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We study the relation between semi- and fully-device-independent protocols. As a tool, we use the
correspondence between Bell inequalities and dimension witnesses. We present a method for converting the
former into the latter, and vice versa. This relation provides us with interesting results for both scenarios. First, we
find random-number-generation protocols with higher bit rates for both the semi- and fully-device-independent
cases. As a byproduct, we obtain classes of Bell inequalities and dimension witnesses. Then, we show how
optimization methods used in studies on Bell inequalities can be adopted for dimension witnesses.
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Introduction. In device-independent (DI) protocols, two
distant parties either do not know all the relevant parameters
of their machines or do not trust them. This was formally
presented in [1]. Initially, this approach was very successful
in quantum cryptography [2–5]. Later, Colbeck [6,7] pro-
posed a true random-number-expansion protocol based on
the Greenberger-Horne-Zeilinger (GHZ) test, while Pironio
et al. [8] proposed a protocol based on Bell inequality
violations. All these protocols require entanglement, which
has a negative effect on the complexity of the devices and
the rates of randomness generation [8] and key distribution.
To cope with this problem, the semi-device-independent
(SDI) scenario was introduced in [9]. In this approach, we
consider prepare-and-measure protocols without making any
assumptions about the internal operations of the preparation
and measurement devices. The only assumption made is about
the size of the communicated system. We assume there is a
single qubit in each round of the experiment. This approach
is a very good compromise between the fully DI scenario and
experimental feasibility. The possibility of using prepare-and-
measure protocols implies no need for entanglement, which
makes the experiments easier by several orders of magnitude.
However, the price to pay for this is that one extra assumption
means the possibility of a loophole if the assumption is not
met. This lowers the overall security of the protocol, albeit not
significantly, since it is relatively easy to find the dimension
of the system in which Alice’s device encodes information,
even through superficial inspection of the device. However, it
is almost impossible to test each part of the device to check
whether it indeed works as advertised. The first SDI protocol,
presented in [9], was for quantum key distribution. Shortly
thereafter, the first SDI randomness-expansion protocol was
proposed [10]. This work studies the relation between DI and
SDI protocols. We show how and under what conditions one
can be converted into the other and how this change affects
their parameters. This relation provides us with interesting
results for both scenarios. First, we find random-number-
generation protocols with higher bit rates for both semi- and

fully-device-independent cases. As a byproduct, we obtain
classes of Bell inequalities and dimension witnesses. Then,
we show how optimization methods used in studies on Bell
inequalities can be adopted for dimension witnesses. Our
Rapid Communication is structured as follows. First, we
describe the method for converting DI protocols to SDI,
and vice versa. Then we apply our method to SDI random
generators to obtain DI protocols with higher bit rates. We
also present a family of Bell inequalities. Next we take a
class of DI protocols and turn these into SDI protocols with
better rates. This time our byproduct is a family of dimension
witnesses. Finally, we show how semi-definite-programming
(SDP) methods, which are a powerful tool in the DI scenario,
can be used in an SDI one.

Bell inequalities and dimension witnesses. In a DI protocol,
distant parties receive systems in an unknown, (possibly)
entangled state from an untrusted sender. In each round, they
choose their inputs and make measurements to obtain the
outcomes. In our Rapid Communication, we are interested in
bipartite protocols, and, thus, we have two parties, Alice and
Bob, with their setting choice denoted by x and y, respectively,
and their outcome denoted by a and b, respectively. In some
randomly chosen rounds of the protocol, both parties will
publicly compare their settings and outcomes to estimate the
conditional probability distribution P (a,b|x,y). From this,
they can calculate the value of some Bell inequality,

I =
∑

a,b,x,y

αa,b,x,yP (a,b|x,y), (1)

which is their security parameter. This parameter can then
be used as the lower bound on the amount of randomness or
secrecy in the remaining rounds. In an SDI protocol, Alice
chooses her input x ′, but she does not have any outcome.
Instead, in each round, she prepares a state depending on x ′
and sends it to Bob. Bob chooses his measurement setting y

and obtains outcome b. Although the devices that prepare the
system and then measure it are not trusted, we assume that
the communicated states are described by a Hilbert space with
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FIG. 1. (Color online) Schematic representation of (1) DI and (2) SDI protocols and of our method for finding the corresponding ones.

a fixed dimension (here we assume they are qubits) and that
there is no entanglement between the devices of Alice and Bob.
Again, in some rounds, x ′,y, and b are announced to estimate
the value of some dimension witness

W =
∑

b,x ′,y

βb,x ′,yP (b|x ′,y), (2)

which has exactly the same function as I in the DI case. Both
of these scenarios are illustrated in Fig. 1.

Dimension witnesses were introduced in [11]. Just as
violation of a Bell inequality in the DI case tells us that
the measured system cannot have a classical description,
violation of a dimension witness in the SDI case tells us
that the communicated system cannot be a classical bit (in
the case of the witness for dimension 2). In both cases,
violation of the classical bound is a necessary (though
not always sufficient) condition for the protocol to work.
Moreover, in both cases, the form of I or W is the most
important part of the protocol description. Therefore, finding
the correspondence between these two objects is equivalent to
finding the correspondence between the protocols. Our method
for doing so is quite straightforward: Let us rewrite I as∑

a,b,x,y αa,b,x,yP (a|x,y)P (b|a,x,y) and start by considering
a as part of Alice’s input. This is a purely mathematical
operation and has no meaning at the protocol level. Now
Alice’s input is x ′ = (x,a). We can consider P (a|x,y) as
the probability that part of Alice’s input is a. Because in
the parameter estimation phase of the protocol the inputs are
chosen according to a uniform distribution, we set P (a|x,y) =
1
A

, where A is the size of the alphabet of a. Our I is
now

∑
b,x ′,y αb,x ′,y

1
A
P (b|x ′,y) and has the form of (2) with

βb,x ′,y = 1
A
αb,x ′,y . Our method is quite heuristic and there is

no guarantee that a Bell inequality with a quantum bound
higher than the classical one will lead to a dimension witness
that can be violated. Also, using it to go from a dimension
witness to a Bell inequality is not always possible. To do so,
Alice’s input x ′ must be divided into a pair comprising a setting
and an outcome. This is only possible if the alphabet of x ′ has
a composite size. These are serious drawbacks, but they are
easily outweighed by the advantages of simplicity and the fact
that the method works. In the following paragraphs, we apply
it to generate useful witnesses, inequalities, and protocols.

From SDI to DI protocols. Let us consider the family
of SDI protocols for randomness generation introduced in
[12], which are based on n → 1 quantum random access
codes [13]. Alice’s input x ′ is a collection of n independent
bits, a0, . . . ,an−1. For Bob, y = 0, . . . ,n − 1. The dimension
witness is defined by βb,x ′,y = δay,b. There are many ways of
dividing Alice’s input into pairs of settings and outcomes,

but, because of the independence of the bits, they are all
equivalent. Let us then take outcome a to be a0 and setting
x to be a1, . . . ,an−1. In this way, we obtain a family of Bell
inequalities,

In =
∑

a,b,x,y

δay ,bP (a,b|y,x). (3)

Systems obtaining a high value of In can be used to implement
entanglement-assisted random access codes [14]. In these
codes, Alice has n independent bits and Bob is interested
in only one of them. Alice can send only one bit of classical
communication to Bob, but they can share entanglement. If
we denote the bits that Alice wants to encode by c0, . . . ,cn−1,
then Alice can choose her setting by taking ai = ci ⊕ c0 for all
i > 0 and transmit the message m = a ⊕ c0 to Bob. If he XORs
his outcome b with the message, it is easy to calculate that he
obtains the correct value of ay with average probability Pn =
In

n2n . Therefore, we see that there is indeed a correspondence
between the dimension witness and the Bell inequality related
by our method, also at the level of protocols. In this case,
they are both a measure of the success probability for the
different kinds of random access codes. I2 is equivalent to the
Clauser-Horne-Shimony-Holt (CHSH) inequality. However,
members of this family for n > 2 have never been studied.
Because it is possible to use them for entanglement-assisted
random access codes, the bounds on their efficiency derived
in [14] apply and they translate to the maximum quantum
value of Pn, that is, P max

n = 1
2 (1 + 1√

n
). Now we show how

our Bell inequalities perform in DI randomness generation.
The quantity that we wish to optimize is the min entropy
H∞(a,b|x,y) = − log maxa,b P (a,b|x,y). To find the lower
bound on this for a given value of Pn, we use the methods
described in [15]. More precisely, we bound the set of allowed
probability distributions by the second level of their hierarchy.
Table I shows the lower bounds on the min entropy for the
maximal quantum values of Pn that we obtained.

Compared with the randomness obtained from the SDI
protocols, the main difference is that it grows with n instead
of reaching a maximum at n = 3. In fact, the upper bound is
H∞(a,b|x,y) = 1 − log P max

n = 2 − log(1 + 1√
n

), which ap-
proaches 2 as n → ∞. We conjecture that this is reached for
any n, but the second level of the SDP hierarchy form [15]
that we use for the lower bound is sufficient only for n = 2.
Proving this conjecture is one of the open areas of research.
The lower bounds as a function of Pn are plotted in Fig. 2.

From DI to SDI protocols. Now we apply our method to
show that we can go the other way and convert a DI protocol to
an SDI one. We start from the randomness-generation protocol
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TABLE I. Lower bounds on the min entropy for the protocols
corresponding to the n → 1 random access codes. The values in the
rightmost column are for the family of protocols defined in [12] and
are taken from there. The values in the middle column correspond to
the min entropy of the outcomes in Bell inequalities In for the maximal
quantum values thereof. These were obtained using the SDP methods
in [15]. The inequalities In were derived from the protocols in [12]
using the method depicted in Fig. 1.

n DI: H∞(a,b|x,y) SDI: H∞(b|a,x,y)

2 1.2284 0.2284
3 1.3421 0.3425
4 1.4126 0.1388
5 1.4652 0.1024

form [16] based on Bell inequality Iα , which expressed in the
form (1) is

Iα =
∑

a,b,y

δa,bαP (a,b|x = 0,y)

+
∑

a,b,y

δa,b⊕yP (a,b|x = 1,y). (4)

Converting this to a dimension witness, we get

Wα =
∑

a,b,y

αδa,b

2
P (b|a,x = 0,y)

+
∑

a,b,y

δa,b⊕y

2
P (b|a,x = 1,y). (5)

The lower bound on the min entropy as a function of
coefficient α is plotted in Fig. 3. For large values of α, the
amount of randomness is clearly greater than that for the best
of the protocols described in [12]. The intuitive explanation
for this is that Wα also corresponds to a kind of quantum
random access code. In this case, it is a 2 → 1 code with
different weights assigned to the cases with x = 0 or x = 1.
For large α, it is much more important for the protocol to be
correct when x = 0 than in the case of x = 1. This means
that the protocols reaching maximum quantum value will tend
to give the correct value of b for x = 0. Here correct means
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FIG. 2. (Color online) The lower bounds on H∞(a,b|x,y) as
functions of Pn.
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FIG. 3. (Color online) Lower bound on the min entropy
H∞(b|a,x = 1,y) as a function of coefficient α for the maximal
quantum value of Wα . In [16], a large amount of randomness is
generated only for one setting of x. Here we observe the same result
with high randomness for x = 1 and low randomness for x = 0.

fully specified by a,y, and x, in other words, deterministic.
The price paid for this is that for x = 1, the probability of the
correct (predetermined by a,y, and x) value is small, which
implies a lot of randomness. Previously, in [10,12], the bounds
on the entropy in SDI protocols were calculated using the
Levenberg-Marquardt algorithm [17], which is not guaranteed
to find global minima. SDP, on the other hand, always finds
these; however, it was previously not known how this could
be applied in the SDI case. Below we give a solution to this
problem.

Optimization in SDI protocols. It is not possible to use SDP
optimization directly in the SDI case because of the nonlinear
target function. Neither can methods from [15] be applied
because they do not allow the dimension of the system to be
set. Therefore, we need to find another solution. We do it by
proving the following theorem:

Theorem. If H∞(b|a,x,y) is the min entropy obtained in
the SDI case and H∞(a,b|x,y) is the min entropy obtained in
the corresponding DI protocol, then

H∞(b|a,x,y) � H∞(a,b|x,y) − 1 (6)

for the same value of the security parameter.
Proof. See the Supplemental Material in Ref. [20].
Let us stress that (6) holds only when the values of the

dimension witness and the Bell inequality are the same.
Consider Table I once again. For n = 2, we have equality
H∞(b|x,a,y) = H∞(a,b|x,y) − 1. For n = 3, H∞(b|x,a,y)
is slightly larger than H∞(a,b|x,y) − 1. This most likely stems
from the fact that the bound in the table is not tight for
n = 3. In fact, the upper bound on H∞(a,b|x,y) is exactly
H∞(b|x,a,y) + 1. The situation changes for n = 4,5. In these
cases, (6) does not seem to hold. This is because the values
in the table are given for the maximal quantum values of
witnesses and inequalities, which, for n = 4,5, are not the
same. If we calculate the entropy bound for the DI case
when the value of the Bell inequality is equal to the maximal
quantum value of the dimension witness, then the values are in
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FIG. 4. (Color online) Min entropy bounds for the SDI
randomness-generation protocol based on the 2 → 1 quantum
random access code. The dots are obtained from the Levenberg-
Marquardt algorithm used in [10], which is not guaranteed to find
global minima, while the line depicts the SDP method described
here. Note that state preparation in the SDI protocol assumes that
p(a|x,y) = 1

2 .

agreement with (6). Using this method, we were able to refine
the results in [10], as shown in Fig. 4.

Conclusions. We investigated the relation between DI and
SDI protocols. Although our study focused on randomness
generation, our results are also applicable to quantum key
distribution since all the state-of-the-art proofs of security are
based on the randomness of measurement outcomes [3,4].
To this end, we demonstrated a method for converting Bell
inequalities into dimension witnesses, and vice versa. This
allowed us to generate examples of both types of objects with
very interesting properties. Our family of Bell inequalities
gave rise to DI randomness-generation protocols with better bit
rates, while our family of dimension witnesses did the same for
SDI protocols. Finally, using the correspondence between the
DI and SDI approach, we were able to modify the SDP-based
methods by implementing in MATLAB using toolboxes [18,19],
which were proven successful in the former case, to work
in the latter one. Apart from the similarities, our study also
showed interesting differences such as the completely different
dependence on n in Table I. It also introduced many protocols
for both scenarios. Comparison of their efficiency with that of
existing ones, especially in the presence of noise and imperfect
detectors, opened an interesting area of research.
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