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Relativistic Bennett-Brassard cryptographic scheme, relativistic errors, and how to correct them
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The Bennett-Brassard cryptographic scheme needs two bases, at least one of them linearly polarized. The
problem is that linear polarization, formulated in terms of helicities, is not a relativistically covariant notion:
State which is linearly polarized in one reference frame becomes depolarized in another one. We show that a
relativistically moving receiver of information should define linear polarization with respect to projection of
Pauli-Lubanski’s vector in a principal null direction of the Lorentz transformation which defines the motion,
and not with respect to the helicity basis. Such qubits do not depolarize.
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In nonrelativistic quantum mechanics a generic state o
free particle with spin takes the form where spin and mom
tum degrees of freedom are nonentangled, i.e.,

S c0~p!

c1~p!
D 5S c0

c1
Dc~p!. ~1!

This is the reason why it is possible to base the concept
nonrelativistic qubit on a two-dimensional Hilbert space.
particular, observables asociated with spin are always
form A^ 1, where15*d3pup&^pu is the identity in momen-
tum space andA stands for a spin operator. Formula Trr(A
^ 1)5Trrr rA allows one to define states of qubits in term
of 232 reduced density matrices.

In relativistic quantum mechanics, a generic state satis

S c0~p!

c1~p!
DÞS c0

c1
Dc~p!. ~2!

The origin of this property is very deeply rooted in the stru
ture of unitary representations of the Poincare´ group. A qubit
which takes form~1! in one reference frame will be seen
form ~2! by another observer. A Poincare´ transformation nec-
essarily involves multiplication byp-dependent SU~2! matri-
ces, a fact making form~1! noncovariant. Definitions of qu
bits in terms of reduced density matrices with traced-
momenta are no longer justified. This is why quantum inf
mation theory based on such a formal notion of qubit@1–4#
is in danger of internal physical inconsistency.

Constructing nonzero-spin unitary representations of
Poincare´ group, we always encounter certain spinor stru
ture. The simplest representation corresponds to massm and
spin 1/2. Whenever we write the state in form~2!, we im-
plicitly choose a ‘‘spin-quantization axis’’ and spin is he
associated with the second Casimir invariant of the gro
WaWa , whereWa is the Pauli-Lubanski~PL! vector.

The most popular choice of quantization axis correspo
to a timelike directionta5(1,0,0,0). The resulting spin op
eratortaWa is proportional to the helicity~in order to obtain
directly the helicity, one should chooseta5(1/upu,0,0,0)). In
application to quantum cryptography we need several dif
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ent yes-no observables, and helicity eigenstates are not
ficient. Natural candidates for such yes-no observables
projectors on linear combinations of opposite helicities, i
linear polarizations. The problem with linear polarizatio
defined in terms of helicities is that different momentu
components undergo different SU~2! transformations. In the
photon case, the SU~2! transformations are diagonal an
multiply opposite helicities by phase factors whose pha
are opposite and momentum dependent: A wave pa
which is linearly polarized in one reference frame become
combination of different linear polarizations in another re
erence frame and, hence, depolarized~cf. Sec. 2.5 in Ref.
@5#!. An exception occurs for massless wave packets con
ing excusively of parallel momenta since the Wigner pha
factor is independent ofupu. Below, we shall see that geo
metrically the effect is rooted in noninvariance ofta

5(1,0,0,0) under nontrivial Lorentz boosts.
Different quantization axes lead to different yes-no o

servables. Takingta5(0,t) we arrive at observables equiva
lent to spins defined via relativistic center of mass@6# or, in
the Dirac case, to the so-called even part of the Dirac s
The even part is obtained from Dirac’sS by sandwitching it
between projectors on signs of energy. Physically, one eli
nates in this way theSpinbewegungoscillations@7#. The first
applications of such spins to the relativistic Einste
Podolsky-Rosen~EPR! problem were given by one of u
many years ago~even part of Dirac’s spin in Ref.@8#, rela-
tivistic center of mass, the PL vector, and even spin in Re
@9,10#!. Quite recently, the review@11# discusses in the sam
context Dirac’s and rest-frame spins, however, the link
Dirac’s S to the results of Ref.@9# was here overlooked.

During the past year, various relativistic aspects of E
correlations were discussed in a series of detailed works.
intriguing paper@12# starts with a definition of spin in term
of a generator of rotations but taken from a representatio
the Poincare´ group involving a nonstandard clock synchr
nization. This seems to be the first work where details rela
to spatial localization of measurements were taken into
count, and the conclusion is that EPR correlations might
principle, reveal a preferred reference frame. An appro
startingab initio from the level of quantum electrodynamic
can be found in Ref.@13#; as opposed to the approach adv
cated in Refs.@1,11# the momentum degrees of freedom a
taken into account in measurements of spin and the loop
©2003 The American Physical Society02-1
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of the argument given in Ref.@1# is not present. The roles o
appropriate choices of spin measurements in EPR exp
ments were discussed in Refs.@14,15#. The authors stres
differences of their analysis with the one given in Ref.@9#,
but the main conclusion~the degree of violation of the Bel
inequality decreases with increasing velocities of the obs
ers! remains unchanged. Similar conclusions can be foun
Ref. @16#. Finally, a completely new direction of theoretic
investigation was initiated by the work in Ref.@17#, and
extended in Refs.@18,19#. The problem is what happens
the observers move noninertially. One expects here a ho
new quantum-field-theoretic phenomena related to inequ
lence of vacua in accelerated frames. The situation awa
detailed review, especially in the context of possible exp
ments.

In the present paper, we concentrate on the choice of
bits appropriate for cryptographic problems involving re
tivistically moving observers. At the level of first quantiz
tion we do not experience the subtleties related to the Un
effect @17–19# and can, in principle, also discuss noninert
motions. Quantization in curved spaces and accelerated
tems is still an open problem@20#, so we prefer to concen
trate on purely kinematic phenomena which can be natur
treated at the level of representations of the Poincare´ group.

We define qubits by vectors from the mass-m spin-1/2
unitary representation of~covering space of! the Poincare´
group. In momentum space the qubits are given by pair
functions „f 0(p), f 1(p)… and p25m2. It is essential that
whenever one writes pair„f 0(p), f 1(p)…, one implicitly
chooses a basis of states coresponding to a projection o
PL vector in some directiontaPR4 in Minkowski space.
This choice is implicitly present in the transformation pro
erties of the qubit@21#.

PL vectorWa5Pb * Sab is a tensor operator@22# and un-
der the action of the Poincare´ group its projection in direc-
tion ta gets transformed by

Uy,L
21 taWaUy,L5taLa

bWb , ~3!

whereUy,L is a unitary representation. One can say tha
moving particle experiences measurements of spins
Lorentz-modified directionstaLa

b . Of particular interest are
directions ta satisfying the eigenvalue conditiontaLa

b;tb

since they lead to Lorentz-invariant yes-no observab
Eigenvectors of Lorentz transformations are known to
given by null vectors (t25tata50) and anyLPSL(2,C)
possesses at least one and at most two, such eigendirec
@principal null directions~PNDs!# @23#.

Accordingly, it is very natural to contemplate projectio
of the PL vector in null directions instead of the usual tim
like or spacelike ones. Moreover, the projection of the
vector in momentum direction vanishes,PaWa50, and
therefore we obtain a kind of gauge freedom: For any par
eteru, observablestaWa and (ta1uPa)Wa are identical. An
appropriate choice ofu and aP-dependentta will allow us to
work with invariant yes-no observables which are equival
to projections of PL vector in directions perpendicular to t
four-momentum. In what follows, we shall describe a sim
procedure leading to such invariant yes-no observables.
01030
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A formalism which almost ideally suits the purposes
relativistic quantum information theory is the two-spinor ca
culus, especially in the form developed by Penrose@23#. The
unitary representations of the Poincare´ group can be trans
lated into a two-spinor language by means of ‘‘Bargman
Wigner ~BW! spinors’’ @24#. One exploits here the specia
role played in two-spinor formalism by null directions. Fou
momentumpa is split into a linear combination of two nul
directionspa andva , defined by

pa5pa1~m2/2!va5pAp̄A81~m2/2!vAv̄A8, ~4!

wherepA , vA is a field of spin-frames, i.e.,vApA51. If nA
is anyp-independent spinor, the spin frame may be taken

vA~p!5
nA

ApBB8nBn̄B8

5vA~n,p!, ~5!

pA~p!5
pAA8n̄A8

ApBB8nBn̄B8

5pA~n,p!. ~6!

One can directly verify that the spin frame satisfies Eq.~4!
and

LpA~n,p!5LA
BpB~n,L21p!5pA~Ln,p!,, ~7!

LvA~n,p!5LA
BvB~n,L21p!5vA~Ln,p!. ~8!

The latter formulas will be crucial for our analysis of rel
tivistic qubits. The simplest unitary representation is char
terized by massm and spin-1/2 and its BW-spinor form read

Uy,L f A~p!5eiypU~L,p!ABf B~L21p!, ~9!

whereU(L,p)ABPSU(2) andp25m2. The BW-spinor in-
dices are written in the calligraphic font to distinguish the
from the SL(2,C) ones. The matrix

U~L,p!AB

5S vA~p!LpA~p! 2
m

A2
vA~p!LvA~p!

m

A2
v̄A8~p!LvA8~p! v̄A8~p!LpA8~p!

D ~10!

is responsible for changes of the ‘‘polarization’’ where
f B(L21p) introduces Doppler shifts.

One can show@24# that the amplitudesf 0(p) and f 1(p)
play, for Dirac electrons, the roles of momentum-space w
functions associated with eigenvectors of the projection
the PL vector in null directionta5va, with eigenvalues
21/2 and11/2, respectively. Choosingu52m22 we find
that the projectionvaWa is an observable identical to th
projection ofWa in directionva2m22pa which is spacelike
and orthogonal to the four-momentum.

At the level of BW spinors we do not have to make a
reference to the Dirac equation but can directly compute
2-2
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generators, the PL vector, and its projection in any directi
In particular, in momentum space the projection in the n
direction turns out to be

va~p!Wa~p!AB5
1

2 S 21 0

0 1D 52
1

2
s3 , ~11!

which agrees with the fact that amplitudesf 0(p) and f 1(p)
correspond, respectively, to eigenvalues21/2 and11/2 at
the level of the Dirac equation.

The spin operator we have introduced through project
of the PL vector on the null quantization axisva(p), has led
to the standard-looking spin. So what have we gained w
respect to the earlier works wheres3 was taken for granted
as the correct operator associated with relativistic qub
The gain is that we have arrived ats3 by means of a sys
tematic procedure and have the relativistic transforma
properties of qubits under control. Recall that in addition
Eq. ~11! we have representation~9! where matrixU(L,p)AB

does not, in general, commute withs3.
Notice, however, that the actual problem we will need

solve in practical quantum communication is how to corr
the errors which are due to a relativistic and perhaps no
ertial motions°L(s) of an observer. The problem can b
reduced to an appropriate choice of quantization axis
defines the qubit.

A PND associated withLPSL(2,C) is the flagpole direc-
tion of an eigenspinor ofL, i.e.,

LA
BnB5lnA , ~12!

where l5ulueiw is in general, complex. Classification o
PNDs of SL(2,C) transformations can be found in Ref.@23#.
Inserting Eq.~12! into Eqs.~5!–~8!, we find

LpA~n,p!5e2 iwpA~n,p!, LvA~n,p!5eiwvA~n,p!

and

U~L,p!AB5S e2 iw 0

0 eiwD , ~13!

where w is momentum independent. The independence
momentum is important since transformations→L(s) af-
fects all the momentum components in the same way.
arbitrary linearly polarized state is now transformed as f
lows:

S f 0~p!

f 1~p!
D °S Uy,L f 0~p!

Uy,L f 1~p!
D 5eiypS e2 iw f 0~L21p!

eiw f 1~L21p!
D ,

and a linear polarization goes into linear polarization, p
haps rotated by some angle. In particular, product form~1! is
covariant. This was possible only because we replaced h
ity qubits by qubits related to an invariant direction.

For quantum cryptographic protocols, such as Benn
Brassard cryptographic scheme~BB84!, it may be important
to allow for motions that are characterized by two differe
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PNDs. As an example, consider a general accelerated mo
~of Alice, say! in a z-direction. The relevant SL(2,C) trans-
formation reads

LA
B5S w1/2 0

0 w21/2D ,

w5A11b/A12b and b5v(s)/c. The eigenvalues ofL
are real and there are two eigenvectors

nA
(2)5S 1

0D , n (1)
A5S 0

1D . ~14!

In both cases, we findU(L,p)51 ~sincew50) and

S Uy,L f 0~n (6),p!

Uy,L f 1~n (6),p!
D 5eiypS f 0~n (6),L21p!

f 1~n (6),L21p!
D . ~15!

Amplitudes f A(n (2),p) and f A(n (1),p) represent wave
functions associated with projections of the PL vector in
variant directionsva(n (6),p)5(p07p3)21(1,0,0,61). The
p-dependent denominators come from the denominato
va(n (6),p)5na

(6)/(pn (6)) and could be also skipped sinc
the null directions ofna

(6) andva(n (6),p) are identical. The
yes-no observables are defined by normalization of eigen
ues to61. This is similar to the problem of choosingta

associated with the helicity.
Formula~15! illustrates the role of appropriate choices

quantization axes. No rotations of qubits are involved,
relativistic corrections are reduced to the Doppler shifts, a
form ~1! will be preserved.

The associated yes-no observables are given in both c
by s3 but, of course, two different bases are involved. F
future references, we give here the general form of the SU~2!
transformation that maps qubits associated with a nullva

direction into those associated with the most general dir
tion ta ~null, timelike, or spacelike, and in genera
p-dependent!. Let

S V~ t,p!A

V~ t,p!A8
D

52$8l~ t,p!@l~ t,p!1tp2m2~ tv!#%21/2

3S @2l~ t,p!1tp#pA2pCtC
X8pA

X813
m2

2
tAX8v̄

X8

m

A2
$@2l~ t,p!2tp#v̄A82v̄C8tX

C8pA8
X

23tXA8p
X%
D .

Then f A(t,p)5W(p)ABf B(v,p), where

W~p!AB5S v̄~p!A8V̄~ t,p!A8 v~p!AV̄~ t,p!A

2v̄~p!A8V~ t,p!A8
v~p!AV~ t,p!A

D ,

~16!
2-3
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V̄(t,p)A5V(t,p)A8, V̄(t,p)A85V(t,p)A, and l(t,p)

5A(tp)22m2t2. Notice that in momentum space, the eige
values of the projection of the PL vector in a directionta are
given by6 1

2 l(t,p).
Now, setvA(p)5vA(n (2),p), pA(p)5pA(n (2),p), and

ta(p)5va(n (1),p), where the invariant spinors are given b
Eq. ~14!. We find

f A~n (1),p!5W~p!ABf B~n (2),p!, ~17!

W~p!AB5
1

A11uzu2
S uzu eix

2e2 ix uzu D PSU~2!,

where z5(p11 ip2)/m5uzueix is invariant under Lorentz
boosts along the third axis. The matrix in Eq.~17! itself is,
therefore, also invariant under transformations that do
change the quantization axes.

As the next application let us consider the case where
SL(2,C) transformations do not commute with one anothe
taken at different points on curves°L(s), i.e.,
@L(s),L(s8)#Þ0. A good illustration is a composition o
the previously discussed boost with a null rotation, i.e.,

L~s!A
B5S w~s!1/2 0

0 w~s!21/2D S 1 a~s!

0 1 D . ~18!

There is only one eigenvector, namely,nA
(2) . The construc-

tion is unchanged but we must make sure the spin is p
jected on null axisva(n (2),p). This presence of only one
invariant direction is not a problem since one direction
enough to define linear polarizations.
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