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Abstract
Thepaper presents three-dimensional simulation results of granular vortex structures in cohesionless initially dense sandduring
quasi-static plane strain compression. The sand behaviour was simulated using the discrete element method (DEM). Sand
grains were modelled by spheres with contact moments to approximately capture the irregular grain shape. The Helmholtz–
Hodge decomposition of the displacement vector field obtained with DEM was used. The variational discrete multiscale
vector field decomposition allowed for separating a vector field into the sum of three uniquely defined components: curl
free, divergence free and harmonic. A direct correlation between vortex structures and shear localization was studied. The
simulation results showed that vortex structures were closely connected to spontaneous shear localization. They localized
early in locations wherein a shear zone ultimately developed. They were affected by the specimen depth.

Keywords Plane strain compression · Granular material · Discrete element method · Vortex structure · Helmholtz–Hodge
decomposition · Shear localization

1 Introduction

Localization of deformation in the form of narrow zones of
intense shearing is a basic phenomenon in granular materi-
als [1–5]. Localization under shear may occur in the interior
domain in the form of a spontaneous shear zone as a single
shear zone, a multiple or a regular pattern of zones. It may
be also created at interfaces in the form of an induced single
wall shear zone. Localized shear inside ofmaterials is closely
related to an unstable behaviour of the entire earth structure.
In continuous and discontinuous numerical calculations and
laboratory experiments, shear localization is usually iden-
tified in granular bodies by grain rotations or micro-polar
rotations or by an increase of void ratio in initially dense
ones [4]. An understanding of the mechanism of the forma-
tion of shear zones is important since they act as a precursor
of the ultimate soil failure. Thus it is of major importance to
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predict them very early for the safety of earth structures and
soil behaviour optimization.

Recently Tordesillas et al. [6] and Kozicki and Tejchman
[7,8] have shown that shear localization may be predicted
through so-called granular vortex structures defined as the
roughly swirling (rotating) motion of several grains around
a common central point. The collective particles rotated
almost as rigid bodies, however the single particles inside
did not rotate. The vortices were calculated at early stages in
the pre-peak deformation regime. A dominant mechanism
responsible for the vortex formation was the breakage of
force chains [6,9]. The collapse of main force chains lead
to a formation of larger voids and appearance of vortices and
their build-up to a formation of smaller voids and disappear-
ance of vortices. The vortex motion continuously appeared
and disappeared during granular flow. This kinematic mode
appeared to be prevalent in grains during granular flow.
The calculations in [6–9] were carried out under 2D con-
ditions only. The 2D vortices were frequently observed in
experiments on granular materials (Couette shear [10], plane
strain compression [11] and simple shear [12,13]) and in
calculations using the discrete element method (DEM) [14–
23]. They became apparent in experiments and calculations
(mainly in shear zones in the residual state) when the motion
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associated with uniform (affine) strain was subtracted from
the actual granular deformation. They are reminiscent of tur-
bulence in fluid dynamics [16], however the grain rotation
is several ranges of magnitude smaller than the fluid vortex
rotation. In addition, their life time is also shorter than of
eddies during turbulent fluid flow. Moreover, granular flow
is too slow to induce inertial forces characteristic for turbu-
lences in fluid.

Motivation behind our present work is to calculate centres
of 3D granular vortex structures and to find their relationship
with shear localization in a deforming granular specimen (in
contrast to the previous simplified 2D computations in [7–
9]). The 3D vortex structures have not been calculated in
granulates yet. When identifying granular vortex structures
in a three-dimensional kinematic field in dry sand during
quasi-static plane strain compression, a novel approach was
used based on the combined Helmholtz–Hodge decompo-
sition (HHD) of a displacement vector field [24,25] and
the discrete element method (DEM) [26]. The plane strain
compression test is one of the most important geotechnical
laboratory tests to experimentally investigate both strength
and shear localization in granular materials [4]. The analy-
ses were carried out with spheres with contact moments [7]
which were introduced to account for the effect of particle
shape angularity, e.g. resistance to relative rotations due to
particle interlocking. In order to accelerate the computation
time, some simplifications were assumed in analyses: large
spheres with contact moments, linear sphere distribution, lin-
ear normal contact model and no particle breakage [7]. The
calculations were solely carried out with initially dense sand.
A three-dimensional discrete element model YADE devel-
oped at University of Grenoble by Donze and his co-workers
was applied [27–29].

In our previous paper [8] we calculated exactly the cores
of 2D granular vortex structures in initially dense sand dur-
ing a quasi-static 2D passive wall translation using the same
approach. HHD proved to be an objective, universal and
effective technique for identifying the centres of 2D vor-
tex structures during granular flow that was directly based
on single grain displacement increments from DEM (but not
on displacement fluctuations). The method did not use any
additional non-objective parameters. It found the centres of
all vortex structures. However it did not determine the size of
vortex structures. A strong connection between the location
of vortex structures and progressive shear localization was
found in simulations. The vortex structures were the pre-
cursor of shear localization since they clearly concentrated
in the area where shear zones ultimately later formed. Thus
the ultimate shear zone pattern has already been detected in
early loading stages. The vortex structures allowed to iden-
tify shear localization significantly earlier than, e.g. based
on single grain rotations which were always the most reli-
able indicator of shear localization. They developed from

the beginning of the deformation process. The vortex centres
solely emerged in shear zones. They had a tendency to move
along shear zones and their number varied (it was larger on
average at the residual state). The right-handed vortices were
dominant in the curved shear zone and left-handed ones were
dominant in the radial shear zone. In the residual state, local
regions of dilatacy and contractancy alternately happened
along shear zones with a dominance of local dilatancy. In
addition, our preliminary analyses of plane strain compres-
sion in [8] detected 2D vortex structures very early at the
locationwhere a spontaneous shear zone ultimately occurred.
Note that core regions of vortex structures may be detected
using different methods (e.g. [6,9,31–33]).

The innovative points of the present paper are: (a) the
calculation results of cores (rotational centres) of 3D gran-
ular vortex structures using an objective method from fluid
dynamics (that has not yet been applied to granular materi-
als), (b) the comparison between 3D and 2D vortex structures
and (c) the investigations of the algorithm’s accuracy for find-
ing the centres of 3D vortices. The vortex structures were
directly related to the occurrence of spontaneous shear local-
ization in the granular specimen. The numerical results of
vortex structures and local volume changes along a granular
shear zone were qualitatively compared with the experimen-
tal outcomes of plane strain compression on sand by Abedi
et al. [11] and Chupin et al. [30].

The current paper is structured as follows.We first provide
a brief summary of our explicit DEM model (Sect. 2). We
next report on some DEM results of plane strain compres-
sion in sand (Sect. 3). Themathematical algorithm ofHHD is
described in Sect. 4. Then we demonstrate first 2D (Sect. 5)
and later 3D results of HHD (Sect. 6) that demonstrate the
efficacy of our approach to identify centres of vortex struc-
tures. Sect. 7 qualitatively compares the numerical results
with the experimental ones. Finally, we draw conclusions as
to the significance of our numerical results in the context of
shear localization and failure in granular bodies (Sect. 8).

2 Three-dimensional DEMmodel

In order to simulate the behaviour of real sand, the 3D spheri-
cal discrete elementmodelYADE, developed atUniversity of
Grenoble [27–29] was used. DEM includes the simple math-
ematical treatment of engineering problems (complex global
constitutive relationships are replaced by simple local con-
tact laws) and has the natural predisposition to account for the
material non-uniformity. The outstanding advantage of DEM
is the ability to explicitly handle the discrete/heterogeneous
nature of granularmaterials bymodelling particle-scale prop-
erties, including size and shape, which play an important
role in shear localization. The disadvantages are an enor-
mous computational cost and an extensive calibration based
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on experimentally measured macro-scale properties. The
algorithm used in the present DEM, which is based on a
description of particle interactions in terms of force laws
[26], involves in general two main steps. First, based on con-
stitutive laws, interaction forces between discrete elements
are computed. Second, the Newton’s second law is applied to
determine for each element the resulting acceleration, which
is then time integrated to find the newposition. This process is
repeated until the simulation is finished. YADE takes advan-
tage of the so-called soft-particle approach, i.e. the model
allows for particle deformation, which is modelled as an
overlap of particles. A linear elastic normal contact model
was used only. In compression, the normal force was not
restricted and could increase indefinitely. A choice of a very
simple linear elastic normal contact was intended to capture
on average various contacts possible in real sands. Figure 1
shows the mechanical response of the linear contact model
[27–29]. The DEM model [27–29] (Fig. 1) may be summa-
rized as follows:

�Fn = KnU �N , (1)
�Fs = �Fs + Δ �Fs with Δ �Fs = KsΔ �Xs, (2)

Kn = Ec
2RARB

RA + RB
and Ks = vcEc

2RARB

RA + RB
, (3)

‖ �Fs‖ − ‖ �Fn‖ × tanμ ≤ 0, (4)

Δ �M = KrΔ �ω, (5)

Kr = β × Ks × R2 = β × Ks × RARB, (6)

‖ �M‖ − η
RA + RB

2
‖ �Fn‖ ≤ 0, (7)

�Fk
damped = �Fk− ∝d ·sgn(�vk)| �Fk | and

�Mk
damped = �Mk − α · sgn(ωk)| �Mk |, (8)

where �Fn- the normal force vector, �Fs- the tangential force
vector, Kn—the normal stiffness, Ks—the tangential stiff-
ness, U—the penetration depth between discrete elements,
�N—the unit normal vector at the contact point, � �Xs—the
incremental tangential displacement vector, Ec—the mod-
ulus of elasticity of the grain contact, υc—Poisson’s ratio
of the grain contact, RA and RB—the contacting grain
radii, μ—the inter-particle friction angle, Kr—the rolling
stiffness, ΔM—the contact moment increment, � �ω—the
angular rotational increment vector, β—the dimensionless
rolling stiffness coefficient, R—the equivalent grain radius, η
- the dimensionless rolling coefficient that specifies the limit
friction moment of the rolling motion, α—damping param-
eter, �Fk and �Mk- the kth components of the residual force
and moment vector, �vk and �ωk - the kth components of the
translational and rotational velocity.

No forces were transmitted when grains were separated.
The elastic contact constants were specified from the exper-
imental data of a triaxial compression sand test and could

be related to the modulus of elasticity of grain material E
and its Poisson ratio v [34,35]. In Eq. 5, the angular rota-
tional increment vectors do not depend on the spherical grain
radii in contrast to equations that take the different radii into
account [36,37]. The rolling stiffness Kr in Eq. 5 is related
to the tangential stiffness Ks in Eq. 3 by the formula in
[38]. Because the proposed DEM is a fully dynamic formula-
tion, a local non-viscous damping scheme was applied [39]
in order to dissipate excessive kinetic energy in a discrete
system and facilitate convergence towards quasi-static equi-
librium (Eq. 8). The effect of damping was insignificant in
quasi-static calculations [34,35]. Although a non-linear con-
tact law ismore realistic, a linear contact law provides similar
results with the significantly reduced computation time [35]
and therefore was used in the present simulations.

The following fivemain localmaterial parameters are nec-
essary in our DEM simulations: Ec (modulus of elasticity of
the grain contact), vc (Poisson’s ratio of the grain contact),
μ (inter-particle friction angle), β (rolling stiffness coeffi-
cient) and η (limit rolling coefficient). In addition, a particle
radius R, particle mass density ρ and numerical damping
parameter α are required. TheDEMmaterial parameters: Ec,
vc, μ, β, η and α were calibrated using the corresponding
homogeneous axisymmetric triaxial laboratory test results
on Karlsruhe sand with the different initial void ratio and
lateral pressure by Wu [40]. The procedure for determin-
ing the material parameters in DEM was described in detail
by Kozicki et al. [34,35]. The index properties of Karl-
sruhe sand are: mean grain diameter d50 = 0.50 mm, grain
size between 0.08 mm and 1.8 mm, uniformity coefficient
Uc = 2, maximum specific weight γmax

d = 17.4 kN/m3,
minimum void ratio emin = 0.53, minimum specific weight
γmin
d = 14.6 kN/m3 and maximum void ratio emax = 0.84.

The sand grains are classified as sub-rounded/sub-angular.
The following material constants were found in DEM by
fitting numerical outcomes with experimental ones during
homogeneous triaxial compression: Ec = 0.3GPa,vc = 0.3,
μ = 18◦, β = 0.7, η = 0.4 ρ = 2.55 g/cm3 and a = 0.08.
Note that the constants Ec and vc do not correspond to the
elastic constants of grains [34,35]

3 DEM results of plane strain compression

Our numerical outcomes with respect to 3D vortex struc-
tures were related to quasi-static plane strain compression
with initially dense sand. The results of 3D DEM calcula-
tions were described in detail in [7]. The granular specimen
used in DEM had the same size as in the experiments [1],
namely: the width b = 4 cm, height h = 14 cm and
depth l = 8 cm (out-of-plane direction) (Fig. 2). The lin-
ear grain distribution curve was assumed; the grain diameter
range was between 1.25 mm and 3.75 mm with the mean
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Fig. 1 Mechanical response of linear contact model without (A) and
with contact moments (A+B) ([27–29]): a tangential contact model, b
normal contact model and c rolling contact model and C loading and
unloading path (tangential and rolling contact), �Fs—tangential force
vector between elements, �Fn—normal force vector between element,

�M—contact moment vector, Ks - tangential stiffness, Kn—normal
stiffness, Kr—rolling stiffness, U—penetration depth, �ω- tangential
displacement vector, - angular rotation vector, μ—inter-particle fric-
tion angle, η—limit rolling coefficient

grain diameter of d50 = 2.5 mm. The total assembly con-
tained 56,000 polydisperse particles with the same material
constants. The initial void ratio was the same as in the exper-
iments (eo = 0.53). The flexible vertical walls [7] were
assumed to model the membrane surrounding the specimen
in experiments (Fig. 2). Both the front and rear specimen
sides 4 × 14 cm2 were blocked in a perpendicular direction
to the specimen to enforce plane strain conditions. The bot-

tom surface 4 × 8 cm2 was fixed in a vertical direction and
the top surface 4 × 8 cm2 was subjected to the constant ver-
tical displacement u1. Along the top, bottom and membrane
granular surfaces, the inter-particle friction angle wasμ = 0.
During the loading process, the constant confining pressure
of σc = 200 kPa was applied through the flexible membrane.

Figure 3 demonstrates one typical evolution of the mobi-
lized internal friction angle (calculatedwith principal stresses
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Fig. 2 Sand specimen 4 × 14 × 8 cm3 between two vertical flexible membranes during plane strain compression: a initial state, b deformed state
and c vertical mid-sectional slice with area of 4×14 cm2 and thickness of 5×d50 (1.25 cm) [7] (note that membrane is transparent to make granular
specimen visible)

from Mohr’s equation) versus the vertical normal strain
ε1 = u1/h and volumetric strain εv versus ε1 for the granu-
lar specimen [7]. Figures 4 and 5 show the distribution of
sphere rotations ω and void ratio e at four different val-
ues of axial strain in the vertical mid-section slice with
the area of 4 × 14 cm2 and thickness of 5 × d50 (1.25 cm
with d50 = 2.5 mm) cut out from the granular specimen
[7] (Fig. 2c). Both the quantities were calculated from the
volumetric cell Vc = 5d50 × 5d50 × 5d50 moved by d50
in two directions within the slice in order to create a 2D
grid of the averaged values in the cell. The cell size, which
was smaller than the shear zone thickness ts , was chosen
with preliminary calculations. The averaging cell larger than
Vc caused the results too diffusive and with the smaller
cell volume Vc, the results started to too strongly fluctu-
ate.

The DEM results (Fig. 3) exhibit a stress-strain response
that is typical of densely packed granular systems. Simi-
larly as in real experiments [1], the initially dense specimen
showed an asymptotic behaviour; first it exhibited small elas-
ticity, hardening (connected first to contractancy and then
dilatancy), reached a peak of φmax = 46◦ at about of
ε1 = 5%, gradually softened and dilated reaching a residual
state of φmax = 30◦ at the large vertical strain of 25–30%

(Fig. 3a). At the residual state, the volume changes were
insignificant (Fig. 3b). The coordination numberwas initially
about 5 and decreased down next to 3.8 during shearing due
to dilatancy. During deformation a single internal inclined
shear zone spontaneously occurred inside the sand speci-
men that governed system dynamics after the peak stress. It
was marked by shear strain, larger grain rotation and volume
increase (Figs. 4, 5). The thickness of the inclined interior
shear zone ts was determined on average as about ts = 25mm
(10 × d50) in the residual state for ε1 = 30%, based on the
shear strain distribution data (shear strain was pronounced in
the shear zone and negligible beyond the shear zone). The
calculated shear zone inclination to the bottom was 60o at
ε1 = 10% and 67◦ at ε1 = 30%. In the calculated shear
zone, the mean void ratio and grain rotation were: e > 0.65
and ω > 25◦. The void ratio distribution was strongly non-
uniform in the shear zone (Fig. 5). The specimen globally
dilated in the shear zoneup to the residual state. In the residual
state for ε1 = 30%, the resultant void ratio changed between
0.70–0.80 in the shear zone and between 0.53–0.60 outside
(Fig. 5d). The maximum resultant rotation in the shear zone
at the peak (ε1 = 5%) was about ω = 5◦ and at the resid-
ual state for ε1 = 30% between ω = 50◦–55◦. Based on
both the cumulative rotation (Fig. 4) and void ratio (Fig. 5),
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Fig. 3 DEM results for plane strain compression with sand (eo = 0.53,
σc = 200 kPa, d50 = 2.5 mm, Ec = 0.3 GPa, ϑc = 0.3, μ = 18◦,
β = 0.7, η = 0.4) for one numerical simulation: a mobilized internal
friction angle φ versus normalized vertical displacement of specimen
top ε1 = u1/h and b volumetric strain εv versus ε1 (h—initial specimen
height) [7]

the internal inclined shear zone may be noticed close to the
stress-strain peak (ε1 = 5%).

The experimental curves were satisfactorily reproduced
in our DEM simulations of initially dense sand [7] in spite
of the fact that the real grain shape, mean grain size and
grain size distribution of Karlsruhe sand were not taken into
account and the assembling process generated a higher coor-
dination number than in experiments [41]. The calculated
shear zone (location, width and inclination) andmaps of void
ratio (Fig. 5) were also realistic with respect to the experi-
ments. The DEM results of resultant grain rotations (Fig. 4)
were qualitatively in agreement with other tests on granu-
lar bodies including shear localization wherein single grain
rotations were measured in artificial granular materials [4].

4 Helmholtz–Hodge decomposition (HHD)

4.1 Method of calculations

The Helmholtz–Hodge decomposition (HHD) of vector
fields, one of the fundamental theorems in fluid dynamics
[24,25,42], describes a displacement vector field in terms of
its curl-free and divergence-free components based on poten-
tial functions. The unique Helmholz-Hodge decomposition
of each smooth 3Dvector field �ξ yields the following formula

�ξ = �∇u + �∇ × �v + �h, (9)

where ∇ =
(

∂
∂x , ∂

∂ y ,
∂
∂z

)T
is the gradient, ∇· =

(
∂
∂x +

∂
∂ y + ∂

∂z

)
denotes the divergence operator, ∇× is the curl

operator, u denotes the scalar potential field, �v is the vec-
tor potential field and �h denotes the harmonic vector field.
The gradient of the scalar potential function �∇u is called the
curl-free component and is related to expansion/contraction
(because is irrotational) while the curl of the vector potential
function �∇×�v is called the divergence-free component and is
related to vorticity, a vector that describes the local rotational
motion at a point and pure shear (because is incompressible).
The harmonic component which contains the non-integrable
component of the field is related to pure translation.

The decomposition of the discrete vector field �ξ (obtained
with DEM simulations) was separately solved for each com-
ponent of u and �v by finding the minimum of 2 following
quadratic functionals [42] by means of the variational calcu-
lus principle [43]

F (u) = 1

2
∫Γ ( �∇u − �ξ)2dV (10)

and

G(�v) = 1

2
∫Γ ( �∇ × �v − �ξ)2dV , (11)

where

– Γ is the domain where the vector field �ξ is defined – the
total volume of all tetrahedrons (or triangle areas) where
the Delaunay triangulation was performed,

– u is the discrete scalar potential at the node ′i ′ u (�r) =∑
i φi (�r)ui ,

– �v is the discrete vector field at the node ′i ′ �v(�r) =∑
i φi (�r) �vl ,

– φi (�r) is the piecewise-linear basis function (shape func-
tion) valued 1 at �rl (the i-th node) and valued 0 at all other
nodes,

– �r is the spatial coordinate in Γ using the Cartesian coor-
dinate system �r = (x, y, z).
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Fig. 4 DEM results for plane strain compression test with sand (eo = 0.53, σc = 200 kPa, d50 = 2.5 mm)—average cumulative grain rotation
distribution in degrees in granular specimen for vertical normal strain ε1: a 5%, b 10%, c 20% and d 30% (white squares denote spots without
grains) [7]
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Fig. 5 DEM results for plane strain compression test with sand (eo = 0.53, σc = 200 kPa, d50 = 2.5 mm) - average cumulative void ratio
distribution in granular specimen for vertical normal strain ε1: a 5%, b 10%, d 20%, and d 30% [7]
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The minimum of the quadratic functionals F(u) and G(�v)

was found by requiring that their functional derivatives are
zero

∂F (u)

∂ui
= 1

2

∂

∂ui

∫

Γ

( �∇u − �ξ)2dV = 0 (12)

and

∂G (�v)

∂vi
= 1

2

∂

∂vi

∫

�

( �∇ �×v − �ξ)2dV = 0. (13)

Solving for u(�r) using the variational calculus :

0 = ∂F (u)

∂ui
= 1

2

∫

Γ

∂

∂ui
( �∇u − �ξ)2dV =,

= 1

2

∫

Γ

2( �∇u − �ξ) · ∂

∂ui
( �∇u − �ξ)dV

=
∫

Γ

( �∇u − �ξ) · ∂

∂ui

⎛
⎝ �∇

⎛
⎝∑

j

φi (�r) u j

⎞
⎠ − 0

⎞
⎠ dV =

=
∫

Γ

( �∇u − �ξ) · ( �∇φi (�r))dV . (14)

Thus Eq. 14 becomes

∫

Γ

�∇φi (�r) · �∇u(�r)dV =
∫

Γ

�∇φi (�r) · �ξ(�r)dV , (15)

and similarly for �v
∫

Γ

�∇φi (�r) × ( �∇ × �v(�r))dV =
∫

Γ

�∇φi (�r) × �ξ(�r)dV . (16)

The integrals in Eqs. 15 and 16 were re-written in a discrete
form as a sum over tetrahedron volumes for each i-th node,
creating a set of linear equations (one equation per node) that
was solved for the unknows ui and �vi using standardmethods
(e.g. inverting matrix or conjugate gradient)

∑
Tk∈N (i)

( �∇φi )k · ( �∇u)k |Tk |
=

∑
Tk∈N (i)

( �∇φi )k �·ξk |Tk |, (17)
∑

Tk∈N (i)
( �∇φi )k × ( �∇ × �v)k |Tk |

=
∑

Tk∈N (i)
( �∇φi )k × �ξk |Tk |, (18)

where |Tk |—the tetrahedron volume (triangle area), �(∇φi )k-
the vector orthogonal to the tetrahedron face f (triangle edge
f for 2D cases) opposite to the i-th node in the k-th tetra-
hedron (triangle), pointing towards the i-th node with the

magnitude of area( f )
3|Tk |

(
or length( f )

2|Tk | for 2D cases
)
, N (i)—

the set of all tetrahedrons (triangles) containing the i-th node.

A variational calculus approach was used [43] that allowed
for finding the unknown vector fields �∇u and �∇ × �v by
examining the difference between them and the known vec-
tor field �ξ that was obtained in DEM simulations (Eqs. 10,
11). By demanding that this difference is minimum (the min-
imum was found by assuming that the derivatives of the
functionals were equal to zero, Eqs. 12 and 13), the vec-
tor fields �∇u and �∇ × �v were explicitly determined. The
explicit calculation for �∇u was given in Eqs. 14 and 15
and for �∇ × �v in Eq. 16. The accurate discrete multiscale
Helmholz-Hodge decomposition of vector fields on arbitrary
tetrahedral grids was proposed by Tong et al. [42]. In order
to create a grid, the centre of each sphere was a node in
the Delaunay triangulation and the i-th node had the coor-
dinate �rl . Then the discrete piecewise-constant vector field
�ξ(�rl) = ∑

k ψk (�r) �ξk was created by assigning the constant
vector value �ξk to each k-th tetrahedron (ψk is the piecewise-
constant basis function equal to 1 inside the k-th tetrahedron
and 0 otherwise). This value was calculated as the average of
sphere displacement increments �dn which constituted each
tetrahedron �ξk = 1/4

∑n=4
n=1

�dn in the 3D case or each tri-
angle �ξk = 1/3

∑n=3
n=1

�dn in the 2D case. Since u and �v are
the piecewise linear functions described using a piecewise-
linear basis shape function φi (�r), their derivatives ∇ will
be piecewise-constant, hence the solution for the piecewise-
constant �ξ(�r) discrete vector field is exact [42]. Equations 17
and 18 describe the i-th row of 2 sparse matrices and were
numerically solved for the unknowns ui and �vi using the
Eigen library with a bi-conjugate gradient stabilized solver
[44]. The third component ofEq. 9 (the harmonic vector field)
was determined as �h = �ξ− �∇u− �∇×�v. All displacement vec-
tors in the Helmholtz–Hodge decomposition (the vector field
�ξ in Fig. 6) were calculated from the differences of sphere
positions for two different strains ε1: (x2, y2, z2) for ε21 and
(x1, y1, z1) for ε11, where ε21 −ε11 = 0.02%. This strain incre-
ment corresponded to I T = 1000 iterations. The value of IT
was based on earlier simulations [9]. For I T > 1000 the
results of vortices were similar. The calculated vector fields
were plotted using the line integral convolution method [45].
No additional smoothing techniques [42] were used in the
detection’s method to find sinks, sources and vortices.

4.2 Boundary conditions

In order to obtain a unique solution, appropriate bound-
ary conditions have to be assumed [25]. The system of
linear equations in HHD was solved using the following
general boundary conditions: �∇ × �v (divergence-free com-
ponent - incompressible component) was tangential to the
domain boundary �v|∂T = 0 and �∇u (curl-free component
- irrotational component) was orthogonal to the boundary
domain u|∂T = 0. The proof of uniqueness and orthogonality
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48 Page 10 of 24 J. Kozicki, J. Tejchman

for these boundary conditions, called N-P (normal-parallel)
boundary conditions, which should be always maintained
for flow problems, may be found in [46]. Note that a change
of these boundary conditions suggested in [47] may create
an invalid or ill-posed problem [48]. The so-called Hodge–
Morrey–Friedrichs boundary conditions may be also used
[25]. The boundary conditions obviously influence vector
fields close to specimen boundaries. In particular when the
number of particles is low; vortex structures may be solely
detected in the specimen centre since the vector field �∇×�v is
forced by boundary conditions to be parallel to boundaries.
In our previous calculations of the passive wall translation
[7], the number of spheres along the height and length of
the granular specimen was high enough (200–400) and the
effect of boundaries proved to be insignificant on the distri-
bution of vortices. In the present paper due to a relatively
small number of particles along the specimen width b dur-
ing plane strain compression (≈ 16 = b/d50 = 40/2.5), the
effect of boundary conditions during calculations of vortex
structures was weakened by introducing extra particles out-
side boundaries [47] (Fig. 6). The extra nodes were added in
a tetrahedral (3D) grid with a node distance of 4.5 mm using
the criterion that each extra node had to be at the distance of 4
mmor greater from centres of spheres in the specimen. These
nodeswere addedwith themaximumdistance of up to 50mm
around the granular specimen (Fig. 6). The incremental dis-
placement vector �ξ in these artificial nodes was calculated by
theGaussian averagingwith true specimen nodes only (using
the averaging radius of 80 mm (= 2 × b)). Some large vec-
tors in Fig. 6 appeared if single grains suddenly underwent
excessive displacements.

5 Numerical 2D results using HHD/DEM
approach

In the first step, the 2D calculations were carried out during
plane strain compression in order to compare them with our
earlier 2D results regarding the passive wall translation [8].
The 2Dvorticeswere computed in the vertical cross-sectional
slice with the area of 4 × 14 cm2 and thickness of 5 × d50
of Fig. 2c that was located at the specimen mid-depth l. The
coordinates of each sphere (x, y, z) were projected onto the
plane using the coordinates (x, y). Thus, all spheres were
included in the slice with the thickness of 5 × d50 (no aver-
aging was performed over the volume). The results of the
displacement vector field �ξ , scalar field gradient �∇u (curl-
free component related to compressibility), vector field curl
�∇ × �v (divergence-free component related to vorticity) and
harmonic vector field �h (related to pure translation) based on
DEM results of Sect. 3 are presented in Figs. 7, 8, 9 and 10.

Figure 7 shows the evolution of the displacement vector
field �ξ during deformation ε1 (the sphere displacement incre-

Fig. 6 2D displacement vectors of single spheres (input vector field in
Eq. 10) in arbitrary vertical cross-sectionof granular specimen including
artificial extra nodes around for weakening boundary conditions (ε1 =
10%) (displacement vectors are enlarged by factor 200) [8]

ment directions are marked by the white arrows). The scale
attached denotes the sphere displacement vector length dur-
ing I T = 1000 iterations in [mm/iteration], ranging from
0 up to 0.1 mm/iteration. Based on the incremental dis-
placement vector length and vector direction changes, the
displacement field inside the specimen (mid-region) started
to be non-uniform from the beginning of deformation. An
inclined internal shear zone was already well visible along
the specimen width for ε1 = 2% (Fig. 7b). Beyond the inter-
nal shear zone thematerial was practically rigid. Based on the
displacement vectors, one can recognize some right-handed
vortex structures whose size is limited to the width of the
shear zone.

The evolution of the vector field curl �∇ × �v (divergence-
free component related to vorticity) during deformation ε1
is presented in Fig. 8. The scale denotes the component
of the vector potential �v perpendicular to the specimen
in [mm2/iteration]), changing from − 0.50 mm2/iter up to
0.05mm2/iter. The green circles describe the local minima of
the scalar field ‖v‖ (equivalent to centres of right-handed vor-
tices) and red circles the local maxima of the scalar field ‖v‖
(equivalent to centres of left-handed vortices). These local
extrema of the scalar field ‖v‖ were defined in such a way
that the values of ‖v‖ in all neighbouring nodes in the mesh
created by the Delaunay triangulation were smaller/larger
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Relationship between vortex structures and shear localization in 3D granular specimens based… Page 11 of 24 48

Fig. 7 DEM results: A
mobilized internal friction angle
φ versus normalized vertical
displacement of specimen top
ε1 = u1/h with marked strain
points and B evolution of 2D
displacement vector field �ξ in
granular specimen area x × y
during vertical normal strain ε1:
a 1%, b 1.5%, c 2%, d 3%, e
4%, f 5%, g 10%, h 20% and i
30% (varying scale denotes
incremental displacement vector
length in [mm/iteration])
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48 Page 12 of 24 J. Kozicki, J. Tejchman

Fig. 8 Evolution of 2D vector field curl �∇ × �v (divergence-free com-
ponent related to vorticity) in granular specimen area x × y for vertical
normal strain ε1: a 1%, b 1.5%, c 2%, d 3%, e 4%, f 5%, g 10%, h
20% and i 30% (varying scale denotes component of vector potential �v

perpendicular to specimen in [mm2/iteration]), green circles describe
centres of right-handed vortices and red circles denote centres of left-
handed vortices) (color figure online)
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Relationship between vortex structures and shear localization in 3D granular specimens based… Page 13 of 24 48

Fig. 9 Evolution of 2D scalar field gradient �∇u (curl-free component
related to contractancy/dilatancy) in granular specimen area x × y dur-
ing vertical normal strain ε1: a 1%, b 1.5%, c 2%, d 3%, e 4%, f 5%,

g 10%, h 20% and i 30% (green circles denote sources (centres of
local dilatancy regions) and red circles denote sinks (centres of local
contractancy regions)) (color figure online)
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48 Page 14 of 24 J. Kozicki, J. Tejchman

Fig. 10 Evolution of 2D harmonic vector field �h in granular specimen area x × y during vertical normal strain ε1: a 1%, b 1.5%, c 2%, d 3%, e
4%, f 5%, g 10%, h 20% and i 30% (varying scale denotes incremental vector length h)
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than ‖v‖ at the node in question. The diameter of each circle
indicates the relative magnitude of extremum points.

The vortex structures emerged from the beginning of the
specimen deformation. Initially their centres were seemingly
randomly located. However, by ε1 ≥ 1%, they were quickly
aligned along the line of the ultimate location of the spon-
taneous shear zone (Fig. 8a–c). In the range of ε1 =3–4%
theyweremore concentrated around the shear zonemid-point
(Fig. 8d, e) before a final shear direction was chosen. Thus
the final shear zone turned out to be encoded in the grain kine-
matics far before the stress peak (ε1 = 5%). This outcome
is in accordance with our earlier calculation results for plane
strain compression based on displacement fluctuations [7]
and calculation results based on bottlenecks in force trans-
mission through the contact network [49]. The right-handed
vortices (green circles) dominated during progressive shear
deformation. The left-handed vortices (red circles) were evi-
dently in minority. The distance of vortex-centres and their
intensity along the shear zone was varying in time. Some sin-
gle vortices also occurred (very intermittently) beyond the
shear zone. Note that the size of vortex structures could not
be directly deduced from HHD since the vortex structures
corresponded to points only that were associated with their
rotational centres. The size of vortices may be detected with
the aid of other methods, based on the vector displacement
field of single particles [6, 50–52].

The evolution of the scalar field gradient �∇u (curl-free
component related to compressibility) during deformation
ε1 is described in Fig. 9. The green circles describe the
sources (local minima of the scalar potential u - centres of
local dilatancy regions) and the red circles denote the sinks
(local maxima of the scalar potential u—centres of local con-
tractancy regions). The magnitude of sources and sinks was
again expressed by the different diameter of green and red
circles. The scale attached denotes the scalar potential u in
[mm2/iteration] (sign (-) - sources in the scalar potential field
u, sign (+) – sinks in the scalar potential field u), varying
between −0.1 mm2/iter and 0.25 mm2/iter.

The local dilatancy (sources) and local contractancy
extremum points (sinks) started to develop in the shear zone
region for ε1 > 1% (thus clearly before the stress peak
ε1 = 1%, Fig. 3b). During progressive shear deformation,
the sources and sinks alternately happened inside of the
shear zone area. The magnitude of sources and sinks was
the smallest in the residual state (Fig. 9i). This outcome is
in accordance with the alternating distribution of local void
ratio in shear zones during DEM calculations [9]. Note that
local dilatant regions are usually connected to the collapse
of main force chains and creation of vortices, and local con-
tractant regions are linked with the build-up of main force
chains and disappearance of vortices [9].

Finally Fig. 10 shows the evolution of the harmonic incre-
ment vector field �h during deformation ε1. The scale denotes

the vector length in [mm/iteration] changing from0mmup to
0.06 mm. The evolution �h was practically the same indepen-
dently of ε1 since the top boundary continuously moved at
the same displacement increment. Some irregularities in the
harmonic field appeared due to large vectors (see Fig. 6) since
the vector field of sphere displacements was not smoothed.
The irregularitieswere themost pronounced in the shear zone
(Fig. 10f–i). The 2D results depicted in Figs. 7, 8, 9 and 10
were very similar as those during passive wall translation [8].

6 Numerical 3D results using combined
HHD/DEM approach

This section includes the numerical results of vortex struc-
tures in 3 dimensions in the granular specimen (including
56,000 spheres with contact moments) subjected to plane
strain compression (with I T = 1000). Figure 11 shows the
three-dimensional vector field curl �∇ × �v during evolving
deformation. The tubes shown link all local extrema (vortex
structures). A simple algorithm was used to connect these
local extrema. In the half-space determined by the direction
of the vector �v at the current node, all nodes connected with
the current node through a Delauney’s triangulation edge
were checked. Since the starting node was a local maximum,
all other node values were smaller. One node with the largest
magnitude vector |�v| was selected and if it was smaller by
δ = 5% or less than the value |�v| at the current node, a
tubular connection was formed. If it was smaller more than
δ = 5%, the formation of tubular connections between nodes
was stopped. In the next step, the node to which a tubular
connection was formed, was considered a current node and
previous instructions were repeated in a loop. A different
algorithm for finding ridges in 3D vector fields might be also
used (e.g. by Krissian et al. [53]). The steps were repeated
until all paths from all local extrema were traced. Later the
algorithm was repeated for the opposite direction of �v. Note
that the three-dimensional vector field curl �∇ × �v of Fig. 11
was shown in two 3D views for ε1 = 4% and ε1 = 5%
(Fig. 11g, i) where some single steep tubes occurred. The
tubes were mainly inclined or horizontal (Fig. 11). The sin-
gle steep tubes in Fig. 11g, i were due to the occurrence
of single intermittent vortices beyond the shear zone (see
also Figs. 12, 14, 15) and the tube detection algorithm which
enforced them to link all local extremum points.

Figures 12, 13, 14 and 15 present the centres of vor-
tex structures at 4 different specimen vertical cross-sections
(mid-depth, front side, rear side and 2/3 depth of the granu-
lar specimen) with increasing vertical normal strain ε1. The
circles with the different diameters in Figs. 12, 13, 14 and
15 denote the spots where the vertical cross-sectional slices
intersected the 3D tubes of Fig. 11. The circle diameters do
not again represent the spatial size of vortices (that are not
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Fig. 11 Three-dimensional vector field curl �∇ × �v (divergence-free
component related to vorticity) in granular specimen during plane strain
compression for vertical normal strain ε1: a ε1 = 0%, b ε1 = 0.5%,
c ε1 = 1.0%, d ε1 = 1.5%, e ε1 = 2%, f ε1 = 3%, g ε1 = 4%, h
ε1 = 4.5%, i ε1 = 5%, j ε1 = 10%, k ε1 = 20% and l ε1 = 30% (dark
green circles describe centres of right-handed vortices and red circles
denote centres of left-handed vortices, green tubes are lines which link
centres of vortices for parameter δ = 5%, tube diameter is proportional
to |�v|, note that two different 3D views are shown for ε1 = 4% and
ε1 = 5%) (color figure online)

defined in the present paper) but the magnitude of the vec-
tor |�v|, related to the rotational velocity around the vortex
axis. The threshold value of δ =2–5%was tested. The larger
values of δ resulted in too many tubes (contributing to an
obscure image).

The 3D results are certainlymore exact that the 2D results,
since a significantly larger number of spheres was captured
in 3D computations (56,000 spheres against 8000 spheres in
the 2D slice), that caused a smoother vector field and smaller
calculation errors. Slightly less vortex structures occurred in
the shear zone and beyond the shear zone in 3D conditions
than in 2D ones (compare Fig. 8 with 12, 13, 14 and 15).
However, the 2D vortex calculations were performed for the
slice of the thickness of 5× d50 by ignoring the z-coordinate
of each sphere. Since all sphere coordinates were projected
onto the plane, it might happen therefore that two spheres,
which were at the distance of 5 × d50 on the opposite sides
of the slice, could lie very next to each other. Since their
real 3D distance was large, they might move in significantly
different plane-projected directions. When two nodes, close
to each other in the 2D ξ -vector field, moved in significantly
different directions, a disturbance in the vector field occurred
that contributed to the larger number of vortices.

In 3D analyses the right-handed vortices (green circles)
were again in the clear majority during the progressive defor-
mation (Figs. 11, 13, 14, 15) as in 2D calculations (Fig. 8) due
to the shear direction in the shear zone. The left-handed vor-
tices appeared again episodically. The 3D vortex structures
occurred in the shear zone and were spatially non-uniform
along the specimen depth (their number was different in 4
vertical cross-sections, Figs. 12, 13, 14, 15). Their centres
happened mainly at the position of the final shear zone and
they appeared from the beginning of deformation. Initially
their number was extremely high and their distribution was
random in the entire specimen (Fig. 11a, b). Later they started
to coalesce around the eventual, single, persistent shear zone
(Fig. 11c, d). In the range of 2% ≤ ε1 ≤ 4.5% (Fig. 11e–h),
they mostly gravitated toward the shear zone centre (except
of ε1 = 4%), and then from ε1 = 5% (Fig. 11i) onward they
coalesced again (Figs. 11j–l). The number of all left-handed
and right-handed vortex cores in the entire 3D specimen as
the function of the vertical normal strain ε1 may be seen in
Fig. 16.

The maximum number of right-handed vortices was 2–15
before the peak stress (ε1 ≤ 5%) and about 40–50 after the
peak stress (ε1 ≥ 5%) (Fig. 16a). Their number decreased
from the beginning of deformation up to the stress peak (ε1 =
5%), increased up to ε1 = 10% and then remained the same
up to ε1 = 30%. The maximum number of episodic left-
handed vortices was about 20 (Fig. 16b).

Figure 17 presents the period T = 1/ f of right-handed
vortices in the entire specimen against the global vertical
strain in the range of�ε1 =0–30% (Fig. 17a) and�ε1 =20–
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Fig. 12 Three-dimensional vector field curl �∇ × �v (divergence-free
component related to vorticity) in granular specimen during plane strain
compression at its front side for different vertical normal strain ε1: a
ε1 = 1%, b ε1 = 1.5%, c ε1 = 2%, d ε1 = 3%, e ε1 = 4%, f ε1 = 5%,

g ε1 = 10%, h ε1 = 20% and i ε1 = 30% (scale denotes component of
vector potential �v perpendicular to specimen in [mm2/iteration]), green
circles describe centres of right-handed vortices
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48 Page 18 of 24 J. Kozicki, J. Tejchman

Fig. 13 Three-dimensional vector field curl �∇ × �v (divergence-free
component related to vorticity) in granular specimen during plane strain
compression at its mid-depth for different vertical normal strain ε1:
a ε1 = 1%, b ε1 = 1.5%, c ε1 = 2%, d ε1 = 3%, e ε1 = 4%,

f ε1 = 5%, g ε1 = 10%, h ε1 = 20% and i ε1 = 30% (scale
denotes component of vector potential �v perpendicular to specimen in
[mm2/iteration]), green circles describe centres of right-handed vortices
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Fig. 14 Three-dimensional vector field curl �∇ × �v (divergence-free
component related to vorticity) in granular specimen during plane strain
compression at its rear side for different vertical normal strain ε1:
a ε1=1%, b ε1=1.5%, c ε1 = 2%, d ε1 = 3%, e ε1 = 4%, f ε1 = 5%,

g ε1 = 10%, h ε1 = 20% and i ε1 = 30% (scale denotes component of
vector potential �v perpendicular to specimen in [mm2/iteration]), green
circles describe centres of right-handed vortices (color figure online)
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Fig. 15 Three-dimensional vector field curl �∇ × �v (divergence-free
component related to vorticity) in granular specimen during plane
strain compression at 2/3 depth for different vertical normal strain ε1:
a ε1 = 1%, b ε1 = 1.5%, c ε1 = 2%, d ε1 = 3%, e ε1 = 4%,

f ε1 = 5%, g ε1 = 10%, h ε1 = 20% and i ε1 = 30% (scale
denotes component of vector potential �v perpendicular to specimen
in [mm2/iteration]), green circles describe centres of right-handed vor-
tices) (color figure online)
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Fig. 16 Three-dimensional DEM results for plane strain compression showing number of: a single right-handed vortices and b single left-handed
vortices N b in entire 3D granular specimen against vertical normal strain ε1 ( δ = 5%)

30% (in the residual state) (Fig. 17b) using the Fourier
transformation. The values of T were not related to time
but to the strain ε1 due to a quasi-static problem considered
(regardless of the dynamic nature of DEM). In both the strain
ranges of�ε1 =0–30% (full range, Fig. 17a) and�ε1 =20–
30% (residual region, Fig. 17b), the predominant period of
right-handed vortices was about 6% of ε1 in the entire spec-
imen. The smaller regular periods of right-handed vortices
were also observed in the range of�ε1 =20–30% (Fig. 17b).
Similar predominant periods of vortices (4% of ε1)were also
calculated during a quasi-static passive wall translation [7].

With a lower threshold value of the parameter δ = 2%, the
distribution of vortex centres was similar, however slightly
less connecting tubes between local extremawere computed.
The predominant period of vortices was the same for the
vertical normal strain range ε1 of 0–30% and slightly smaller
for the vertical normal strain range ε1 of 20–30% (Fig. 18).

The calculation results of Sects. 5 and 6 clearly indicate
that the vortex-motion kinematics should be explicitly con-
sidered in granular materials within continuum mechanics
modelling, since it is a preferable motion type during gran-
ular flow (granular material tends to organize its flow into
a collection of vortices, similarly to fluids).

7 Comparison with experiments

In plane strain compression laboratory tests on a sand spec-
imen by Abedi et al. [11] and Chupin et al [30] (b = 4 cm,
h = 14 cm, l = 8 cm and d50 = 0.84 mm), the digital

image correlation (DIC) technique was used to detect vor-
tex structures and volumetric strain non-uniformity in the
spontaneous inclined shear zone in the residual state. DIC
is a non-contact experimental technique to measure surface
displacements on a deforming solid [54]. In order to deter-
mine the vortices in the form of a rotational motion of several
grains around its central point, the displacement fluctuation
vectors of small clusters of grains were calculated from the
mean displacement vector field. A systematic vortex forma-
tion and vortex disappearance was observed in the inclined
shear zone after the stress-strain peak that propagated from
the left side up to the right side. The vortices were short-
lived. The maximum 5 right-handed vortices and left-handed
vortices temporarily occurred in the shear zone. They had a
periodic character. In addition, a pattern of nearly periodic
spatial variation of local volume changes (including dila-
tant and contractant regions) along the length of the shear
zone was also observed in the critical state. Our calculations
showed that vortex structures and local volume changes were
observed to occur in the shear zone throughout the entire
deformation regime (note that [11] and [30] did not report
experimental observations before the peak). The computed
number of vortex structureswas also significantly higher than
this in experiments. This difference between the calculation
outcomes and experimental results is due to: a) a different
method used to detect vortices, b) a smaller mean grain
diameter d50 in the experiment d50 = 0.84 mm (in DEM:
d50 = 2.5 mm) and c) a lack of the real sand grain shape
in DEM. Our numerical detection method (based on single
grain displacements) is an objective method that detects the
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Fig. 17 Three-dimensional DEM results for plane strain compression
with sand showing number of single right-handed vortices N in entire
3D granular specimen as function of period of vertical normal strain ε1

in range of: a�ε1 =0–30% (full range) and b�ε1 =20–30% (residual
range) based on Fourier transformation (δ = 5%)

Fig. 18 Three-dimensional DEM results for plane strain compression
with sand showing number of single right-handed vortices N in entire
3D granular specimen as function of period of vertical normal strain ε1

in range of: a�ε1 =0–30% (full range) and b�ε1 =20–30% (residual
range) based on Fourier transformation (δ = 2%)

centres of all vortex structures independently of their size.
The experimental detection’s method was however based on
displacement fluctuations of small clusters of grains (not sin-
gle grains) and was strongly limited by the accuracy of DIC.
Moreover DIC is sensitive to the assumed subset size and
image length resolution [54].

8 Conclusions

The following conclusions may be offered from DEM sim-
ulations of 3D granular vortex structures in initially dense
sand during quasi-static plane strain compression:
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– The occurrence of vortex structures was closely related
to shear localization. The vortices proved to be an early
precursor of shear localization since their centres con-
centrated in the region where the shear zone ultimately
formed. They developed throughout deformation. They
mainly emerged in the main inclined internal shear zone
and were strongly non-uniform in a spatial arrange-
ment. Vortices rotating in a clock-wise direction mainly
occurred due to the shearing direction. Left-handed vor-
tices were rarely observed. Thus, the vortex structures
allowed identification of shear localization earlier than,
for example, based on single grain rotations or an increase
of void ratio.

– The number of 3D vortices spatially and temporarily
changed along the specimen depth.

– The centres of local regions of dilatancy and contractancy
alternately happened in the shear zone with a dominance
of local dilatant regions.

– An early prediction possibility of shear localization
through the formation of vortex structures creates an
interesting perspective for a detection of impending
failure in granular bodies within continuum mechanics
(inherently connected with shear localization).
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