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Abstract: The performance of Underwater Acoustic Communication (UAC) systems are strongly
related to the specific propagation conditions of the underwater channel. Horizontal, shallow-water
channels are characterised by extremely disadvantageous transmission properties, due to strong
multipath propagation and refraction phenomena. The paper presents the results of communication
tests performed during a shallow, inland-water experiment with the use of a laboratory model of
a UAC system implementing the Orthogonal Frequency-Division Multiplexing (OFDM) technique.
The physical layer of data transmission is partially configurable, enabling adaptation of the modulation
and channel coding parameters to the specific propagation conditions. The communication tests were
preceded by measurement of the UAC channel transmission properties. Based on the estimated
transmission parameters, four configurations of OFDM modulation parameters were selected, and for
each of them, communication tests were performed with the use of two Error-Correction Coding
(ECC) techniques. In each case, the minimum coding rate was determined for which reliable data
transmission with a Bit Error Rate (BER) of less than 10−4 is possible.

Keywords: underwater acoustic communications; UAC; orthogonal frequency-division multiplexing;
OFDM; error-correction coding

1. Introduction

The designers of shallow-water communication systems try to implement the techniques of
modern radiocommunications, but both the BER and data transmission rates achieved are much lower
in the case of UAC systems. This is due to the disadvantageous properties of the UAC channels,
namely the sea and inland waters, but also due to the technical capabilities of the generation and
reception of acoustic waves. The range of a UAC system is determined mainly by the absolute value
of absorption attenuation and varies in proportion to the square of the frequency of the system [1].
Differences in attenuation of frequency components of the transmitted signal due to growth in the range
have degrading influence on the shape of the signal spectrum, and thus the time-domain waveform is
distorted. To avoid these distortions, the bandwidth should be reduced as the system’s range increases.
Therefore, the differences in attenuation have a limiting effect on the bandwidth of the system and
reduces its throughput. Another phenomenon that strongly impacts the transmission properties of
the UAC channel consists of reflections from the sea-bottom and the water’s surface, as well as other
objects present in the water. This causes multipath propagation, which goes hand-in-hand with strong
refraction, caused by a significant change in sound velocity as a function of depth. Both multipath
propagation, as well as refraction, produce time dispersion of the transmitted signal. The time
dispersion causes Inter-Symbol Interference (ISI), the consequence of which is frequency-selective
fading observed in the received signal spectrum. Moreover, if the UAC transmitter or receiver,
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or objects reflecting the signal remain in motion, the possibilities of correct information detection are
significantly limited due to the Doppler effect causing the signal spectrum distortions, which reveal as
Inter-Carrier Interference (ICI) in case of multi-carrier systems.

The Orthogonal Frequency-Division Multiplexing (OFDM) technique is a digital modulation
scheme used by many wireless communication standards, such as WiFi (IEEE 802.11 a/g/n),
WiMAX (IEEE 802.16), and the fourth generation (4G) cellular systems. The popularity of OFDM
stems from its capability to convert a long multipath channel in the time domain into multiple
parallel single-tap channels in the frequency domain, thus considerably simplifying receiver design.
Such a feature makes OFDM an attractive choice for UAC systems [2]. UAC systems with OFDM
technique are characterized by a high flexibility of modulation parameters, which allows the signal
to be adapted to the specificity of a particular communication channel. At very short ranges of the
order of several hundred meters, OFDM systems work in the frequency bandwidth from several to
several dozen kHz, allowing transmission rates of tens of kbps, but with a Bit Error Rate not less than
10−1. The use of Error-Correction Coding allows achieving a BER less than 10−3, while reducing the
transmission rate to single kbps [3–5]. At a long distance over 50 km the OFDM technique allows to
achieve a transmission rate of several dozen bps, but such a system characterizes with low reliability
(BER not less than 10−1), despite the use of ECC [6].

The paper presents the results of underwater acoustic OFDM communication test performed at
a distance of 1 km in a very shallow inland-water channel. The aim of the experiment was to adapt the
OFDM parameters to the propagation conditions of a shallow-water channel in such a way that it is
possible to achieve high reliability of data transmission with a BER less than 10−4. Such reliability was
achieved using OFDM technique together with the channel equalization using pilot tones and ECC.

A similar OFDM experiment carried out over a distance of 340 m using two pilot tone schemes,
but without Error Correction Coding, is described in [7]. The OFDM data transmission was tested
with different configurations of modulation parameters. The subcarrier spacing was varying from
78.13 Hz to 1250 Hz, and the OFDM symbol duration was from 0.8 ms to 12.82 ms. The minimum BER
achieved was equal to 0.004.

The adaptation of the OFDM modulation scheme parameters, such as symbol duration and
subcarrier spacing, to transmission properties of the UAC channel, are well described in literature
on wireless communications [8]. However, the detailed procedures of determining the UAC
transmission parameters of the channel, such as the delay spread, Doppler spread, coherence
bandwidth, and coherence time, are rarely presented. It applies in particular to the threshold levels of
relevant transmission characteristics based on which the parameters are determined. The performed
underwater acoustic OFDM communication experiment has shown that the choice of the criteria
for determining transmission parameters, based on which OFDM modulation scheme is designed,
has an impact on the achieved data transmission rate and reliability.

The organization of the paper is as follows. Section 2 describes hardware of the UAC system
used during the inland-water experiment as well as a physical layer of the OFDM data transmission.
Section 3 presents the results of measurement of an underwater channel and estimation of its basic
transmission parameters. In this section the setup of the experiment is described. In Section 4 the
results of the OFDM transmission tests are described, which are commented in Section 5.

2. Materials and Methods

The OFDM technique was implemented in a laboratory model of an acoustic data transmission
system, designed at the Department of Sonar Systems, Faculty of Electronics, Telecommunications and
Informatics, Gdansk University of Technology. The system enables the OFDM modulation parameters
and ECC rate to be adjusted to the propagation conditions as to obtain the desired Bit Error Rate,
which is less than 10−4. Some of the OFDM signal parameters (the signal bandwidth B, the carrier
frequency fc, and the sampling frequency fs) are fixed, and they result from the parameters of hardware
components such as ultrasonic transducers or underwater telephones. However, two of the key OFDM
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signal parameters, namely the symbol duration TOFDM and the subcarrier spacing BOFDM, are chosen
adaptively. Thus, the OFDM data transmission tests of the UAC system are preceded by measurement
of the channel’s impulse response and estimation of its transmission parameters, which makes it
possible to match the values of BOFDM and TOFDM to the specific propagation conditions.

2.1. Instrumentation Used

Both the transmitter and receiver of the laboratory model of the OFDM data transmission
system use laptop computers with the Matlab environment for digital signal generation and analysis.
Laptop computers communicate with underwater HTL-10 telephones from Sonel Sp. z o.o. The HTL-10
was developed in 2006 for the needs of the Polish Navy as a device to perform underwater
communication with the parameters specified in the STANAG 1074 standardisation agreement. It is
a compact device enclosed in a cassette with a height of 150 mm, a width of 380 mm, and a depth of
330 mm. It performs the generation of the communication signal, and an analysis of the received signals,
with the use of digital signal processors by Texas Instruments: a 16-bit TMS320VC5416 fixed-point
processor, and a TMS320C6713B (DSP) 32-bit floating-point processor. It contains multichannel
analogue-to-digital converters with a 16-bit resolution and a maximum sampling frequency of 250 kHz.
The source of the sampling frequency is an AD9834 direct digital synthesis circuit from Analog Devices.
The underwater telephone workes with a NI-USB6363 external recording and generating device from
National Instruments. The HTL-10 devices pass the analog signal to a hydroacoustic transducer and
receive the signal from a receiving transducer. Both the transmitting and receiving transducers are
omnidirectional transducers with a resonant frequency of 34 kHz. The decay of their Transmitting
Voltage Response (TVR) is equal to 3 dB in ±5 kHz range from 34 kHz [9].

2.2. Structure of the OFDM Signal

The process of the OFDM signal generation in the transmitter is as follows. The input data
stream is formed into complex Binary Phase Shift Keying (BPSK) constellation symbols. Each OFDM
frequency domain symbol is composed of Ns samples, of which Nb samples are BPSK symbols,
and the remaining Ns − Nb samples are zeros. Thus, each of the OFDM subcarriers carries an
information bit as a binary phase of value π or −π rad. The ratio between Ns and Nb is equal
to B/ fs, where the transmission bandwidth B is equal to 5 kHz, and the sampling frequency fs is equal
to 200 kHz. The frequency-domain symbols are processed by Inverse Fast Fourier Transformation
(IFFT) to obtain time-domain symbols, each of duration TOFDM. Each of them is extended by the
cyclic prefix of duration Tg equal to 1

4 of the symbol duration TOFDM. Such prepared OFDM symbols
preceded by a synchronisation preamble modulate the carrier wave of frequency fc equal to 30 kHz,
which is different from the resonant frequency of the transmitting and receiving transducers; however,
for a broadband system, these frequencies do not need to be precisely equal.

The subcarrier spacing BOFDM and symbol duration TOFDM are matched to the transmission
parameters of the UAC channel, in which the communication is performed. The coherence bandwidth
Bc of the channel sets an upper limit on subcarrier spacing BOFDM. At the same time, BOFDM should
be much larger than the Doppler spread νM. The coherence time Tc sets an upper limit on the
symbol duration TOFDM, which, on the other hand, should be longer than the delay spread τM of the
channel [8].

2.3. Pilots Tones and Correction Coefficients

The signal transmitted in the UAC channel suffers from time dispersion, which manifests itself
as selective fading of the signal spectrum. To reduce the negative effects of this phenomenon on the
information detection process, some of the OFDM symbols’ spectra are used as reference pilot tones to
equalise the values of the subcarriers of the symbols which are carrying the data. Every second time
domain OFDM symbol is transmitted as a pilot symbol and all of its OFDM subcarriers carry data that
is known in the receiver. Such a pilot tone pattern is shown in Figure 1.
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Figure 1. Pilot tones pattern [7].

For each subcarrier, a correction coefficient CH is calculated on the basis of a complex value of
a given subcarrier at the transmitter and receiver sides [7]:

CH [k, fn] =
HTX [k, fn]

HRX [k, fn]
, fn = 0, 2, 4, . . . , N − 2; k = 0, 1, 2, . . . , K− 1 (1)

where:

CH [k, fn]—correction coefficient for pilot tone number fn and symbol number k,
HTX [k, fn]—value of transmitted pilot tone number fn and symbol number k,
HRX [k, fn]—value of received pilot tone number fn and symbol number k,
N—number of OFDM subcarriers,
K—number of OFDM symbols.

Each HRX [k + 1, fn] subcarrier is corrected by the mean value of the two neighbouring CH
coefficients: for the subcarrier in the preceding and following OFDM symbols (except for the
HRX [K− 1, fn], for which only CH [K− 2, fn] is taken into account). Thus, the equalised values of
subcarriers are calculated as:

ĤRX [k + 1, fn] = HRX [k + 1, fn] ·
(

CH [k, fn] + CH [k + 2, fn]

2

)
(2)

Such a pilot tone pattern allows the influence of ISI and noise on the received signal to be
suppressed, and thus significantly improves a BER of data transmission.

2.4. Error-Correction Coding

Channel coding is implemented in the OFDM system to protect information bits from errors
after transmission through the communication channel. Two classical block coding schemes are used,
namely Bose-Chaudhuri-Hocquenghem (BCH) codes, and Reed–Solomon (RS) codes. During the
inland-water experiment, the codes of different parameters were tested to find the maximum coding
rate that allows reliable transmission with a BER less than 10−4 to be achieved.
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2.5. Data Frame

Each of the OFDM data frames starts with a synchronisation preamble, which is a Pseudo-Random
Binary Sequence (PRBS). It is based on an m-sequence of rank 8, which modulates the carrier frequency
fc equal to 30 kHz. The sequence is repeated 20 times and its duration Tsynch is equal to 1.02 s. The PRBS
sequence is followed by the OFDM signal of a duration of 2.5 s. Subsequent data frames contain
the synchronisation sequence and the OFDM signal. The duration of each frame is equal to 3.52 s.
In each frame, a constant amount of information Ni is sent, which is equal to 5 kbits. Thus, the data
transmission rate in the case of ECC not being used, but with the pilot tones technique, is equal to
1.42 kbps. The Bit Error Rate is calculated as BER = Ne/Ni, where Ne is the number of incorrectly
detected bits in a single transmission frame, and Ni is the number of all transmitted bits.

3. Transmission Parameters of Shallow-Water Channel

In order to estimate the transmission parameters of an inland shallow-water channel,
the measurement tests were conducted in Wdzydze Lake on the northern edge of the Bory Tucholskie
forest complex (53◦58′31′′ N 17◦54′19′′ E) on 5 May 2017. Wdzydze Lake is a freshwater lake. Its bottom
is covered with a layer of mud and it falls steeply into the depths of the water. It is, in many respects,
very similar to the Baltic Sea. A significant part of the lake area is more than 40 m deep, and the
deepest area is more than 70 m deep. In terms of chemical composition, the waters of Wdzydze Lake
represent the calcium bicarbonate type. The water temperature on 5 May 2017 was 15 ◦C. The weather
was windless, it was not raining, and the water surface was calm. The transmission stand was placed
on a boat, which was drifted very slowly. The receiving stand was in a measuring container of fixed
position, 50 m from the lake shore, by a floating platform. The transmission transducer was sunk to
a depth of 10 m, regardless of the water depth of about 20 m. There were no objects in the water near
this transducer. The receiving transducer was sunk to a depth of 4 m. The water depth in this place was
7 m [10]. The distance between the transmitter and receiver was 1035 m. This was measured with the
use of a 19x HVS GPS receiver by Garmin, which was integrated with MaxSea software by TimeZero
and electronic maps by Jepessen. Such a hardware-software set ensured a distance measuring accuracy
of 3 m. Figure 2 shows the positions of the transmitting and receiving stands. The water depth on
the line between positions of transmitting and receiving stands is varying from 7 to 40 m. Figure 3
shows the sound speed profile measured by using a sound speed meter constructed in Department of
Sonar Systems, Gdansk University of Technology. The device uses a direct method of sound speed
measurement. Its accuracy is ±0.5 m/s. The sound speed profile was needed for estimating the
underwater system range. On the basis of this profile an expected minimum range of the UAC system
was calculated equal to 400 m.

During the tests, the Time-Varying Impulse Response (TVIR) was measured. In the case of
a bandlimited bandpass channel, the TVIR is equivalently described by a time-varying complex
baseband impulse response h(t, τ), defined in a window of observation time t and delay τ, with input
sb(t) and output rb(t) being the complex envelope of the transmitted and received signal, respectively:

rb(t) =
1
2

sb(t) ∗ h(t, τ) (3)

where sb(t) and rb(t) are the complex envelopes of transmitted s(t) and received passband signals r(t),
and ∗ represents convolution operation.

The impulse response h(t, τ) was measured by the correlation method with the use of
a Pseudo-Random Binary Sequence (PRBS), based on an m-sequence of rank 8, and its duration Ts was
equal to 51 ms. It was repeated up to 127 times to gather one TVIR. The bandwidth and the carrier
frequency of the probe signal were equal to 5 kHz and 30 kHz, respectively. The sampling frequency
fs was equal to 200 kHz. 16 impulse responses were measured during the tests.
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Figure 2. Localisation of inland water experiment and hardware setup.

Figure 3. Sound speed profile measured during inland water experiment.

In order to assess the time dispersion and variability of the UAC channel, a stochastic model based
on the channel Space-Time-Frequency Correlation Function (STFCF) Rh(∆t, ∆ f ) is used. The STFCF
is obtained as an autocorrelation function of a time-varying transfer function H(t, f ) of the channel,
which, in turn, is calculated as Fourier transform of the impulse response h(t, τ). The STFCF is
a function of time and frequency differences under the assumption that the TVIR of the channel
represents a wide-sense stationary uncorrelated scattering process [11]. Then, it is possible to calculate
the 2-dimensional scattering function:

S(ν, τ) =
∫

∆t

∫
∆ f

Rh(∆t, ∆ f )e−j2π(ν∆t−τ∆ f )d∆td∆ f (4)

where ∆t and ∆ f are time and frequency differences, respectively, ν is the Doppler spread, τ is the
delay, and Rh(∆t, ∆ f ) is the STFCF of the channel. An example module of TVIR and corresponding
scattering function are shown in Figure 4. The probable reflections of the transmitted signal are seen as
the multipath components of TVIR.
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Figure 4. Module of TVIR (a) measured at a distance of 1035 m and corresponding scattering
function (b).

The scattering function S(ν, τ) is the basis for the calculation of the transmission parameters:
delay spread τM, Doppler spread νM, coherence time Tc, and coherence bandwidth Bc, which are
used for designing the physical layer of the UAC data transmission system [8,12]. The delay spread
is calculated on the basis of Power Delay Profile (PDP) P(τ), which is obtained as the integral of
S(ν, τ) over the Doppler shift ν domain. It describes the average signal power reaching the receiver
as a function of delay τ and it characterizes the time dispersion of the channel. The time dispersion
can be assessed as a maximum delay spread τM measured at a given threshold level Tr of P(τ), or as
an rms value τrms:

τrms =
√

τ̄2 − τ2
m (5)

where:

τ̄2 =
∑k P(τk)τ

2
k

∑k P(τk)
, τ2

m =
∑k P(τk)τk

∑k P(τk)

The values of delay spread averaged over the results of the analysis of the 16 measured impulse
responses are as follows. The maximum delay spread was measured as a time duration between
the first and last multipath component of a value higher than a threshold level of 0.1 or 0.01 of
a maximum value of P(τ)), which corresponds to a decrease of 10 dB or 20 dB from the maximum
value, respectively. In the case of a threshold level of 0.1, the maximum delay spread was equal
to 8.67 ms, and in the case of a threshold level of 0.01, it was equal to 27.13 ms. The rms value of
the delay spread was equal to 17.12 ms. These are values typical for shallow-water channels with
multipath propagation.

The integral of S(ν, τ) over the delay τ domain gives the Doppler Power Spectral Density (DPSD)
P(ν). The Doppler spread of the transmitted signal is calculated similarly to the delay spread, that is,
as a maximum Doppler spread νM or rms Doppler spread νrms. The maximum Doppler spread
measured as a width of P(ν) at a threshold level of 0.1 of its maximum value was equal to 2.23 Hz.
Changing the threshold level to 0.01 of the maximum value of P(ν) results in νM equal to 3.5 Hz.
The rms value of the Doppler spread was equal to 0.83 Hz. This is a small value of Doppler spread
caused by the slow drift of the boat with the transmitting transducer. Assuming a carrier frequency of
the transmitted signal equal to 30 kHz, a Doppler shift of 3.5 Hz corresponds to a motion of 0.17 m/s.
The exemplary PDP and DPSD, calculated on the basis of the impulse response presented in Figure 4,
are shown in Figure 5.

After averaging R(∆t, ∆ f ) over the ∆t and ∆ f domain, Space-Frequency Correlation Function
(SFCF) R(∆ f ) and Space-Time Correlation Function (STCF) R(∆t) are obtained (Figure 6).
The coherence bandwidth Bc, in which the signal amplitude spectrum is flat and its phase characteristic
is linear, is calculated as the width of R(∆ f ) at a given threshold level Tr. The threshold level is
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usually equal to 0.5 or 0.9 in the case of OFDM radiocommunication systems [8]. The coherence
time Tc, specifying a time interval at which TVIR remains constant, is calculated in the same manner
on the basis of R(∆t). During the inland-water experiment, both the coherence bandwidth Bc and
coherence time Tc were calculated at threshold levels of 0.5, 0.7, and 0.9 of the maximum value of
the corresponding correlation function. The coherence bandwidth values obtained were equal to
124.84 Hz, 68.54 Hz, and 36.74 Hz, respectively. These values are typical for shallow-water channels
with multipath propagation. Usually, the coherence bandwidth of such a channel is in the order of
several dozen Hz. The coherence time Tc was equal to 3.03 s, 1.16 s, and 0.36 s, respectively, for all
three cases of threshold levels. The values of all transmission parameters are shown in Table 1.

Figure 5. Power Delay Profile (a) and Doppler Power Spectral Density (b) of the measured UAC
channel at a distance of 1035 m.

Figure 6. Space-frequency Correlation Function (a) and Space-Time Correlation Function (b) of the
measured UAC channel at a distance of 1035 m.

Table 1. Transmission parameters of the measured UAC channel at a distance of 1035 m.

Parameter Value Parameter Value

τM, Tr = 0.1 8.67 ms νM, Tr = 0.1 2.23 Hz
τM, Tr = 0.01 27.13 ms νM, Tr = 0.01 3.5 Hz
τrms 17.12 ms νrms 0.83 Hz

Tc, Tr = 0.5 3.03 s Bc, Tr = 0.5 124.84 Hz
Tc, Tr = 0.7 1.16 s Bc, Tr = 0.7 68.54 Hz
Tc, Tr = 0.9 0.36 s Bc, Tr = 0.9 36.74 Hz
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4. OFDM Transmission Tests

In order to protect the signal transmitted in the UAC system against the ISI and ICI, the physical
layer of data transmission should be matched to the transmission parameters of the channel.
The subcarrier spacing should be smaller than the coherence bandwidth and much larger than the
Doppler spread. On the other hand, the duration of the OFDM symbol should be longer than the delay
spread, and much shorter than the coherence time of the channel [8]. The transmission parameter
values described in Section 3 differ significantly depending on the method of their determination.
For example, the coherence bandwidth determined as the width of SFCF at the threshold level of
0.5 of the maximum value is almost four times larger than the coherence bandwidth determined at the
threshold level of 0.9. Depending on the particular transmission parameters set, different subcarrier
spacing and symbol duration values meet the physical layer designing rules. Thus, four possible
OFDM modulation schemes were chosen for the inland-water experiment, differing in the number of
subcarriers, which was equal to 64, 128, 256, or 512. The number of subcarriers determines the values
of subcarrier spacing BOFDM and symbol duration TOFDM, as it is shown in Table 2. The reliability
of the data transmission with the use of such a configured OFDM waveform was tested during the
inland-water experiment.

Table 2. Configurations of OFDM signal parameters and BER achieved during the inland-water experiment.

No of Subcarriers Subcarrier Spacing Symbol Duration Symbol Duration with BER
Cyclic Prefix (no ECC)

64 78.13 Hz 12.80 ms 16.00 ms 0.0471
128 39.06 Hz 25.60 ms 32.00 ms 0.0308
256 19.53 Hz 51.20 ms 64.00 ms 0.0249
512 9.77 Hz 102.40 ms 128.00 ms 0.1615

The OFDM signal bandwidth B was the same as in the case of the PRBS probe signal, that is
5 kHz, around the carrier frequency fc of 30 kHz. For each of the OFDM parameter configurations,
20 transmission tests were performed and the mean BER was calculated (Table 2). The lowest BER
was obtained in the case of 256 subcarriers with subcarrier spacing equal to 19.53 Hz and symbol
duration equal to 51.20 ms. In the case of 512 subcarriers, the BER was significantly higher than for
other subcarrier configurations. As can be seen, in the case of using pilot tones as the only technique
of ISI suppression, it is possible to obtain data transmission with a BER less than 10−1. The data
transmission rate, in this case, is equal to 1.42 kbps.

The next experimental tests were conducted using BCH and Reed–Solomon Error-Correction
Coding of different number of information bits Li and message length Lmsg = 2m − 1,
where m ∈ {5, 6, 7, 8}. The results of BER values depending on the code rate Cr = Li/Lmsg are
shown in Figure 7. From among the ECC parameter configurations, those were chosen that allow
obtaining the BER less than 10−2, 10−3, or 10−4 with the lowest possible redundancy, and thus the
highest possible coding rate. The transmission rates obtained with these encoding parameters are
shown in Table 3.
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Figure 7. BER of OFDM data transmission as a function of ECC rate: BCH (*) and Reed–Solomon (o);
black line indicates BER equal to 10−4; green line indicates BER of transmission without ECC.

Table 3. Coding rates and data transmission rates during transmission with ECC.

No of Subcarriers BER BCH Code BCH Code RS Code RS Code
Less Than Coding Rate Data Rate [bps] Coding Rate Data Rate [bps]

64 10−2 0.3882 551.24 0.6392 907.66
64 10−3 0.1137 161.45 0.3858 547.84
64 10−4 0.0510 72.42 - -

128 10−2 0.5451 774.04 0.8118 1152.76
128 10−3 0.2283 324.19 0.7020 996.84
128 10−4 - - 0.3651 518.44

256 10−2 0.6392 907.66 0.8431 1197.20
256 10−3 0.2835 402.57 0.6063 860.95
256 10−4 0.2784 395.33 0.4603 653.63

512 10−2 0.1181 167.70 0.4510 640.42
512 10−3 - - 0.4196 595.83
512 10−4 - - - -
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5. Discussion

During the tests without the ECC technique implemented, the lowest BER was obtained in the
case of 256 OFDM subcarriers with the subcarrier spacing of 19.53 Hz and symbol duration equal
to 51.20 ms. Such a subcarrier spacing is smaller than the coherence bandwidth BC measured at the
threshold level of 0.9 of the maximum value of the SFCF of the channel. In the 64 subcarriers case,
in which the BER is almost twice as high as in the case of 256 subcarriers, the subcarrier spacing is
larger than the BC measured at the threshold levels of 0.7 and 0.9, but not 0.5. Thus, the threshold level
of 0.5 of the maximum value of the SFCF seems to be too low as the indicator of the strong correlation
of frequency components of the channel’s transfer function, and thus it shouldn’t be used to choose
the subcarrier spacing in UAC OFDM system.

In the case of 512 subcarriers, a BER was significantly higher than for other subcarriers
configurations. Such a number of subcarriers located in the 5 kHz band at a sampling rate of
fs = 200 kHz may cause that DFT used for OFDM symbols processing has insufficient resolution.
Moreover, although the subcarrier spacing equal to 9.77 Hz is greater than each of the three Doppler
spread values shown in Table 1, the difference is too small and the Doppler shift may affect the OFDM
signal spectrum causing the ICI. Thus, it seems that it is worth using Doppler spread measure that
achieves the highest values, i.e., the maximum spread at the threshold level of −20 dB relative to the
maximum value of Doppler Power Spectral Density of the channel. The subcarrier spacing should be
much larger than the maximum Doppler spread calculated this way.

In each of the OFDM configurations, the OFDM symbol duration was longer than the maximum
value of the delay spread measured at the threshold level of −10 dB relative to the maximum value of
the Power Delay Profile. In the case of 64 subcarriers, the OFDM symbol duration was no longer than
the maximum value measured at the threshold level of −20 dB and no longer than the rms value of
the delay spread of the channel. In the case of 256 subcarriers, for which the lowest BER was achieved,
the symbol duration was longer than the maximum delay spread measured at the threshold level of
−20 dB. Thus it seems it is worth using the latter measure of time dispersion of the UAC channel in the
process of designing the physical layer of the OFDM data transmission system. In all OFDM subcarrier
configurations, the OFDM symbol duration was much shorter than the coherence time of the channel.

Implementing the ECC technique allowed obtaining the BER less than 10−4 in the case of 64,
128, and 256 subcarriers. Only in the case of 256 subcarriers, it was possible using both types of ECC:
BCH codes and Reed-Solomon codes. The highest transmission rate with the BER less than 10−4

was obtained using Reed–Solomon code and it was equal to 653.63 bps. Thus, applying the ECC
reduces more than twice the transmission rate compared to the configuration without ECC, but with
a significant gain on reliability.

6. Conclusions

The communication tests performed during the shallow inland-water experiment with the use
of the laboratory model of an OFDM system have shown that it is possible to achieve reliable data
transmission with Bit Error Rate less than 10−4. The tested UAC channel was about 1 km long and
the depth was variable along this distance from 20 to 40 m. Thus, it was a typical case of a very
shallow channel characterised by numerous reflections of the transmitted signal from the bottom and
surface of the water. Obtaining such a low BER required the use of two techniques of ISI suppression,
namely pilot tones and Error-Correction Coding. Achievable BER and data transmission rates were
measured for four different configurations of OFDM signal parameters, selected to match the physical
layer of data transmission to the transmission parameters of the channel, calculated on the basis of the
measured Time-Varying Impulse Reponses.

The lowest BER was obtained in the case of subcarrier spacing which was less than the coherence
bandwidth measured at the threshold level of 0.9 of the maximum value of the Space-Frequency
Correlation Function (SFCF) of the channel. At the same time, the subcarrier spacing was much larger
than the maximum Doppler spread measured at the threshold level of−20 dB relative to the maximum
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value of Doppler Power Spectral Density. The OFDM symbol duration was longer than the delay
spread of the channel measured at the threshold level of −20 dB relative to the maximum value of
Power Delay Profile.

In case of the largest number of subcarriers, i.e., 512, reliable data transmission could not be
obtained. For the smallest number of subcarriers, i.e., 64, the data transmission rate of 72.42 bps was
obtained after using the BCH code of rate of 0.051. For 128 and 256 subcarriers, transmission rates
of hundreds of bps were achieved, which is sufficient for most applications of reliable underwater
communications, such as submarine-to-submarine or submarine-to-surface platform communications,
monitoring of bottom installations or AUV remote control.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
BCH Bose–Chaudhuri–Hocquenghem Codes
BPSK Binary Phase Shift Keying
DAC Digital-to-Analog Converter
DPSD Doppler Power Spectral Density
ECC Error-Correction Coding
ICI Inter-Carrier Interference
IFFT Inverse Fast Fourier Transformation
ISI Inter-Symbol Interference
OFDM Orthogonal Frequency-Division Multiplexing
PDP Power Delay Profile
PRBS Pseudo-Random Binary Sequence
RS Reed–Solomon Codes
SFCF Space-Frequency Correlation Function
STCF Space-Time Correlation Function
STFCF Space-Time-Frequency Correlation Function
TVIR Time-Varying Impulse Response
TVR Transmitting Voltage Response
UAC Underwater Acoustic Communication
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