following the devel-
opment of GPU-accelerated computations, the simulations
are also being performedmore efficiently with respect to time
and resources [8], [9].

In this paper, techniques involving computer simula-
tion based on the finite-difference time-domain (FDTD)
method and deep reinforcement-learning-based optimization
are applied to Schroeder diffusers, commonly used in rooms
undergoing the process of acoustic treatment. There is a
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crucial need to obtain a specific set of diffuser acoustical
properties that can be used to shape the response of the
enclosed space under treatment. Acoustic diffusers utilize the
phenomenon of acoustic wave scattering in order to increase
the sound diffusion at the place of their application [10],
which may be beneficial in several cases. Hence, the research
presented in this paper attempts to propose a solution, which
creates an acoustic diffuser architecture based on the opti-
mization process.

Various techniques are employed to design diffusers,
from classical approaches based on pseudo-random number
sequences to methods that utilize fractal geometry [11]. As an
operational principle, they may employ not only the phe-
nomena of reflection, deflection, and scattering of the waves
but also resonance phenomena [10], [12], [13]. It is neces-
sary to carefully select a methodology that will consider an
entire range of factors that affect the behavior of the diffuser.
Therefore, optimization algorithms in the form of genetic
approaches, for instance, are an attractive way to resolve
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the problem of finding the acoustic diffuser geometry, which
optimizes the listening parameters in a given context. Another
optimization approach may be the use of machine learn-
ing algorithms. Among several machine learning algorithms,
one class seems to be particularly beneficial in sequential
optimization problems, i.e., reinforcement learning and its
modification employing deep neural networks—deep rein-
forcement learning [14], [15]. This class of algorithms
was successfully applied to complex problems involving
decision-making and multi-step optimization, such as the
design of industrial infrastructure [16], control of modular
robots [17], and so on. Accordingly, for the optimization of
an acoustic diffuser structure, which is a sequential optimiza-
tion problem, deep reinforcement learning is to be applied.
In summary, we propose a method for the optimization of the
properties of a simulated acoustic diffuser with the use of a
reinforcement learning algorithm. The algorithm employed
for this task is a deep policy gradient.

II. SIMULATION OF ACOUSTIC WAVE PROPAGATION
The use of meta-heuristics such as genetic algorithms or
sequential optimization algorithms for the design of acoustics
diffusers leads to the need for precise assessment of the
acoustic diffuser properties. This can be utilized to calculate
the so-called fitness function, which is optimized by the algo-
rithm of choice, employing a computer simulation. Computer
modeling and simulation of the sound field also find their
application in the design of rooms, their construction, and
their modernization. It is possible to estimate the room acous-
tic properties with high accuracy when measurements are not
feasible, or the room is still at the design stage. In the context
of the sound treatment of rooms, this significantly reduces the
cost and time of construction and avoids the additional step
of designing acoustic adaptation.

A. STATE-OF-THE-ART SIMULATION APPROACHES
As mentioned above, the main goal of the experiments
reported in this paper is to use the acoustic simulation for
automated optimization. Although it can be tempting to
employ acoustic computer-aided design (CAD) to evaluate
diffuser designs generated by optimization algorithms, they
often do not provide an application programming interface
(API) that would be suitable for the fast testing of automat-
ically generated measurement scenarios. Moreover, they are
usually not compatible with machine learning libraries such
as the TensorFlow and Keras libraries [18], [19], whereas
these are essential components of the deep reinforcement-
learning-based approach implemented by the authors. More-
over, geometrical room acoustic models (GRAMs), such as
ray-tracing and virtual source methods, are typically used
as the means of simulating room acoustics in CAD soft-
ware [10]. Still, in some applications, such as the automated
design of passive acoustic devices, it is necessary to obtain
more accurate solutions by numerical solution of acoustic
wave equations. Selected state-of-the-art simulation methods
are as follows:

• boundary element method (BEM),
• finite element method (FEM),
• finite-difference time-domain method (FDTD).
Algorithms such as BEM and FEM are capable of

obtaining very accurate estimates of acoustic wave field
distribution [20]. Both of these methods are based on
frequency-domain calculations, and due to this fact, their
output does not allow the impulse responses of a room to
be obtained in a direct way. An alternative to these two
methods is the FDTD method. FDTD is relatively easy to
implement in terms of the length of code needed to obtain
meaningful results, which helps to easily integrate this sim-
ulation algorithm with the program performing optimization
of an acoustic Schroeder diffuser. This, for instance, allows
the implementation of direct communication between the
simulation and design algorithms through the RAM of the
computer in a single script written in the Python language.
Also, it is desirable to employ a method that directly permits
the estimation of impulse responses in both room-related
and anechoic conditions if additional lossy acoustic wave
equations are solved by the FDTD method. FDTD simula-
tions can also benefit from being performed on GPUs, which
significantly increases the speed of calculations [9], [10]. All
of these benefits resulted in this method being selected to
optimize acoustic diffuser designs.

B. SIMULATIONS BASED ON THE FDTD APPROACH IN AN
ANECHOIC ENVIRONMENT
The optimization of Schroeder diffusers described in the
latter parts of the paper is associated with acoustic properties
measured in anechoic conditions. Therefore, the simulation
has to consider and provide results that reflect the interaction
of the excitation acoustic wave and the diffuser in an ane-
choic environment. A perfectly matched layer (PML) is an
example of a technique allowing FDTD-based simulations of
an acoustic wave in anechoic conditions, which is necessary
for the numerical estimation of all parameters of scattering
devices requiring assessment of polar response such as the
reflection and diffusion coefficients of Schroeder diffusers.
The introduction of PML into a numerical domain involves
modification of the equations guiding the acoustic wave prop-
agation in the area of the PML. The first step of the derivation
of such layer equations is using a variant of thewave equation,
taking into account losses in a propagation medium [21],
[22]. A starting point for such a problem is the acoustic wave
equations for a homogeneous lossy media [23]:

∇p+ ρ
∂u
∂t
+ α∗u = 0

∇u+
1
ρc2

∂p
∂t
+ αp = 0

(1)

where: p denotes pressure, ρ is the density of air, c is the speed
of sound wave propagation in the medium, u is an acous-
tic velocity vector, α is an acoustic compressibility-related
attenuation factor, which is typically referred to as an atten-
uation factor if the propagation of acoustic waves in the
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air is considered, and α∗ is an attenuation factor related to
the so-called ‘‘mass-proportional’’ damping, which is typi-
cal for sound propagation in solids and is usually zero for
propagation in the air. Such a kind of PML is similar to the
Berenger PML [24].

A second-order acoustic wave equation derived from
Eq. 1 has the following form:

c2∇2p =
δ2p
δt2
+ αA

δp
δt
+ αBp (2)

where:

αA = ρc2α +
1
ρ
α
∗

(3)

αB = c2αα∗ (4)

After discretization of Eq. 2, transformations, and some
rearranging, the following equation can be obtained:

pn+1i,j,k =

(
1+

αA

2
T + αBT 2

)−1 (
λ2
[
pni+1,j,k

+ pni−1,j,k + p
n
i,j+1,k + p

n
i,j−1,k

+ pni,j,k+1 + p
n
i,j,k−1 − 6pni,j,k

]
+ 2pni,j,k −

[
1+

αA

2
T
]
pn−1i,j,k

)
, (5)

where: T is the sampling period and λ denotes the Courant
number defined as:

λ = c
T
X
, (6)

where X is the spatial sampling distance.
This form of acoustic wave equation can be the basis for

obtaining a version of the equation proposed by Webb and
Bilbao in their work on acoustic wave equations tailored to
computation on a GPU if αA = αB = 0 [9]. For a lossy propa-
gationmedia, one has to consider both of the damping factors,
as the original formula proposed in [9] does not permit bound-
ary losses to be introduced. This fact makes it impossible to
use PMLs while also employing an original version of the
homogeneous acoustic wave equation for calculation on a
GPU from [9]. Therefore, we propose and use Eq. 5 in the
computations in this study, which is a more general form
of the equation derived in [9]. The proposed equation is
capable of both employing the MPLs and being performed
on a GPU with a homogeneous calculation procedure in a
manner similar to that described in [9]. To achieve this goal,
the Neumann boundary condition has to be introduced into
Eq. 5. The Neumann boundary condition has the following
form [25]:

∂p
∂t
+
c
β
∇np = 0, (7)

where β is the specific acoustic admittance of the surface,
and ∇n denotes the gradient calculated along the vector
normal to the boundary to which the Neumann condition

is applied. After this substitution, the following equation
is obtained:

pn+1i,j,k =

(
1+ bki,j,k +

αA

2
T

+αBT 2
)−1 (

λ2
[
pni+1,j,k

+ pni−1,j,k + p
n
i,j+1,k + p

n
i,j−1,k

+ pni,j,k+1 + p
n
i,j,k−1

]
+

[
2− ki,j,kλ2

]
pni,j,k

+

[
bki,j,k − 1−

αA

2

]
pn−1i,j,k

)
, (8)

where: ki,j,k is a coefficient, which has a different value for
each boundary condition. For free space, it is equal to 6, for
the proximity of a single boundary plane, it is equal to 5,
for the proximity of two boundary planes, it is equal to 4, and
for the proximity of three boundaries – it is equal to 3.
Coefficient bki,j,k is calculated as

(
6− kijk

)
λβ/2. The inter-

pretation and calculation of kijk , and bki,j,k is the same
as in [9].

Eq. 8 is a form of the discretized wave equation for a lossy
propagation media that can be employed for FDTD-based
computations on a GPU employing PMLs to obtain anechoic
conditions. To further simplify the computation procedure,
it is possible to assume that α = α∗. This means that αA =
α
(
ρc2 + 1/ρ

)
, and αB = c2α2. This allows only one set of

damping factor values, which are related to α, to be passed to
the GPU processor. This reduces the amount of data needed
to be sent during the program initialization phase. Such a
form of the equation is employed in the simulations presented
further on to obtain the final results.

In practice, introducing a lossy term into a wave equation
means the need for an additional matrix used in the computa-
tion process. The α parameter characterizes a local loss factor,
and if it is subject to rapid change, for instance, from 0 in areas
that are not lossy to the value of 0.15 in the area of PML,
it will cause a reflection. Due to this fact, it is necessary to
introduce a matrix of α coefficient values, which gradually
increase starting from the beginning of the PML layer up to
a maximum level at the boundary of the domain. An exam-
ple profile used for this purpose can have the following
form [10]:

α = αmax

∣∣∣∣ x − x0
xmax − x0

∣∣∣∣n , (9)

where: x0 is the initial point in the PML, xmax is the last
point in the PML, αmax is the maximum value of damp-
ing eventually reached in point xmax , and n is a number
between 2 and 3.

An example of the FDTD-based simulation employing
PML to eliminate reflections from the boundaries of the com-
putational domain is shown in Fig. 1. This type of simulation
is useful for evaluating such properties of acoustic diffusers
as the reflection and diffusion coefficients.
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FIGURE 1. Simulation of acoustic pressure wave propagation in a closed
room in which PML is used to attenuate reflections from the boundaries
of the computational domain.

III. DESIGN OF SCHROEDER DIFFUSER PROPERTIES
A Schroeder diffuser is an acoustic device that can be defined
by a matrix of integers greater than or equal to zero and a set
of several scalar parameters with real values. Such a system
consists of a one-dimensional series or a two-dimensional
well grid. In the first case, such a diffuser affects the sound
field only in one plane. In the second, in two perpendicu-
lar planes. The diffuser wells have different depths and are
separated from each other by thin walls [10], [11]. The pro-
portions of the depth of the wells can therefore be presented
either as a series of values if the diffuser interacts with the
sound field only in one plane or a matrix of values if it
interacts with it in two planes. Examples of one-dimensional
and two-dimensional geometries of an acoustic diffuser are
shown in Fig. 2. The scalar parameters, which are also part
of the description of the acoustic diffuser, include a factor for
converting the ratio of the depth of the wells to their target
depths and the physical dimensions of the wells.

FIGURE 2. Schroeder diffusers designed for one plane (left side) and two
planes (right side).

IV. MATH DESIGN OF SCHROEDER
DIFFUSER PROPERTIES
A. STATE-OF-THE-ART DESIGN METHODS
The methods that determine the geometries of Schroeder dif-
fusers are based on the application of pseudo-random number
generation techniques to create sequences of numbers deter-
mining the relative proportions of the diffuser cavity depths.
The properties of the scattering system vary depending on
what type of pseudo-random sequence is used to design its
geometry. Examples of frequently proposed sequences used
for this purpose are the MLS (maximum-length sequence),
PRD (primitive root diffuser), and QRD (quadratic residue
diffuser) sequences [11]. In a diffuser geometry designed
through a process based on QRD sequences, the ratio of the
proportional depth of the n-thwell marked byWd,QRD is given
by the formula [11]:

Wd,QRD (n) = n2mod ξ, (10)

where: n is consecutive integers greater than or equal to zero,
and ξ is the selected prime number.

For PRD diffusers, the ratio of the proportional depth of
the n-th well is given by the formula:

Wd,PRD (n) = gnmod ξ, (11)

where: g is the smallest primary root of the prime number ξ .
In the final step, the relative well depth factor is converted

into the physical depth proportionally to the consecutive val-
ues of the given pseudo-random sequence.

It is important to note that Schroeder diffusers can be
implemented in two manners – with or without physical
barriers (walls) between the wells. In this paper, the variant
without the wells is considered, as it is easier to manufacture.
The following parameters can fully define any 2D Schroeder
diffuser:
• matrix of integer numbers denoting the height of each
Schroeder diffuser well,

• physical dimensions of a single segment making a well
(width, length, and height),

• maximum number of segments per well,
• dimensions of the diffuser (in segments/wells, i.e., 10
segments by 10 segments),

• the thickness of the back part of the diffuser on which
the wells are positioned.

Visualization of such a description method applied to an
example of a borderless 2D Schroeder diffuser is shown
in Fig. 3. It was employed in the course of all numerical
and physical experiments. It can be applied to bordered and
borderless designs. In the case of designs with walls, addi-
tional information about the thickness of the walls has to
be included in the description. The definition of the diffuser
structure presented in this Section is especially useful for
algorithms optimizing diffuser designs, especially if the goal
is the maximization of the diffusion and scattering coeffi-
cients. A detailed method for computer-based optimization of
the aforementioned acoustic diffuser parameters is presented
in the next subsection.
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FIGURE 3. Depiction of all dimensions and other data crucial for an
unambiguous definition of the Schroeder-type diffuser simulated in the
experiments.

B. OPTIMIZATION-BASED METHODS
1) GENETIC ALGORITHM
In addition to design methods based on pseudo-random
sequences, there are also more advanced methods for design-
ing acoustic diffusers. For some problems, an optimization
process may be the most viable way of obtaining satisfactory
results in fields of knowledge such as acoustics and fluid
mechanics. An example of such a task may be a design of
an acoustic horn with specific properties [26], a structure
of rotating turbines [27], or even a biomedical problem of
designing an aortic valve [28]. Most of those approaches
employ some form of computer simulation; many of them
are based on the finite element method, which is used to
calculate the optimized solution qualitymetric. This approach
may also be applied to the problem of automatically design-
ing an acoustic diffuser. The metric is only one part of the
optimization-based approach to automated acoustic diffuser
design. The second element is an optimization algorithm.
An example of a popular optimization algorithm employed
for automated design tasks is a genetic algorithm [29], [30].
When designing acoustic diffusers using a genetic algorithm,
it is necessary to define the so-called genome. For diffusers,
it may be defined as a matrix containing proportional cav-
ity depth coefficients and a range of values that can be a
number representing the acceptable cavity depth coefficient.
First, a population of Ni random individuals consistent with
the given genome is generated. Individuals may be sub-
jected to crossing-over and mutation operations. In the algo-
rithm examined in the experiment conducted, crossing-over
involves randomly swapping columns or rows of two diffuser
designs. Whenever the swap involving columns or rows is
random, the probability of choice is 0.2. Then the algorithm
iterates through rows or columns and converts them between
projects with a probability of 0.2. The mutation operation

also involves iterating the algorithm randomly through design
rows or columns and changing the cavity depth coefficient
value by a random, non-zero integer from -1 to 1 with the
exclusion of zero. The value of Ni used in the successive
parts of this work is assumed to be equal to 36. The genetic
algorithm is an iterative process. Within each iteration, a
so-called generation of solutions is tested. The result of the
test is the value of the fitness function, which is a parameter
optimized by the genetic algorithm. It is assumed that the
value of this parameter is maximized; however, in the case
of the minimization task, it is enough to multiply the given
fitness function by -1, which results in the task of minimizing
the value of the function changing into the task of maximizing
its value. The exact definition of the fitness function depends
on the definition of the problem to be solved by the genetic
algorithm. After each iteration, new diffuser designs are eval-
uated by calculating a fitness function that determines how
much they improve the acoustics of the room in which they
are applied.

In the case of acoustic diffusers, the task may relate to
maximizing the diffusion coefficient, or minimizing the stan-
dard deviation of the frequency response at a given point of
the tested room. The list of best diffusers is updated based
on the final ranking list, and the process of crossing-over,
mutation, and calculation of the ranking is performed again.
Interruption of this process can occur either automatically,
e.g., after reaching the desired value of the optimized coeffi-
cient characterizing the diffuser design (e.g., autocorrelation
diffusion coefficient), or, for example, after a predetermined
number of algorithm epochs has been carried out.

2) DEEP POLICY GRADIENT
Reinforcement learning algorithms are a group of machine
learning methods for tackling problems involving interaction
with the environment and managing the process of acquir-
ing knowledge from such an interaction. A reinforcement
learning algorithm often takes the form of a so-called agent
that interacts with a given, often unknown environment by
taking actions. The number of actions available can be limited
but can also be infinite. Sometimes the action space can
even be continuous. The outcomes of the actions undertaken
by the agent are evaluated, and feedback information about
the quality of a given action is returned to the agent in the
form of a so-called reward. An approach based on rein-
forcement learning may be employed for the unsupervised
design of neural network structures [31] or playing computer
games [32]–[35]. A reward is the main signal used for train-
ing the algorithm to choose the best actions. It is often a
numeric value and is maximized by the agent in the process
of learning and interacting with the environment. The defi-
nition of such a reinforcement learning process is depicted
in Fig. 4 [15].

In reinforcement learning, a common problem is taking
into account the value of future states, which may not nec-
essarily happen but may yield a future reward. A common
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FIGURE 4. A definition of reinforcement learning problem – the agent
interacts with the environment by taking actions. In return, it obtains
feedback in the form of the reward signal and observation about the next
state after the current action.

practice is introducing a so-called discount factor to estimate
future rewards that may be obtained after taking a particular
action. The expected reward in such a case is equal to:

E (r) = rt +
∑N

i=1
γ i · rt+1 (12)

where: E (r) is expected reward to be obtained by the agent,
rt is a reward achieved by the agent in the current step of
the interaction with the environment, γ is a discount factor,
γ ∈ 〈0, 1〉, and rt+1 is a reward obtained by the agent in the
next steps of interaction.

An example of a deep reinforcement learning method that
may be used to optimize the properties of acoustic diffusers
is a deep policy-gradient (DPG) algorithm, which employs a
deep neural network as part of the agent. In this case, the out-
put of the network is a probability distribution of actions to
be taken by the agent. In the case of a policy-gradient neural
network, the network approximates this so-called policy func-
tion, which maps the current state of the environment to the
choice of action undertaken by the agent. The policy gradient
ascent algorithm, the objective of which is maximizing the
reward gained by the policy gradient algorithm, is employed
in such a case. Weights of the network (denoted by w) are
updated by a gradient ascent algorithm. The gradient is cal-
culated with the use of the following formula:

∇wπw (s, a) = πw (s, a)∇wlog (π2 (s, a)) , (13)

where: ∇w denotes calculation of gradient with respect to the
weights w of a neural network used to approximate the policy
function denoted as πw (s, a).

This approach can be implemented with standard libraries
allowing the implementation of gradient-descent training
libraries. A drawback of the policy gradient algorithm is the
fact that an update for the policy neural network may only
be applied after a full episode of interactions with the envi-
ronments. Therefore, they often converge at a lower speed.
On the other hand, policy-gradient methods make it easier
to design solutions that rely on a probability distribution of
actions to be taken and thus do not require explicit compli-
cation such as ε-greedy strategies to encourage off-policy
exploration of the environment. They also consist of less
complex neural networks and do not require additional data
structures such as replay memory, which further simplifies
their practical implementation.

V. DESIGN OF THE NUMERICAL
BENCHMARK EXPERIMENT
A standard method of evaluating the performance of a dif-
fuser is a measurement of an autocorrelation diffusion coef-
ficient. Therefore, the numerical experiment was designed
to compare two investigated optimization-based approaches
(namely, one based on a deep policy gradient and one based
on a genetic algorithm) to designing Schroeder diffusers
in terms of the average autocorrelation diffusion coeffi-
cient. We decided not to include classic design methods
based on pseudo-random sequences. Those methods would
not yield designs of diffusers of the same dimensions as
the two optimization-based methods. Instead, we introduced
another baseline method based on the generation of diffuser
designs in a random manner and the choice of the best
design obtained in such a way. The autocorrelation diffusion
coefficient can be calculated based on a polar response of
a given acoustic diffuser. This is also a common way of
characterizing the scattering properties of diffusers for the
purpose of selecting appropriate diffusers for the given appli-
cation. Therefore, it is crucial to determine if genetic and
reinforcement learning algorithms can optimize the diffusion
coefficient and design diffusers better than those obtained by
simple randomization of the lengths of Schroeder diffuser
segments.

Additionally, we wanted to check if the deep policy gradi-
ent would work better if the starting design improved by the
deep learning algorithm is random or if it is the best historical
design achieved by the iterative process so far. A simulation
employing PML (perfectly matched layers) layers should be
used to achieve this goal, as anechoic conditions are necessary
for both simulation-based prediction and measurement of the
diffusion coefficient. The experiment meant to investigate
the performance of the aforementioned design principles,
employing the four aforementioned algorithms, is schemat-
ically depicted in Fig. 5.

Four methods of acoustic diffusers design were
investigated:
• random selection of the length of diffuser pattern seg-
ments,

• optimization of the length of diffuser pattern segments
employing genetic algorithms,

• optimization of the length of diffuser pattern segments
employing a deep policy gradient algorithm which opti-
mizes patterns generated randomly,

• optimization of the length of diffuser pattern segments
employing a deep policy gradient algorithm that opti-
mizes patterns sampled from the 10 best designs gener-
ated by the algorithm at the time of the creation of the
initial pattern.

To speed up the computations, the action space was
designed to make it possible for the agent to change multiple
elements at once. Visualization of an example action after
such a modification is depicted in Fig. 6. The structure of the
neural network used to predict actions in such an action space
is shown in Fig. 7.
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FIGURE 5. Diagram of the experiment conducted to test the
simulation-based optimization and compare the outcomes of this method
with a process of acoustic diffuser design based on a random selection of
the diffuser segment height.

The designs in the experiment have equal width and height
patterns, being 10 segments, and for each segment, three
decisions can be made. The decisions are:

1. decreasing the element height by 1,
2. leaving the element unchanged,
3. increasing the element height by 1.

As only heights from 0 up to 10 are accepted, the values are
trimmed after modifications introduced to the pattern by the
neural network to avoid negative segment heights and heights
greater than 10. This means that there are 310·10 = 3100

possible actions in the action space. As denoted in Fig. 7,
the input to the DPG neural network was also modified;
additional channels were added. Instead of providing only the
information about the diffuser pattern, the neural network also
takes:

1. 2-dimensional FFT of the pattern,
2. 2-dimensional cepstrum of the pattern,
3. autocorrelation of the pattern interpolated from the shape

of (19, 19) to the shape of (10, 10).

In the case of autocorrelation, the spline-based interpo-
lation implemented in the RectBivariateSpline class from
the Python scipy.interpolate package was used. The version
number of the SciPy library employed in this experiment was
1.5.4. The cepstrum of the Schroeder diffuser pattern was
calculated according to the formula below:

Xcepstrum = FFT2D (|FFT2D (X)|) (14)

where: X is a matrix containing the pattern of the Schroeder
diffuser, FFT2D is a 2-dimensional Fast Fourier transforma-
tion, and Xcepstrum is a spatial cepstrum of X.

The order of the spline used for interpolation in both the
x and y axes was 5. Such an approach allowed the neural net-
work to estimate the properties of the diffusers by analyzing

FIGURE 6. Modified structure of an action being the effect of inference
carried out by the DPG neural network.

their shape in terms of spatial frequencies and autocorrela-
tion. The use of cepstrum allowed for easier sensitization of
the neural network to take into account the harmonicity of the
spatial frequencies present in the design.

Two approaches to DPG-based optimization were
investigated:
4. an approach in which a neural network tries to improve

the wideband autocorrelation diffusion coefficient of ran-
domly generated diffuser patterns,

5. an approach, in which, through the whole process of train-
ing, the 10 best historical designs are retained and updated.
A neural network tries to improve a design randomly cho-
sen from the aforementioned set of best diffuser designs.
Neural networks are trained in a loop of interaction

between the network and the environment. The algorithm
of training is presented in Fig. 8. In this case, the envi-
ronment is an FDTD simulation of the diffuser interaction
with a band-limited Gaussian impulse obtained in a manner
described in [10]. Due to the necessity of limiting the numer-
ical dispersion, the bandwidth of the simulation was limited
to 4 kHz – this is the maximum frequency of the exciting
impulse employed in the simulation.

Each training step was performed for 10 epochs. TheAdam
algorithm was employed for learning rate optimization; the
initial learning rate of the Adam algorithm was set to 0.001.
The momentum parameter of batch normalization layers was
set to 0.95. The discount factor was set to 0.99.

A reward signal calculated for each step of interaction
between a particular implementation of the neural network
architecture from Fig. 7 was calculated as follows:

reward [n] =
1

2

(
dψ,n,xy [n]− dψ,n,xy [n− 1]

)
+

1

2

(
dψ,n,yz [n]

− dψ,n,yz [n− 1]
)

(15)

where: reward [n] is a reward signal value for step n
dψ,n,xy [n], dψ,n,yz [n] are the normal incidence autocorrelation
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FIGURE 7. Structure of the DPG neural network that learns and performs a strategy of a reinforcement
learning agent optimizing designs in the experiment. The activation function of all layers but the last,
softmax one, is a parameterized rectified linear unit (PReLU).

diffusion coefficients obtained in the current step of opti-
mization calculated after application of changes obtained
from a neural network for the xy, and yz planes of the dif-
fuser, respectively, and dψ,n,xy [n− 1] and dψ,n,yz [n− 1] are
the normal incidence autocorrelation diffusion coefficients
obtained for a diffuser design before applying the changes

obtained from the neural network for the xy, and yz planes of
the diffuser, respectively.

VI. RESULTS
The designed and simulated diffusers consisted of 100
segments and had the shape of 10 × 10 segments.
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FIGURE 8. Training procedures for reinforcement learning agents using the neural network architecture described in this
section.

It was assumed that behind the matrix of segments, there
is a plate having the same reflective properties as segments
inf front of it. Therefore, it is possible for a single segment
to have a length of 0 cm, which practically means that in
its place, there is no segment, just the surface of the plate.
Each segment can have a length within the range from 0 to
10 elements. The maximum length of a diffuser was set to

30 cm; therefore, the height of a single element is 3 cm which
translates to allowed segment heights in the range from 0 cm
to 30 cm.

To speed up computations and limit the numerical disper-
sion, the bandwidth of the simulation was limited to 4 kHz
by using a band-limited Gaussian pulse. The sampling rate of
the simulation was 50.2 kHz. This is the minimum sampling
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rate that provides sufficient spatial resolution for simulating
lengths as small as 3 cm. The spatial resolution was equal
to 1.1 cm and was calculated with an assumption that the
Courant number is equal to

√
1/3. The temporal duration

of the simulation, and thus the duration of the obtained
impulse responses used to calculate the diffusion coefficient,
was 15 ms.

In terms of the properties of the propagation medium,
the temperature of the air was assumed to be equal to 25 ◦C,
atmospheric pressure was considered to be equal to 1000 hPa,
and relative humidity of the air was assumed to be equal
to 50%. Therefore, the speed of sound in the propagation
medium was 347.43 m/s, and the characteristic impedance
of the air was equal to 403.52 Rayls. As the simulations
were intended to replicate outcomes obtained in anechoic
conditions, PML was applied to the borders of the compu-
tational domain. The PML had a thickness of 30 elements,
and the maximum damping factor was 25000. Admittance
of rigid materials present in the computational domain was
assumed to be equal to 10−10. The semicircular pattern of
pressure measurement points used to calculate the diffusion
coefficient had a radius of 0.95 m. The source was positioned
at a 2 m distance from the diffuser. The incidence angle of the
acoustic wave on the acoustic diffuser was 90◦ (perpendicular
incidence). The dimensions of the domain (with PML and
object margins) were 2.9m × 3.4 m × 2.9 m.
Example graphical depictions of reward signals and

achieved diffusion coefficients obtained from the policy gra-
dient optimization process are shown in Figs. 9 and 10. Each
of the graphs is related to a different implementation of a neu-
ral network (for instance, they are initialized with different
sets of random weights). Therefore, each implementation of
a neural network is referred to as an ‘‘agent’’ to emphasize
this fact. For the algorithm using the random pattern as input
for the optimization, there were active 20 agents; for the algo-
rithm performing optimization of 1 of the 10 best patterns,
there were 23 agents. The training lasted for approximately
15 hours. The number of episodes of training for each agent
varied and was in the range between 60 up to 110. This
variability resulted from the parallel training of agents on
multiple workstations equipped with different GPU cards

FIGURE 9. Results obtained from agent no. 10, which was fed with
random input diffuser designs to be improved over each episode.

characterized by different performances. For this experiment,
2x RTX Titan, 3x RTX 2080 Ti, and 2x RTX 2060 graphic
cardswere used. The aforementioned graphic cardswere used
to carry out both the training of the neural networks and the
simulation-based prediction of the diffusion coefficient of the
diffusers generated by the algorithms.

To compare the neural network performance in terms of
optimization capabilities with other heuristic optimization
methods, a genetic algorithm was also employed to design
diffusers with the same design specification as those gener-
ated by the deep policy gradient algorithm. This algorithm
was used to carry out 3 instances of genetic algorithm design
processes. Each of them employed a population of 30 dif-
fusers. For each of those groups, 18 generations of diffusers
were generated.

Histograms of diffusion associated with all of the designs
generated by the two optimization processes based on the
policy gradient and the genetic algorithm are presented
in Fig. 11. To investigate if the optimization outcomes are
better than a random selection of the diffuser segment length,
a histogram of diffusions provided by randomly generated
diffusers also is shown. These random designs are obtained
from the DPG algorithm with a random initial design. These
initial, purely random designs from the beginning of all
episodes can be utilized as a baseline for all designs optimized
by the DPG and genetic algorithm.

Fig. 11 shows that the best designs in terms of diffu-
sion coefficients calculated based on the FDTD simulation
were those generated by the DPG algorithm with input
patterns selected from the 10 best historical designs. The sec-
ond best algorithm was the genetic algorithm. If the DPG
method was fed with inputs obtained in a random manner,
a histogram of the obtained diffusion coefficients was barely
different from a purely random choice of diffuser segment
lengths.

To find out if the median differences visible in Fig. 11 are
statistically significant, statistical tests were performed. For
all tests, a significance level of 0.05 was assumed. First,
Levene’s test for equality of variance of all algorithm-related
distributions was carried out. The test statistic was equal

FIGURE 10. Results obtained from agent no. 18, for which a diffuser
chosen from the 10 best designs encountered by a group of agents in the
optimization process was selected as a starting design.
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FIGURE 11. Histograms depicting probability distributions of creating the
design associated with a specified diffusion coefficient. Four algorithms
are shown: DPG with randomly generated input diffusers designs, DPG
with input designs selected from the 10 best historic designs, genetic
algorithm, and random selection of diffuser segment lengths.

to 41.9, thus the p-value is less than 10−3. Therefore, one
must conclude that the variances of the estimated probabil-
ity distributions shown in Fig. 11 are not equal. Therefore,
the ANOVA test for equality of means of distributions could
not be carried out. Instead, a nonparametric alternative to
ANOVA had to be used. In this case, the Kruskal-Wallis test
for equality of medians can be employed. The statistic of
this test for the data investigated was equal to 4370.24, and
therefore the p-value, in this case, was also less than 10−3.
This means that at least one pair of medians of distributions
visible in Fig. 11 is not equal. To find out which one this
concerns, a post-hoc test had to be carried out. In the case
of the Kruskal-Wallis test, a Dunn’s test can be employed.
In the case of the data in question, all p-values of Dunn’s test
were also less than 10−3. Therefore, the p-value matrix is not
shown here, and one can conclude that all differences visible
in Fig. 11 are statistically significant. The medians calculated
for the data from Fig. 11 are contained in Table 1.

The DPG algorithm with the 10 best input designs was
found to be the best in terms of optimizing diffuser designs
on the basis of FDTD simulation. This confirms that rein-
forcement learning can be used to design acoustic diffusers
through simulation-based optimization. The DPG algorithm
provided designs with a diffusion coefficient median signif-
icantly higher than any other design method tested. In the
course of numerical experiments, the following numbers
of repetitions for each calculation scenario were carried
out:
• best design from a pool of random designs – 1692 pat-
terns were generated; therefore, the number of designs
generated by the DPG with a random initial design is
also 1692,

• genetic algorithm generated a pool of 1620 diffusers
designs,

• deep policy gradient with input design selected from
the 10 best historic designs resulted in the creation
of 1816 designs.

TABLE 1. Medians of diffusion coefficients averaged over the xy, and yz
planes for designs generated by four algorithms investigated in the
second experiment.

VII. DISCUSSION
The scope of our work focused on employing a numeri-
cal acoustic wave propagation model and machine learning
algorithms. The aim was to create an autonomous program
capable of designing acoustic diffusers with optimized values
of given metrics related to their acoustic properties. For opti-
mization, an autocorrelation diffusion coefficient was chosen.
However, it should be stressed that any other metric that can
be predicted by a numerical simulation can be selected for
such kind of an optimization. The use of computer simula-
tion for the prediction of acoustic wave propagation makes
it possible to also calculate the fitness function based on
the scattering coefficient or the uniformity of the frequency
response of a hypothetical shoebox-type room in which the
diffuser undergoing the optimization process is placed.

The investigation involving both the genetic and the
reinforcement learning algorithms showed that they could
optimize the acoustic properties of the designed diffusers
(in terms of an autocorrelation diffusion coefficient) based
on feedback generated by the simulation. Additionally, all
optimization methods achieved better statistically significant
results than the ones employing classical approaches, which
were based on the use of pseudo-random sequences and on
the random selection of the well-depths of Schroeder dif-
fusers. It was observed that the deep policy gradient algorithm
could achieve better statistically significant performance by
optimizing the design of an acoustic diffuser, even if the
action space was as large as 3100 possible actions. Moreover,
it was found that especially the design obtained from the
deep policy gradient method provided a more stable diffusion
coefficient across the bandwidth in which the diffuser has a
non-negligible effect on the simulated acoustic field.

An interesting observation made in our research is that
in case of the deep policy gradient, it is necessary to pro-
vide relatively good starting points for the optimization to
achieve satisfactory sequential optimization results. Even if
the interaction between the algorithm and simulation is rel-
atively long and takes hundreds of episodes, starting with
just random diffuser designs does not yield better results
than those provided by the genetic algorithm. Our hypoth-
esis regarding this observation is that the improvement of
already high-scoring designs involves a very different type of
change than just the improvement of relatively poor designs.
We further hypothesize that the differences between those
kinds of changes are sufficiently pronounced to impose a
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TABLE 2. A brief comparison of key advantages and disadvantages of acoustic simulation and optimization algorithms recalled in our study for designing
acoustic diffusers.

requirement that the input of the DPG algorithm has to be the
best historical design, and not just a random starting design.
This has a significant practical consequence, as it implies
the non-feasibility of employing an already-trained neural
network to carry out the DPG algorithm for improving a given
acoustic diffuser design over the course of a single episode.
It is more likely that a new training process would be required,
as the neural network has to most likely significantly change
its behavior during the diffuser optimization process.

It is also noteworthy that the novel set of equations derived
in the course of our research, to simulate the propagation
of acoustic waves in anechoic conditions, can also be uti-
lized in other cases. The reduction of reflections present in
simulation, based on the original set of the FDTD equations
proposed byWebb andBilbao [9], makes it possible to use our
paradigm of simulation for predicting experimental outcomes

obtained in anechoic conditions. It requires a smaller compu-
tational grid, as acoustic wave reflections from the borders of
the computational grid are attenuated. In the case of original
equations proposed in [9], possibilities for elimination of
reflections are limited. They can probably impose additional
requirements in terms of the simulation structure such as
increasing the size of the computational domain. This would
allow obtaining temporal separation of the useful parts of
the simulated impulse response containing signals reflected
from the acoustic diffuser and of the one containing unwanted
reflections from the boundary of the computational grid. Such
an approach is associated with some apparent disadvantages
such as the unnecessary use of computational power. Another
drawback is the necessity of additional processing in order
to eliminate unwanted reflections by trimming the impulse
response obtained from such a simulation.
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Finally, the choice of both the simulation and the opti-
mization algorithms has its practical consequences in terms
of the computational power needed for carrying out the
simulation-driven optimization process. It also determines
the complexity of the algorithm implementation and the
computation time, which is significantly longer in the case
of reinforcement learning optimization (tens of hours) if
compared to the genetic algorithm (single hours required by
the algorithm to find one of the top-performing solutions).
Therefore, before deciding which approach to chose in a par-
ticular case, it may be advisable to consider all the advantages
and disadvantages of all approaches to a simulation-driven
optimization discussed in our paper and choose the best-fitted
one for a given task. An example of such a comparison is
presented in Table 2.

VIII. CONCLUSION
There are two key conclusions that can be drawn from
our research—first, we succeeded in using the reinforce-
ment learning algorithm to design the acoustic diffuser.
It was possible to fine-tune this design method in order to
achieve results with better statistical significance compared
to genetic algorithms in terms of the diffusion coefficient.
Results obtained from both the reinforcement learning- and
genetic algorithm-based algorithms surpassed the design
method involving the random choice of the Schroeder diffuser
well-depth pattern.

The second achievement is a derivation of equations capa-
ble of simulating anechoic conditions employing the FDTD
method, which allows fast computation of fitness and reward
signals by using graphics unit processing (GPU). Moreover,
a Python-based implementation of the numerical model was
developed and tested for such a purpose. Simulation-based
evaluation of diffuser properties in anechoic conditions may
be a potentially useful tool, as several standard parameters
that are used to characterize acoustic diffuser designs are
derived from the frequency response of the diffusers.
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