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R E M A R K S O N T H E C O N V E R G E N C E OF A N ITERATIVE 
M E T H O D OF SOLUTION OF GENERALIZED 

LEAST S Q U A R E S P R O B L E M 

A b s t r a c t . In this paper we consider an iterative method of finding a regularized 
solution of a general linear system Ax = b. For a given scalar a and an initial vector g 
it produces a sequence that converges to the least squares solution of this system. The 
limiting point minimizes the distance between g and the set of all least squares solutions 
of the problem. An estimate of the rate of convergence is also provided. 

1. Introduction 
Let R denote the set of real numbers. We denote the vector space of 

all m x n real matrices by R m x ? l and the space of all real n-vectors by M". 
Consider the system of linear algebraic equations 

(1.1) Ax = b, 

where A = 

an a 1; \ 
a given m x n real matrix, b = 

Y®m 1 • • • ®nin J 

given real m-vector and x = 
M 

\xnJ 

\bm/ 

an unknown real n-vector. It is very 

well known that the system (1.1) may have exactly one solution or infinitely 
many solutions or no solutions. So, instead of seeking the solutions of (1.1) 
we can consider the more general problem: 

(1.2) min II Ax — b\\~ , 
xeR" z 
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where, for u G 

I u 12 
In contrast to problem (1.1), problem (1.2) always has a solution. It has 
more than one solution if the matrix A does not have the full column rank 
(for these well known facts see for instance [3]). It is clear that the problem 
(1.2) is equivalent to the problem 

(1.3) min \\Ax — b\\\ . 

To deal with a unique solution to (1.2), usually the solution with minimum 
norm is considered. But it is possible to consider a solution to (1.2) which 
is at the minimal distance to a given vector g instead. Although by a trans-
lation of the coordinate system we can reduce the latter problem to finding 
the minimizer to (1.2) with minimum norm we will show a direct and stable 
method of finding the minimizer to (1.2) at the closest distance to a given 
vector. 

We denote by X the set of all minimizers x to (1.3): 

(1.4) X = {x £ R n : \\Ax — ¿H2 = min}. 

Let g G R n . 

DEFINITION 1.1. We will call the vector x9 € X a g-pseudo-solution to 
(1.2) if it satisfies the relation 

(1.5) \\x9~9\\-2 = min||x-5||2. 

It is obvious that condition (1.5) is equivalent to 

(1.6) \\x9-g\\l = rmn\\x-g\\l. 

It is easy to prove the lemma 

LEMMA 1.1. There exists exactly one g-pseudo-solution to problem (1.1). 

Proof. As in the case of the minimum norm solution, the statement follows 
from the convexity of X and strict convexity of ||-||2. • 

Let a matrix A G R m X n and a vector g G M" be fixed. From Lemma 1.1 
it follows that we have defined an operator A+(g) : Mm —> R" which to each 
b G Mm assigns a unique vector x9 G R". We refer to it as the pseudo-inverse 
operator to the operator A defined by the matrix A. It is easy to see that 
A+(0) (6 - zero in M") is defined by the Moore-Penrose pseudo-inverse matrix 
A+ of A and is linear. It is also easy to notice that A+(g) has the following 
property: for each b G Km , A+(g)b = A+(Q)b + A+{g)Q, where A+(-)b is 
linear. 
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2. The regularized problem 
Consider Tikhonov's regularization method, i.e. the regularized problem 

(2.1) 

where 

(2.2) $<a)(a;) = \\Ax-b\\l + a\\x-g\\l, x G Mn, a e l , a > 0. 

DEFINITION 2.1. A vector x9a is referred to as an (a,g)-approximate solu-
tion to (1.1) if 

(2.3) *<«>(x»)= min *<«>(*). 

We have the following lemma. 

LEMMA 2.1. For each A G K m x n , b G RM , g G Mn, a g R, a > 0 
an (a, g)-approximate solution to (1.1) exists, is unique and belongs to the 
closed sphere — S (g, \\g - xff||2). 

Proof. From (2.2) and the definition of x9 it follows immediately the relation 

min $ i a ) ( x ) = min $(q)(:c). 
o(s) 9 xeRn 9 

t C - V 

As j, is compact in R n with ||-||2 norm then there exists at least one 

minimizer of say x9a, which by the construction belongs to The 

uniqueness of the minimizer xga follows from strict convexity of • 

Let I denote the n x n unit matrix. We have the following theorem 

THEOREM 2.2. An (a, g)-approximate solution to (1.1) satisfies the equa-
tion 

(2.4) ( A T A + al)x = ATb + ag, 

which we refer to as the normal equations and is uniquely defined by this 
equation. 

Proof. Assume x G Rn , y G R™ and a G R. Consider the equality 

\\A{x + ay) - b\\22 + a ||g - (x + ay)\\22 = \\Ax - b\\\ + a \\g - x\\\ 

+ 2 a y T [AT(AX - b) - A(g - x)] + a2(\\AY\\22 + a ||y|g). 
If x is the (a, ^-approximate solution to (1.1) then we must have 

( 2 . 5 ) AT(AX - B ) - A(g - x) = 0 . 
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Otherwise, if y = - [AT(Ax - b) - a(g - a:)] and a > 0 is small enough, 
then we obtain the contradictory inequality 

\\A(x + ay) - bf2 + a\\g-(x + ay)\\2
2 < \\Ax - bf2 + a - x f 2 . 

It is clear that (2.5) can be rewritten in the form (2.4). 
As the matrix ATA is symmetric and positive semidefinite and a > 0 

then ATA + AL is nonsingular and the (A, (^-approximate solution to (1.1) 
is the unique solution to eq. (1.1) given by the formula 

(2.6) x9
a = ( A t A + aI)~LATb + a(ATA + al)~lg. 

In this way we completed the proof of the theorem. • 

We also have the following theorem about the convergence of the sequence 
of (a ,^-approximate solutions to the pseudo-solution to (1.1). 

T H E O R E M 2.3. For any A e Kmxr\ b e R m
; g G Rn

; andaeR satisfying 
a > 0 

(2.7) lim x9
a —• x9. 

a—>0 

Proof. It follows from Lemma 2.1 that xg
a belongs to the compact set S^fj,. 

So, from each sequence x i , a —> 0 + we can choose a convergent, say to 
x9 £ S(

A
9l subsequence • We have the inequality 

(2.8) ^ \ x ^ ) < ^ { x 9 ) . 

Taking the limit as a v —> 0 in both sides of inequality (2.8) we arrive at the 
equality 

(2.9) || AS? - b\\2
2 = || Ac» - b\\l 

and from the uniqueness of 5-pseudo-solution to (1.1) it follows that x9 — 
x9. In this way we proved that each sequence x9

a is convergent to x9 as a 
approaches zero. • 

3. A n iterative method of computing of ^-pseudo-solution 
The problem of computing of g-pseudo-solution may cause many difficul-

ties not only if the matrix A is rank deficient but also when A has a full rank 
but is nearly rank deficient. Many methods have been developed for solv-
ing the least squares problem and they are discussed in detail in literature 
(see, for example [2, 3] and references therein). Those methods can be also 
applied to determine the g-pseudo-solution. There is also a vast literature 
devoted to solving regularized problems where different methods of choosing 
the regularization parameter a are discussed (see, for instance, [5, 6] and 
references therein). If an (a, g)-approximate solution is to approximate the 
g-pseudo-solution to (1.1) the parameter a should be small and if A is rank 
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deficient or nearly rank deficient then the problem of determining of xga is 
ill-conditioned and we can expect troubles. In this section we propose an it-
erative method that produces a sequence convergent to the g-pseudo-solution 
to (1.1) for any a > 0 and show how the rate of convergence of this sequence 
to x9 depends on the value of the parameter a . First, we use the singular 
value decomposition (SVD) to express the (a, g)-approximate solution and 
x9-pseudo-solution in terms related to the matrices involved in SVD of A. 
It is well known (see, for example, [3]) that an arbitrary matrix A G E m x n 

can be expressed in the form 

( 3 . 1 ) A = UY.VT, 

where U = [ui , . . . , um] <E Rm X m and V = [i>i,..., vn] € R n x n are orthogonal 
and £ = diag[cri,..., ap] € Rm x n , p = min{m, re}. 

T h e n ATA = VETEVT, (ATA + al)'1 = V ( E t E + al)~l VT a n d 
equality (2.6) can be rewritten in the form 

( 3 . 2 ) x9a = V ( £ t E + al)VTVY,TUTb + aV ( E t S + a l ) V T g . 

Assume, without loss of generality, that only the first r, r < p, singu-
lar values CTj are different from zero. Introducing the following notation 
P = (/3i, . . . , Pm)T = UTb, W = (/Vl,...,&<7r,0,---,0)T, W € Rn, Z = 
((v\,g),..., ( v n , g ) ) T the relation (3.2) can be written as 

( 3 . 3 ) x % = 

V ( E r S + al)'1 VT(0i<riVi + • • • + (3rarvr) + aV ( E t E + al)'1 VTg 

or in a shorter form 

( 3 . 4 ) x9a = V ( E t E + a / ) ~ 1 w + aV ( E r E + al)' 

The matrix ( E t E + al) 1 has the form 

1 1 

2 . 

( E t £ + al) 1 = diag I 2 ' ' ' ' ' I 9 a + af a + at. 

1 

a 

and therefore the equality (3.4) can be rewritten as 

( 3 . 5 ) x9a = V 

RPI<RI 1 r a(«i,ff) 1 
a+cr'( 

PT<TT OT{VR,G) 

a+c'i a+tr? 
0 (Vr+1,9) 

0 . ( V N , 9 ) . 
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Taking in (3.5) the limit as a —> 0, we obtain 

(3.6) x9 = lim x 9
a = —vi + ... + — vr + (vr+i,g)vr+i + ... + (vn,g)vn 

a—> 0 (71 <7r 

Now, for A; = 0 , 1 , . . w e define the following sequence 

xk+l = (ATA + aiy1A Tb + a(ATA + a/) _ 1x f c 

xo = g-

We have the following theorem. 

(3.7) 

THEOREM 3.1. For any A E R m x n , b € R m , g € R n , and a e R satisfying 

a > 0, the sequence (xk) defined by (3.7) is convergent to the g-pseudo-

solution of ( 1 . 1 ) , i.e. 

(3.8) lim Xk = x 9. 
k—>oo 

Proof. Let us introduce the following notation: 

Q = (A TA + aI)' 1, S = aQ, h = A Tb. 

Then, the first of equalities (3.7) can be written as 

= Sxfc + Qh, k — 0,1, . . . 

and implies the relation 

(3.9) xk+1 = S k + 1g + (S k + ... + I)Qh, A; = 0,1, 

Equality (3.9) can be written in the form 

xk+i = Vdiag 

(3.10) +Fdiag 

Because of the equality 

a 

a + aj 

a + of 

k+1 a 

a + 

fc+i 
V Tg 

a 

a + af 

a 

a + of 
, k + 1,..., k + 1 V TQh. 

(3.11) V TQh = 
Qiffi <Jrf3T 

. 2 ' ' ' ' ' i 9 a + o{ a + of 
,0 , . . . ,0 
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the relation (3.10) can be written in the form 

fc+i / „ \ fc+i 

937 

xk+x = Fdiag 
a 

a + a\ 
a 

• * ' ! I , 9 Va + <rf 

(3.12) 
a 

<TI \ \ A + CT{ 

ar \ \a + a* 

The equality (3.12) implies 

lim Xk = V 
k-*oo 

0 'SL 

0 

(vr+l,g) 

Pr_ 
oy 
0 

= V 

§r 
Cr 

(vr+i,g) 

_ ( v n , g ) _ 0 _ {vn,g) _ 

(3.13) 

= —V\ + ... + — vr + (wr+i ,g)vr+i + ... + (vn,g)vn, 
cri a r 

i.e. 

lim Xk = x9, 
k—>oo 

(3-14) 

which completes the proof of the theorem 

Now, we use the relation (3.12) to prove the estimate of the rate of 
convergence of x^ to the ^-pseudo-solution x9. Namely, we have the following 
theorem. 

THEOREM 3.2. For the sequence of iteration xk, k = 0 , 1 , . . t h e following 
estimate of rate of convergence 

(3.15) ||xfc+1 - x l 2 < ——~9 I ( — — 9 HsIU + v^ max a + a i j 1 a + i<i<r j / \ 3 

holds with the index j defined by the relation aj = mini< t<r Oi-
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Proof. It follows from (3.12) that 

xk+i - x9 - Fdiag 
a 

a + a\ 

1 

jfc+i 

a 

a 

a + a? 

fc+i 

VT9 

a + af 

(3.16) 
a r \ \ a + ffr2 

, 0 , . . . , 0 

-Fdiag[0,... ,0 ,1 . . . , l\VTg - V ( — , • • •, — ,0 , . . . , o V 
V0"! ar ) 

= Fdiag 
a 

a + af 

fc+i 
a 

a + <j2 

Pr ( a 

fc+i 

VTg 

i I 2 I ' ' ' ' ' \ i 9 
(j\ \ a + af ) ar \ a + af 

The relation (3.16) implies the estimate (3.15). 
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