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Abstract
Synthetic aperture radar (SAR) images acquired by airborne sensors or remote sensing satellites contain the necessary infor-
mation that can be used to investigate various objects of interest on the surface of the Earth, including coastlines. The coastal 
zone is of great economic importance and is also very densely populated. The intensive and increasing use of coasts and 
changes of coastlines motivate researchers to try to assess the pace of these changes. As remote sensing develops, coastlines 
are detected using various image processing and analysis methods, including segmentation methods. Segmentation is to allow 
separating water and land areas in order to obtain contours representing the shorelines of coasts. Its result has direct impact 
on the accuracy of the obtained contours and is one of the most important steps in image processing. This article presents 
an overview of state-of-the-art segmentation methods used for detecting and extracting coastlines from SAR images, taking 
into account the evaluation metrics used in them. Segmentation methods can be divided into three main groups: thresholding 
methods, active contours, and machine learning approaches. This article presents the theoretical and practical properties of 
individual groups of segmentation methods, their advantages and disadvantages, and also promising research directions. 
This article is intended to give researchers insight into existing approaches and to help them propose new, better solutions.

1 Introduction

The coastal zone is the intermediate area between land and 
sea. This area, although relatively small (less than 15% 
of the Earth’s surface), is of great economic significance 
because it is inhabited by 60% of the global population 
[1]. Coastal areas are the place of intensive human activity 
(e.g. construction of ports, settlements, roads, development 
of industry, dredging, as well as the extraction of sea sand 
for construction purposes) and of natural phenomena (e.g. 
coastal erosion or deposition, flooding). Both natural factors 
and human activity cause constant changes of the shoreline 
of coasts. This is why accurate and timely acquisition of 
information on the current state of coast shorelines and the 
study of their spatio-temporal changes are of great impor-
tance for environmental protection and allow coastal zones 
to be properly managed.

There are many shoreline definitions in the literature 
[2–7]. A very basic definition says that a shoreline is the 
physical boundary between the land and the water [2, 3]. 
In this literature review, the terms “shoreline” and “coast-
line” are considered synonymous and no difference is made 
between them.

In remote sensing, water and land areas had traditionally 
been analysed using images acquired by optical and infra-
red technologies. Optical images are easy to analyse and 
access. What is more, the areas of land and water can be 
easily mapped in the infrared because water absorbs infrared 
radiation, while land reflects it strongly. However, tracing 
coastlines based on images from optical and infrared instru-
ments is significantly hindered by the impact of clouds, solar 
illumination and other unfavourable weather conditions. 
Example optical images are shown in Figs. 1a, 2a and 3a.

Synthetic aperture radar sensors enable the acquisi-
tion of high-resolution images during the day and night, 
in almost any weather conditions. This is why the use of 
SAR images for Earth observation is of increasing interest, 
which is also boosted by their increasing availability. SAR 
images are obtained by emitting microwave signals from 
the sensor, which are then received back or backscattered 
from the Earth’s surface [8, 9]. SAR images are rendered 
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in grey-levels or at least in monochromatic intensity vari-
ations. Specific polarization techniques can also be used 
in SAR imaging by applying variable polarization anten-
nas [10–12]. Multiple polarizations and wavelength com-
binations can provide different and also complementary 
information about the surface. As a result, polarimetric 
synthetic aperture radar images can present much more 
information than monopolarized SAR images [13–15].

Figures 1b, 2b and 3b show three sample SAR images 
representing different geographical areas. Figures 1c, 2c 
and 3c show segmentation results in the form of binary 
images in which the coastline separates white pixels 
(denoting land and man-made structures) from black pixels 
(denoting water). Figures 1d, 2d and 3d show shorelines 
obtained on the basis of the segmentations performed. 
Binary images were produced using ready-made tools 
in the Matlab R2022a environment (MathWorks, Inc., 
Natick, MA, USA) for Windows 11, which simplify man-
ual segmentation and are available in the Image Processing 
Toolbox. Edges were extracted from binary images using 
the method presented in [16]. SAR images used for this 

research were provided thanks to the courtesy of Capella 
Space Corporation [17].

Examples from Fig. 1a and b, showing the coastal zone 
of the Aliağa Bay in Turkey, contain clearly visible man-
made infrastructure (including: piers, jetties, marinas and 
fishing ports, concrete quays), which is also included in the 
identified shoreline, as presented in Fig. 1c and d. This infra-
structure is particularly visible in the left parts of Fig. 1a 
and b. What should also be noted about the example from 
Fig. 1a are the clouds visible against the background of the 
sea bay, as well as some errors in image acquisition with 
optical equipment or an error made by the supporting soft-
ware which combined image fragments to produce the view 
in the Google Earth geobrowser. A diagonal line separating 
the uneven background, i.e. clouds and water, and disap-
pearing at the junction of the shoreline is visible. No such 
problem occurs in the SAR image shown in Fig. 1b.

In the left part of images from Fig. 2a and b, which por-
tray the coastal zone of the city of Venice in Italy (between 
the islands of Giudecca and Murano), one can see, among 
others, port docks and quays, which also form a part of the 

Fig. 1  Detection of coastlines in the coastal zone of the Aliağa Bay 
in Turkey (the Mediterranean Sea, near the port city of Aliağa in the 
Aegean Region of Turkey) in an example SAR image, provided cour-
tesy of Capella Space Corporation, All Rights Reserved. a Google 

Earth view. b Source SAR image. c SAR image segmentation result 
as a binary image. d Coastlines obtained from the segmentation per-
formed
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shoreline identified and extracted in Fig. 2d. Preparing the 
right binary masks is very important, especially when man-
made infrastructure has to be considered and if there are 
numerous small details, like islands and canals. It is worth 
mentioning that Venice is a city built on 118 small islands 
that are separated by numerous canals and connected by 
more than 400 bridges. This is why preparing the appropriate 
binary masks for the coastal zone of an urbanized area con-
taining a lot of details can be a major challenge. The ques-
tion that needs answering is how accurate the binary mask 
should be, what man-made infrastructure facilities should be 
included and in what way. A separate issue is whether the 
available SAR satellite images and optical images are of a 
sufficient resolution to include numerous small details, like 
those in the coastal zone of Venice. The binary mask shown 
in Fig. 2c was prepared under the assumption of determin-
ing only the outer shoreline, so the course of all the canals 
with individual bridges was not included. Only in the case 
of the largest canal, i.e. the Grand Canal, was the shoreline 
identified up to the first bridge located in its southern part. 

In Fig. 2b, a circle marks the bridge (Ponte dell’Accademia) 
over the Grand Canal up to which the shoreline was marked.

The images in Fig. 3a and b show the coastal area of the 
city of Hakodate, Japan. Compared to the previous exam-
ples, man-made development along the shoreline is the least 
visible here.

Manual segmentation of shorelines in remote sensing 
images can be a very tedious and, unfortunately, time-
consuming task, especially considering the large amount 
of data acquired. Moreover, the results of manual segmen-
tation can vary greatly due to the different experience and 
skills of experts. This is why computer methods applied 
in specialized software, which enable automatic or semi-
automatic image processing, can greatly support the work 
of experts. There is an increasing number of research 
papers on this subject in the literature. However, in order 
to have a good, efficient segmentation method that would 
enable detecting coastlines, it is necessary to evaluate the 
existing approaches and determine their advantages and 
disadvantages in order to propose new, better solutions. 

Fig. 2  Detection of coastlines in the coastal zone of the city of Ven-
ice, Italy (located in north-eastern Italy on the Adriatic Sea, the capi-
tal of the Veneto region) in an example SAR image, provided cour-
tesy of Capella Space Corporation, All Rights Reserved. a Google 

Earth view. b Source SAR image. The red circle marks the bridge 
(Ponte dell’Accademia) over the Grand Canal up to which the shore-
line was determined. c SAR image segmentation result as a binary 
image. d Coastlines obtained from the segmentation performed
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Consequently, new review papers are needed to help ana-
lyse the current state of knowledge and research results 
in detail.

In the past, coastlines were mainly detected in optical 
images [18]. However, as the SAR technology and segmen-
tation methods are constantly developing, there are more and 
more publications in the literature devoted to detecting and 
extracting coastlines in SAR images. This literature review 
focuses on research papers from the last twenty years. The 
contributions of this work are summarized as follows:

– This literature review is an attempt to summarize previ-
ous research, published in the last twenty years, dealing 
with segmentation methods used to detect coastlines in 
SAR images.

– Presenting a classification and a description of the seg-
mentation methods used, as well as their practical proper-
ties.

– Presenting the advantages and disadvantages of the seg-
mentation methods used and the research methodology 
proposed in individual works.

– Describing the metrics used when evaluating segmenta-
tion results.

– Summarising the results obtained for individual groups 
of segmentation methods, including information about 
sensors/satellites, as well as the datasets employed and 
the number of images used during tests.

– Summarising the feasibility of using existing and new 
approaches.

– Indicating promising research directions.
– Demonstrating the prospects and open research chal-

lenges concerning the effective detection and extraction 
of coastlines in SAR images.

The rest of the paper is organized as described below. 
Section 2 describes the methodology of literature review 
adopted, and Sect. 3 presents research papers in which litera-
ture reviews related to the subject of this work were carried 
out. Section 4 contains an introduction to the SAR technol-
ogy. Section 5 illustrates the division of segmentation meth-
ods into specific groups. Section 6 presents the metrics used 
in research projects to assess segmentation results. Then, 

Fig. 3  Detection of the coastline in the coastal zone of the city of 
Hakodate in Japan, in the vicinity of an airport (the city lies in the 
Oshima Subprefecture in the south of the island of Hokkaido), pro-
vided courtesy of Capella Space Corporation, All Rights Reserved. a 

Google Earth view. b Source SAR image. c SAR image segmentation 
result as a binary image. d Coastlines obtained from the segmentation 
performed
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the following four sections present state-of-the-art solutions 
based on thresholding methods (Sect. 7), active contour 
methods (Sect. 8), machine learning approaches (Sect. 9) 
and other segmentation methods (Sect. 10). The last sec-
tion contains a discussion that summarizes the results and 
presents the conclusions.

2  Review Methodology

This systematic review of literature was carried out using the 
Preferred Reporting Items for Systematic Reviews and Meta-
analyses (PRISMA) [19] for articles published in 2002-2022. 
In order to find articles in academic databases, titles and 
abstracts were searched using different combinations of the 
following keywords: “coastline”, “shoreline”, “segmentation”, 
“extraction”, “detection”, “SAR”, “synthetic aperture radar”. 
Four electronic databases were searched, namely: Google 
Scholar, Science Direct, IEEE Xplore and Scopus, to find the 
defined keywords. Altogether 6093 results were obtained, with 
the following numbers of articles in individual databases: 5620 

in Google Scholar, 270 in Science Direct, 33 in IEEE Xplore 
and 170 in Scopus. Some articles were excluded for the follow-
ing reasons: (a) articles published before 2002, (b) duplicate 
records, (c) the presented methods of detecting and extracting 
coastlines do not use SAR images, (d) no segmentation meth-
ods, (e) no comparison to other segmentation methods from 
literature, (f) no experiments on, and tests of the proposed 
solutions have been carried out, (g) articles not written in 
English. Articles filtered using the initial inclusion/exclusion 
criteria were then screened in two stages: (a) title and abstract 
screening, (b) full-text assessment. As a result, 32 papers were 
selected for this literature review. Details regarding the inclu-
sion/exclusion of research papers are presented in Fig. 4.

3  Related Literature Reviews

The literature includes papers in which authors summarize 
results of research on the detection and extraction of coast-
lines on the basis of data obtained using remote satellite 

Papers identified through electronic database
searching: Google Scholar = 5620, Science

Direct = 270, Scopus = 170, IEEE Explore =33

Additional papers identified
through a manual search = 2

Papers identified (N=6095)

Papers after removal of duplicates and those
published before the year 2002 (N=3428)

Papers after reading the title, ab-
stract and introduction (N=76)

Papers after full text assessment (N=32)

Papers included in the qualitative synthesis (N = 32)

Papers included in the study (N = 32)

Papers excluded (N=3352)

Papers excluded (N=44)
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Fig. 4  Diagram of the PRISMA search process, including the criteria for the inclusion and exclusion of research papers
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sensing and geographic information systems (GIS). Review 
papers on similar topics are discussed in this section.

[20] discusses in detail the subject of changes to coast-
lines taking into account two techniques of their delinea-
tion, namely an automatic and a manual one. The authors 
also analysed the coastal vulnerability index (CVI). Their 
research covered various geographic locations. Yasir et al. 
[21] conducted a review of papers presenting coastline 
extraction and land cover change analysis using geographic 
information system (GIS) technology and remote sensing. 
[22] contains an overall review and a meta-analysis of GIS 
methods, remote sensing data, the software, materials and 
indexes used to monitor a coastline over twenty years. It 
presents papers in which coastline changes for a specific 
time interval were studied. Bijeesh and Narasimhamurthy 
[23] reviewed the algorithms, methods and sensors/satellites 
that had been used to detect and delineate surface waters in 
remote sensing images. [24] presents the results of research 
projects in which remote sensing data was used to detect, 
extract and monitor coastal shorelines. However, only papers 
that used data from US coasts were selected.

4  Introduction to Synthetic Aperture Radar

The SAR technology can actively collect data by using 
a sensor that transmits microwave signals and measures 
the portion of the signal backscattered by the surface of 
the Earth. The signals are responsive to surface charac-
teristics such as moisture and texture [25]. The primary 
measure of the accuracy of the radar data acquired is its 
spatial resolution. It is directly related to the ratio of the 
sensor wavelength to the length of the sensor antenna [25]. 
Consequently, assuming a specific wavelength, it can be 
said that the longer the antenna, the higher the spatial 

resolution. However, it is impractical to install a large 
antenna on board an aircraft or on a satellite. This obsta-
cle is eliminated by synthetic aperture systems that feature 
a short physical antenna, but use modified data recording 
and processing techniques to synthesize the effect of a long 
antenna, thus producing higher resolution data.

Popular optic sensors like Sentinel-2’s Multispectral 
Instrument (MSI) or Landsat’s Operational Land Imager 
(OLI) make it possible to acquire images in the visible, 
near-infrared, and short-wave infrared portions of the 
electromagnetic spectrum. Radar sensors, in turn, use 
longer wavelengths at the scale of a centimetre to a metre, 
allowing them to penetrate clouds, which do not affect 
the quality of the images acquired. The different wave-
lengths in SAR imaging are typically referred to as bands 
and designated with letters such as C, L, P and X. Table 1 
presents the bands with their respective frequencies, wave-
lengths and possible applications. Table 1 indicates that 
the bands L-, C- and X are the most frequently used in 
SAR instruments.

Radar signals that are transmitted and then received 
propagate along a specific plane of polarization. Most 
radars are designed to transmit and receive signals with 
linear, horizontal (H) or vertical (V) polarization. An 
important feature of radar sensors is that the polarization 
of signals can be precisely controlled both during trans-
mission and reception. Signals transmitted in the hori-
zontal polarization (H) and received in the same plane 
of polarization are marked with the abbreviation HH. If 
signals are transmitted horizontally (H) and received verti-
cally (V), they are designated as HV, etc. Measuring the 
signal strength using different polarizations allows us to 
obtain information about the structure of the imaged sur-
face, based on the following types of scattering: double 
bounce, rough surface, volume [25]. In particular:

Table 1  Designation of microwave bands

Based on the source publication [25]

Band Frequency Wavelength Typical application

Ka 27–40 GHz 0.8–1.1 cm Airport surveillance (rarely used)
K 18–27 GHz 1.1–1.7 cm H

2
O absorption (rarely used)

Ku 12–18 GHz 1.7–2.4 cm Satellite altimetry
X 8–12 GHz 2.4–3.8 cm Urban monitoring; ice and snow; little penetration into vegetation cover; fast coherence decay in vegetated 

areas (high-resolution SAR)
C 4–8 GHz 3.8–7.5 cm Global mapping; change detection; monitoring of areas with low to moderate vegetation; improved penetra-

tion; higher coherence; ice,
ocean, maritime navigation (SAR workhorse)

S 2-4 GHz 7.5–15 cm Earth observation; agriculture monitoring
L 1–2 GHz 15–30 cm Geophysical monitoring; biomass and vegetation mapping; high penetration; InSAR (medium resolution SAR)
P 0.3–2 GHz 30–100 cm Biomass; vegetation mapping and assessment (experimental SAR)
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– Double bounce scattering is the most sensitive to an 
HH polarized signal and is caused, for example, by tree 
trunks, flooded vegetation, and buildings.

– Rough surface scattering is the most sensitive to a VV 
polarized signal and is caused by, e.g., water or bare 
soil.

– Volume scattering is the most sensitive to cross-polar-
ized data such as HV or VH and is caused by, e.g., 
leaves and branches of trees in a forest.

More information on the different scattering mechanisms 
can be found in [25]. It should be noted that the individual 
contribution of each scattering mechanism is presented 
in grayscale images. The intensity of each pixel in a SAR 
image represents the proportion of microwaves backscat-
tered by the ground area surveyed, and this proportion 
depends on the following factors:

– Types, shapes, sizes and orientations of scatterers in 
the target area.

– The amount of moisture in the surveyed area.
– The frequency and polarization of radar pulses as well 

as the incident angles of the radar beam.

Pixel intensity values can be converted to a physical 
quantity called the normalized radar cross-section or the 
backscattering coefficient measured in decibels (dB), with 
values ranging from -40 dB for very dark surfaces to +5 
dB for very bright objects [25, 26].

Data provided as the linear amplitude backscatter can 
be stored in the 16-bit unsigned integer format (DN). The 
DN values can then be converted to sigma-naught values 
( �0 ; units in decibels, dB) using the following equation:

where DN is the digital number and CF stands for the cali-
bration factor with a given value [26].

Contemporary satellites provide various levels of SAR 
data, namely:

– Level 0 SAR data which consists of raw data collected 
by satellites.

– Level 1 SAR data is processed from raw Level 0 data 
using various algorithms to produce Single Look 
Complex (SLC) images that keep the phase informa-
tion from raw acquisitions and retain the original pixel 
spacing. It can also be processed to produce Ground 
Range De-tected (GRD) images which retain amplitude 
information from raw acquisitions.

– Level 2 SAR data are products derived from Level 1 
data and are usually geolocated.

(1)�0 = 10 ⋅ log10(DN
2) + CF

Several data formats are used for Level 2 SAR products as 
one common data format has not yet been established. The 
formats used at present are GeoTIFF, HDF5 and KMZ [25].

Radar images suffer from the effects of speckle noise, 
which arises from the coherent summation of signals scat-
tered from ground scatterers. As a result, the radar image 
appears to be noisier than the optical image. This is why, 
before the image is analysed further, speckle noise is very 
often reduced using the appropriate filtration methods. 
Detailed papers on methods of SAR image pre-processing, 
including speckle noise reduction, can be found in [9, 27].

5  Segmentation Methods Used to Detect 
Coastlines in SAR Images

During pre-processing, input SAR images are filtered 
to reduce noise, enhance the contrast, and amplify and/
or extract certain features (Fig. 5). These methods are to 
improve the segmentation process. [9, 27, 28] present a 
detailed review of literature on the pre-processing methods 
used for SAR images. Segmentation methods used to detect 
coastlines in SAR images can be divided into the following 
groups:

– Thresholding methods
– Active contour models
– Machine learning approaches
– Other segmentation methods

According to the diagram presented in Fig. 5, thresholding, 
the watershed transformation and the region-based active 
contour model can also be used as auxiliary methods that 
produce preliminary, approximate segmentation results, 
which are then used in subsequent approaches. The group 
‘Other methods’ contains approaches (i.e. watershed, graph-
based and edge tracing methods) that are represented by one 
or two research papers.

The last segmentation stage is post-processing, which is 
to enable the extraction and/or connection of coast shorelines 
when they are incomplete, and which also allows removing 
minor artefacts and distortions from the resulting image.

6  Evaluation Metrics

The methods used to segment coast shorelines were verified 
using various metrics. The performance of a segmentation 
method (SEG) is generally assessed by reference to a manual 
segmentation (REF) performed by an experienced expert. 
To neutralize the intra-subject variability during the manual 
segmentation and to produce a truthful REF, a combination 
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of segmentations produced by many experts should be used. 
Unfortunately, this is rarely practised.

When assessing the performance of segmentation algo-
rithms in comparison to REF, a classification of pixels 
belonging to the shoreline (assumed to be foreground pixels) 
or to the background is used. For both cases, these pixels can 
be classified as follows: true positives (TP) are pixels cor-
rectly detected as foreground (positive), false positives (FP) 
are pixels incorrectly detected as foreground, true negatives 
(TN) are pixels correctly detected as background, false nega-
tives (FN) are pixels incorrectly detected as background. The 
presented components allowing pixels to be classified consti-
tute elements of a confusion matrix (or a contingency table), 
which is the term often used in the literature. It should be 
added that the REF can also be obtained using a manual 
recording of the Global Positioning System (GPS) as pre-
sented in paper [29].

Table 2 presents all the metrics that were used in the 
research papers discussed. Sensitivity (Sens), also called 
Recall, measures the proportion of positives that are cor-
rectly identified. Accuracy (Acc) expresses the number of 
correctly detected true samples divided by the total number 

Input
image

Pre-
processing

Thresh-
olding

Active contours

Region
based

Edge
based

Other methods

Watershed Graph
based

Edge
tracing

Machine learning

Unsuper-
vised

Super-
vised

Training
dataset

Post-
processing

Segmented
image

Fig. 5  A diagram showing segmentation methods which allow detecting and extracting coast shorelines from SAR images, in accordance with 
the literature review

Table 2  Metrics for assessing segmentation methods used to detect 
coastlines

Evaluation metrics Computation

Sensitivity (Sens); Recall Sens =
TP

TP+FN

Accuracy (Acc) Acc =
TP+TN

TP+TN+FP+FN

Specificity (Spec) Spec =
TN

TN+FP

Precision (Prec) Prec =
TP

TP+FP

Negative Predictive Value (NPV) NPV =
TN

TN+FP

False Positive Rate (FPR) FPR = 1 − Spec

False Negative Rate (FNR) FNR = 1 − TPR

Dice Similarity Coefficient (DSC) Eq. (2)
Error based on Dice (eD) Eq. (3)
Jaccard Similarity Coefficient (JSC) Eq. (4)
F
1
 score Eq. (5)

Distance error ( eD) Eq. (6)
Root mean standard error (RMSE) Eq. (7)
Root mean square error (AED) Eq. (8)
Pratt’s figure of merit (FOM) Eq. (9)
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of samples and is the metric most commonly used to assess 
coast shoreline segmentations. Specificity (Spec) expresses 
the proportion of negatives that are correctly detected, and 
Precision (Prec) specifies the proportion of positive results 
that are true positives. It is worth noting that although a high 
value of Sens represents a desirable property of the method 
for coast shoreline detection, a high value of Sens with a 
low value of Spec indicates that the segmentation includes 
many pixels that do not belong to the shoreline, i.e. there is 
a high FP value. Consequently, a segmentation method that 
makes it possible to achieve a high value of Sens and a low 
value of Spec may be acceptable if a post-processing step 
can remove possible FP.

Other metrics used include: Negative Predictive Value 
(NPV), False Positive Rate (FPR) and False Negative Rate 
(FNR). NPV expresses the proportion of negative results that 
are true negatives while FPR is calculated as the ratio of the 
number of incorrectly identified negative samples. FNR, in 
turn, is calculated as the ratio of the number of positive sam-
ples wrongly identified as negative (FN) to the total number 
of actual positive samples.

Other noteworthy metrics include the Dice Similarity 
Coefficient (DSC) [30]:

This metric allows one to determine the measure of similar-
ity between two sets of pixels representing REF and SEG 
segmentations, using defined components of the confusion 
matrix.

Error measurement based on the Dice coefficient (eD) 
[31]:

Another metric with properties similar to the Dice coeffi-
cient is the Jaccard coefficient (JSC) [30]:

However, if the Jaccard coefficient is used, the values 
obtained are usually lower than of the Dice coefficient.

The F1 score [32] combines the precision and recall into 
a single metric by taking their harmonic mean:

The metrics presented can produce values from the [0, 1] 
interval, which can also be expressed as percentages.

All metrics presented above are based on a pixel-to-pixel 
comparison between the image which is being segmented 
and the REF, but without taking into account that individual 

(2)DSC =
2 ⋅ TP

FP + FN + 2 ⋅ TP

(3)eD = 1 − DSC =
FP + FN

FP + FN + 2 ⋅ TP

(4)JSC =
TP

FP + FN + TP

(5)F1 = 2
Prec ⋅ Recall

Prec + Recall
=

2 ⋅ TP

FP + FN + 2 ⋅ TP

pixels are elements of the contour representing the coast 
shoreline. There are also metrics that take this into account.

Let us adopt the following symbols. Ref and Seg repre-
sent, respectively, the coastline contours produced by the 
segmentation method (SEG) and drawn manually by an 
expert (REF). ref and seg, in turn, denote points belonging to 
the respective contours. The nearest points from the Ref and 
Seg coastline contours are marked, respectively: dseg and dref .

Distance error ( eD ) [33]:

Calculated as the average distance computed from all s 
points on Seg to the closest point on Ref.

Root mean standard error (RMSE) [34]:

Calculated as the average squared difference between the 
approximate values and the actual value.

Average Euclidean distance (AED) [35]:

The AED calculates the segmentation performance between 
the Seg and Ref contours.

Pratt’s figure of merit (FOM) [36]:

A measure of similarity between two contours. The param-
eter � is a positive scaling factor.

Let us adopt additional symbols. Let N represent the 
same number of points determined on the contours Ref and 
Seg. The coordinates of a point of the contour Ref for a spe-
cific index n ∈ N will be represented by (refnx, refny) , while 
(segnx, segny) denotes the coordinates of the point of the con-
tour Seg, which was determined for the point (refnx, refny).

Modified average Euclidean distance (MAED) [37]:

MAED calculates the performance of segmentation between 
the contours Seg and Ref for a set number of points N.

Additional assumptions were made for calculating the 
MAED metric [37]. If no seg point is found for the defined 
point (refnx, refny) , then the maximum distance taken from 

(6)eD =
1

|Seg|

( |Seg|∑

seg=1

|dseg|
)

(7)RMSE =

√√√√ 1

|Seg|

( |Seg|∑

seg=1

| dseg|
)

(8)AED =
1

|Seg|
⋅

∑

x,y∈Seg

√
d2
ref
(x) + d2

ref
(y)

(9)FOM =
1

max{|Seg|, |Ref |}
⋅

|Seg|∑

seg=1

1

1 + d2
seg

⋅ �

(10)
MAED =

1

N
⋅

N∑

n=1

√
(segnx − refnx)

2

+(segny − refny)
2
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correctly made measurements will be calculated as the 
error. In addition, if several seg points were detected for the 
defined point (refnx, refny) , then the seg point which is the far-
thest from the point (refnx, refny) will be used for calculations.

The metrics presented in equations (6)–(10) are calcu-
lated based on the pixels (i.e. points) of the contours Ref and 
Seg, and the results are also expressed in pixels. However, 
the values obtained in pixels can also be converted to values 
expressed in meters. The lower the values produced by equa-
tions (6)–(10), the greater the accuracy of the segmentation 
method.

In this literature review, the assessment of segmentation 
results based on the metrics used in individual papers was 
not really addressed.

7  Thresholding

Thresholding produces a binary image from a grey-level or 
a colour image. The simplest binarization method works in 
such a way that for a given threshold intensity T:

– pixels with intensity values smaller than T are replaced 
with black pixels

– pixels with intensity values greater than or equal to T are 
replaced with white pixels

The T threshold can be set using global or local methods. 
Global thresholding methods consist in determining a single 
intensity threshold for the whole image. The Otsu method 
[38] is an example of a global threshold setting. This method 
is very often used in segmentation. This method consists 
in maximising the between-class variance which is a well-
known measure in statistical discriminant analysis. The main 
assumption is that properly thresholded classes should differ 
in the intensity values of their pixels, and, conversely, the 
threshold ensuring the best separation of classes in terms 
of their intensity values will be the optimal threshold. The 
between-class variance is expressed as follows:

where w1(t),w2(t) denote the probabilities of the two classes 
separated by a threshold t with a value from the interval 
[0, 255]. �i is a mean of class i ∈ 1, 2.

Global thresholding methods are fast. However, they 
may produce poor results for some image classes, e.g. if 
objects are non-uniformly illuminated. In this situation, it 
may be better to use different threshold values determined 
on the basis of local pixel intensity values for individual 
image fragments. One popular methods is variable thresh-
olding based on local image properties [39]. Let mxy and 
�xy denote the mean and the standard deviation calculated 

(11)�2
b
= w1(t)w2(t)[�1(t) − �2(t)]

2

for a set of pixel values in the Sxy neighbourhood centred 
on the (x, y) coordinates in the analysed image. Variable 
threshold values based on local image properties are as 
follows:

where a and b are certain positive constants set by the user, 
and

where mG is the global mean of the image. The image is 
segmented as follows:

where f(x, y) is the input image. This equation is calculated 
for all locations of pixels in the image, and for each (x, y) 
location, a different threshold is computed using pixels taken 
from the Sxy neighbourhood.

A detailed survey and evaluation of various threshold-
ing methods can be found in [39–41]. Figure 6 shows a 
general diagram of thresholding methods.

Liu and Jezek [42] presented a method consisting of 
several successive steps. First, the images are processed 
to reduce noise using the Lee filter [43], which enables the 
effective reduction of speckle noise but does not weaken 
the sharpness of the edges at the same time. Speckle 
noise is a granular pattern, a special kind of noise that is 
always present in SAR images and, unfortunately, reduces 
their quality. In the next step, the anisotropic diffusion 
filtering [44] is used, which is to amplify strong edges 
along coasts and suppress weak edges. Then, segmenta-
tion is performed using a locally adaptive thresholding 
method for specific square areas of the image, in which 
the local binarization threshold is determined separately. 
This threshold is determined on the basis of a histogram 

(12)Txy = a�xy + bmxy

(13)Txy = a�xy + bmG

(14)g(x, y) =

{
1 if f (x, y) > Txy
0 if f (x, y) ≤ Txy

Fig. 6  A diagram of the opera-
tion of thresholding. For global 
thresholding, one intensity 
threshold T is set for the whole 
image. For local thresholding, 
so–called local intensity thresh-
olds are determined for defined 
areas of the image. Prior to 
thresholding, various methods 
of source image pre-processing 
are used to help determine the 
intensity threshold or thresholds

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Review of Segmentation Methods for Coastline Detection in SAR Images  

1 3

analysis and by fitting a bimodal Gaussian curve. To elimi-
nate false, irrelevant edges, the Canny edge detector is 
used [39]. If there are background elements in the binary 
image, they are eliminated using the morphological opera-
tors of dilation and erosion [45]. The authors presented 
results for example SAR images of the coast of Antarctica, 
also demonstrating that the proposed methods can be used 
to segment optical satellite images.

The authors of [46] use a solution in which, first, the 
coherence obtained based on an interferometric pair of 
SAR images is determined. Coherence is a measure which 
is to enable distinguishing between the land and the sea. 
Additionally, noise is reduced from the image using a 
moving average filter. A fuzzy connectivity map based 
on normalized intensity values is also created. This is an 
iterative seed-growing process which is to account for the 
intensity-connectedness of individual pixels. The growth 
starts from a seed point (i.e. a pixel) of the coast selected 
by the user. Then, the binarization threshold to be used to 
separate pixels representing water and land is determined 
experimentally. The proposed solution is somewhat lim-
ited by the need to manually set the binarization threshold 
and then adjust it depending on the results obtained.

A similar approach is presented in [47], i.e. a coher-
ence map is determined based on an interferometric pair 
of SAR images. This produces lower resolution images 
as a result. Then, the number of low coherence pixels, 
i.e. those representing water, and their percentage in the 
image are calculated, which allows the threshold value to 
be obtained automatically. At the same time, the image 
with the original resolution is processed using the Gauss-
ian Markov random field (GMRF) [48]. This technique 
allows the spatial correlation of neighbouring pixels to be 
estimated. This is to help extract the shorelines of coasts. 
The image processed with the GRMF method is then bina-
rized using the automatically estimated threshold and the 
coastlines are obtained this way.

Buono et al. [49] proposed an approach where a multipo-
larization analysis of sea surface backscattering is carried 
out first to facilitate the subsequent segmentation process. 
Then, a global threshold Constant False Alarm Rate (CFAR) 
algorithm was developed, which produces a binary image 
representing water and land pixels. In this research project, 
SAR images were processed taking into account both differ-
ent types of polarization and the wind conditions at the time 
of data acquisition. This is an interesting study, as this sub-
ject was not analysed in other papers on coastline detection, 
while it turns out that in SAR images obtained under high 
wind conditions, wave-like patterns are clearly visible and 
make segmentation difficult. The last step is to extract the 
coastline from the binary image using the Sobel edge detec-
tor. This research is continued in [50], in which multipolari-
metric SAR imagery was used. In the first step, the authors 

used a non-local speckle filter [51] which reduces speckle 
noise, but simultaneously retains fine edges well. Then, they 
performed a metric evaluation to assess single- and dual-
polarization features, and then, they chose the appropriate 
parameter which would be used for extracting the shoreline 
of coasts. In the next step, they applied the (CFAR) thresh-
olding algorithm. After a binary image had been obtained, 
it is filtered using morphological operators to fill gaps and 
remove minor artefacts. Then, the Canny filter was used to 
extract continuous shorelines of coasts.

Pelich et al. [52] used a method that consists of three 
consecutive steps. First, they carried out a pixelwise aver-
aging operation [53] which is to reduce speckle noise. The 
advantage of this filtration method is that the original spatial 
resolution of SAR images is retained. Then, they used the 
multitemporal intensity average to isolate the shoreline of 
coasts, assuming that pixels representing the sea have low 
intensity values and pixels representing the land have high 
intensity values. In the next step, the image was divided 
into areas that have bimodal histograms of pixel brightness 
distribution. The areas obtained were binarized using adap-
tive thresholding. In the end, the region growing method 
was used in the binary image to achieve a clear separation 
of water from land.

The study in [54] is an attempt to propose a method of 
segmentation for both SAR images and images acquired 
with optical instruments. In the first step, the images are 
pre-processed using Gaussian and median filtration to reduce 
noise. Then, images are divided into rectangular areas in 
which thresholding is performed separately. The binariza-
tion threshold is set experimentally in each rectangular area. 
The shoreline of coasts is extracted using the Sobel edge 
detector. The results obtained may represent non-continuous 
coastlines. This is why the local neighbourhood of pixels 
(representing land and water) in places where there are dis-
continuities is checked and the appropriate pixels are added 
to obtain a continuous coastline.

In [55], a combination of classical image processing meth-
ods was used. Logarithmic scaling of pixel brightness was 
used during the pre-processing, followed by a median filter to 
improve image contrast and reduce noise. Then, edges were 
detected by applying a modified version of the Canny method 
[56] which uses a thresholded gradient magnitude cluster to 
determine edge segments. Then, if the results were still not 
accurate, the following methods were used iteratively: flood 
fill [57] to fill the extracted contours, and then thresholding, 
in which the set value of the brightness threshold was raised 
or lowered according to the visual evaluation of the obtained 
results.

A summary of the analysed thresholding methods is pre-
sented in Table 3.
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8  Active Contour Methods

Active Contour Models (ACMs) use curves (C) defined in 
the image domain, which can move and deform under the 
influence of internal forces ( Fint ) and external forces ( Fext ) 
to detect object boundaries (including coastlines in SAR 
images). As the active contour model requires initialising, 
a robust model should be insensitive to the initial posi-
tion from which the adaptation of the contour to find the 
coastline starts. In addition, this model should be resistant 
to noise occurring in the source image. Recent research 
has focused on achieving the best accuracy of edge detec-
tion taking into account the coastline geometry. These 
approaches allow coastlines with irregular contours to 
be identified, both in non-urbanized and urbanized areas. 
However, the required computational cost limits their 
application in high resolution images.

Active contour models can be divided into edge-based 
and region-based, and will be analysed below in detail.

8.1  Edge–Based

Edge-based models use an explicit representation of the 
curve C. These models use local edge information obtained 
from the image to fit themselves to the boundaries of the 
approximated shape. Edge-based ACMs use intensity- or 
gradient-derived external forces to find edges, and the pro-
gress of the segmentation is greatly influenced by contour 
initialisation. If it is initialised far from the edges sought, 
obtaining the correct segmentation may be problematic 
because of the local properties of the intensity gradient cal-
culated [58].

Parametric models [59] and geometric models [60] can 
be distinguished within edge-based models.

8.1.1  Parametric

The parametric model was introduced by Kass et al. [59] 
and it represents the curve C in a parametric form, that is:

Table 3  Summary of thresholding methods (evaluation metrics given in Table 2 )

References Testing Dataset Metrics results Pros Cons

[42] Canadian Satellite Radarsat-1
using C-band sensor,
Landsat 7, several images.

visual assessment This method was used for both 
SAR images and

those acquired with optical instru-
ments.

No information on how the 
parameters of the methods

used were determined. No use of 
metrics to evaluate

segmentation results
[46] Several SAR images acquired

by ERS-1 and ERS-2 Satellite.
visual assessment Using the coherence measure in 

the segmentation
process.

Many user interactions during the 
segmentation.

No use of metrics to evaluate 
segmentation results

[47] COSMO-SkyMed data sets,
2 SAR images.

TP = up to 57.4% Both non–urbanized and urban-
ized (port) regions

were included in experiments.

The experiments were carried out 
only for a few

selected SAR images
[49] Dual-polarimetric COSMO-

SkyMed
(CSK) SAR data, 4 SAR scenes.

TP = up to 92% Accounting for different types of 
polarization and

wind conditions prevailing during 
data acquisition.

The experiments were carried out 
for selected

geographical areas consisting of 4 
SAR scenes

[50] RadarSAT-2 spaceborne SAR
sensor, 2 SAR scenes.

eD up to 10 pixels A detailed assessment of segmen-
tations performed

taking into account various meth-
ods of filtering

SAR images.

The experiments concern only 
selected geographical

areas consisting of 2 SAR scenes

[52] Sentinel-1 radar satellite data,
2 SAR scenes.

Acc = up to 90.4 % High accuracy of the results 
obtained.

The experiments were carried out 
for selected

geographical areas consisting of 2 
SAR scenes

[54] Landsat 8 Satellite Sensor
(optical images), 19 scenes/

images
GF-3 radar satellite data,
2 SAR scenes/images.

RMSE = 126.4 meters
(combinatorial result)
RMSE = 378.7 meters
(for SAR images)

This method was used for both 
SAR images and

those acquired with optical instru-
ments.

The experiments were carried out 
for a selected

geographical area consisting of 2 
SAR images

[55] TerraSAR-X radar satellite data,
2 SAR scenes.

visual assessment The use of a combination of clas-
sical image

processing methods that are easy 
to implement.

No use of metrics to evaluate 
segmentation results.

Visual evaluation of the obtained 
results
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where � is the damping coefficient. The external force Fext 
allows the contour to move towards the edges searched for 
in the image, and contains information about the intensity 
or gradient values of the image. It can take different forms 
depending on the adopted method. Fint has the following 
form:

where c ∈ [0, 1] , and p and q are weight parameters. These 
parameters allow the curve C to be controlled, influencing its 
flexibility and preventing its bending, respectively. A general 
diagram of parametric ACMs is shown in Fig. 7.

Shang et al. [61] proposed a method for detecting coast-
lines in SAR images that integrates the watershed transfor-
mation [62]1 and the gradient vector flow (GVF) active con-
tour model [63]. The watershed segmentation is to simplify 
obtaining the initial contour for the GVF active contour. 
In [61], Fext consists of the Gradient Vector Flow (GVF) 
term [63] which allows the map of the image edge to be 
calculated. The authors applied an improved GVF term to 
make curve evolution more stable and controlled than in the 
original model [63]. The method used in [61] is called the 
controllable GVF (CGVF) snake model. However, despite 
the improvements made, it was found that after the initial 
contour has been obtained, the CGVF model may require 
repeating its evolution several times in order to obtain sta-
ble and satisfactory results, which unfortunately extends the 
computation time. Another limitation is the manual deter-
mination of sea and land markers for the watershed trans-
formation, so the process of determining the initial contour 
and also of the segmentation is not automated. However, 
the initial contour obtained is close to the coastline, which 
facilitates its subsequent delineation.

The use of the existing methods, namely ACM-based or 
edge-detection-based, to extract the coastline from SAR and 
polarimetric SAR images can be very limited, particularly if 
the analysed images are noisy, and also because the shoreline 
of the coast is complex and often irregular. To eliminate 
these limitations and improve segmentation results as well as 
the computational efficiency, authors combine various meth-
ods, as in the paper [61]. Another way is to use two differ-
ent ACMs, i.e.: a region-based one [64]2 to extract a coarse 
coastline, and then a parametric edge-based ACM [65] to 
improve this coarse coastline. However, a region-based 

(15)�
�C

�t
= Fext(C) + Fint(C)

(16)Fint(C) =
�

�c
(p

�

�c
) −

�2

�c2
(q

�2

�c2
)

ACM [64] is used for low resolution images obtained using 
the multi-look processing technique [66]. The coast shore-
lines C produced in this way form the initial contour for the 
parametric ACM [65], which then performs the segmen-
tation in the original high-resolution images. The authors 
presented precise results of extracting coastlines, also in the 
vicinity of ports, for examples of SAR and polarimetric SAR 
images they used.

8.1.2  Geometric

Geometric models [67, 68] can be described by the follow-
ing equation:

where S is a speed function and n denotes a unit normal vec-
tor to C. The speed function can be defined as [69]:

– a certain constant term (e.g. inflation term) which is to 
allow the contour curve to deform along the C normal

– a deformation term which depends on the curvature � of 
the curve C.

As no curve parameterization has been introduced in the 
geometric model, the evolution of the curve C is influenced 
only by geometric constraints. As a result, topology changes 
of the curve can be handled correctly, which was problem-
atic in parametric models. The Level Set (LS) method [70] 
is usually used to implement geometric models:

Where Φ = Φ(C) denotes the LS function.
An LS formulation can be presented that includes a regu-

larization term which should allow approximating poorly 
visible edges and also deal with gaps occurring in edges. 
This is proposed in [71, 72], namely:

Different definitions of speed functions can be found in the 
literature, mainly based on gradient information. A diagram 
of the operation of a geometric model is shown in Fig. 8.

Wei et al. [73] presented an approach where the sea-
land boundary is detected using a geometric active-contour 
model (GAC) and the LS function. In [73], the signed pres-
sure (speed) function [74] has been used as the boundary 
stop condition of the GAC model. This function utilises a 
Gaussian operator to facilitate segmenting weak bounda-
ries that may be present in low-contrast SAR images. In 
order to reduce the number of calculations, the authors use 

(17)
�C

�t
= Sn

(18)
�Φ

�t
= S(�)|∇(Φ)|

(19)
�Φ

�t
= S(�)|∇(Φ)| + ∇(S)∇(Φ)

1 Watershed segmentation is described in Subsection 10.3.
2 Region-based ACM is presented in Subsection 8.1.3
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grid sampling points which are converted into a certain 
number of small disks and then allow initialising the GAC 
model. The study in [73] contains a detailed analysis of the 
computational efficiency of the solutions applied, also in 
comparison to other methods, taking into account different 
initialisation methods.

[75] presents a GAC model with the use of an LS func-
tion and the equation (18), and with an edge-stopping func-
tion based on [72]. Ouyang et al. [75] proposed a heuristic 
using a binarization and an analysis of groups of pixels with 
a defined neighbourhood to improve the results of extract-
ing edges representing shorelines of coasts. In addition, a 
filter was used to average the resolution of SAR images, 
which is to eliminate speckle noise and is also expected to 
improve the computational performance of the ACM. [75] 
presents the segmentation time for several analysed SAR 
images with the resolution of 256×256 pixels, representing 
non-urbanized regions.

8.1.3  Region Based

A region-based ACM was proposed in [76, 77], with a 
deformable curve C moving according to defined foreground 
and background region constraints. These two regions are 
assumed to be statistically homogeneous, and the main dif-
ferences in this class of methods consist in the way that 
region statistics are determined. Compared to edge-based 
ACMs, region-based models can detect the edges of many 
objects and can fit more easily when the edge is irregular, 
benefitting from the advantages of a more adaptive topology. 
However, despite significant advantages, region-based mod-
els have a much higher computational cost than edge-based 
ACMs [60]. What is more, grey-level images can also often 
have statistically non-homogeneous regions [76, 77] which 
may cause incorrect segmentation results. In region-based 
ACMs, a minimisation of energy based-segmentation with 
the use of a level-set (LS) is considered [76, 78]. The follow-
ing energy functional for the image I is assumed:

whereas inside(C), outside(C) and c1 and c2 denote, respec-
tively: regions inside and outside the contour C, while c1 
and c2 are two constants approximating the image inten-
sity inside and outside the contour C. 𝜈 >= 0 , 𝜆1 > 0 and 
𝜆2 > 0 are fixed parameters. The equation (20) is defined 
globally (i.e. for the whole image) and, unfortunately, does 

(20)

F(c1, c2,C) = � ⋅ length (C)

+ � ⋅ area(inside(C))

+ �1 ∫outside(C)

|I(x) − c1|2dx

+ �1 ∫inside(C)

|I(x) − c2|2dx

not take into account local information. Consequently, the 
approaches [79–81] were proposed to enable the best fit-
ting of the contour to the shoreline of coasts, taking into 
account their local characteristics and the noise found in 
SAR images.

Liu et al. [79] proposed the iterative use of the LS for-
mula to gradually approximate the coastline. First, the 
ACM is applied to the original resolution image to perform 
a coarse segmentation, which is preceded by the boxcar fil-
tration [82] of the SAR image. Then, the resulting segmen-
tation is gradually refined using pre-processing and the 
ACM, based on an analysis of the calculated offset of the 
produced contour superimposed on the source image from 
the actual shoreline of the coast. In the following steps, 
image filtering and then segmentation are carried out only 
for image areas in which the offset of the extracted contour 
from the coastline is significant. Finally, binarization is 
executed to remove small areas not belonging to the coast, 
and water and land are extracted. The authors presented 
results for both single-polarization and quad-polarization 
SAR images, and also reported the quadratic computa-
tional complexity of the presented ACM.

Modava et al. [80] presented an approach in which the 
coastline is delineated in two successive steps. The first 
step consists in applying a local spectral histogram (LSH) 
[83] and is to enable a coarse land/sea segmentation. The 
LSH method uses spatial information and allows segment-
ing images with both textured and non-textured regions. In 
addition, this method is not sensitive to the exact location 
and orientation of texture elements. In the LSH method, 
speckle noise does not affect the segmentation results so 
there is no need for pre-processing methods to reduce it. 
In the next step, a region-based LSM [80] is proposed 
to refine the segmentation results produced by the LSH 
method and to precisely extract the coastline. The study 
in [80] presents a hierarchical LS regularization using two 
Gaussian kernels. The authors presented the segmentation 
results for single polarization SAR images including very 
narrow regions.

A similar approach was proposed in [81], where single 
spectral-textural features (STFs) [84] are used to enable 
the initial land/sea segmentation. In the next two steps, the 
shoreline of coasts is detected and refined using two active 
contour methods, i.e.: the global region-based level set 
method (GRB-LSM) and the local region-based level set 
method (LRB-LSM). The GRB-LSM and LRB-LSM meth-
ods utilise the region-based signed pressure force (SPF) 
function [81]. The SPF function allows one to flexibly con-
trol both the expansion of the contour if it lies inside the 
object being approximated and its contraction when the it 
lies outside the object. However, unlike in the solution pro-
posed in [81], the authors presented two separate iterative 
equations of active contour methods, where the equation 
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of the GRB-LSM model applies the global information 
of the image to get closer to the shoreline of coasts, while 
the iterative equation of the LRB-LSM model uses local 
image information to improve the results, including con-
tour smoothness. In [81], experiments were carried out on 
SAR images recorded in different microwave bands, i.e.: L-, 
X-, and C-bands of ALOS PALSAR-2, TerraSAR-X, and 
Sentinel-1A.

In [85], the approximation of the shoreline of the coast in 
SAR images was carried out in several steps. At the begin-
ning, the spatial fuzzy clustering method [86] is used to ena-
ble initial segmentation. The clustering method yields good 
results for noisy images. Then, the Otsu method binarization 
is performed, and then morphological filters are employed to 
eliminate minor, unconnected areas of the image. The SAR 
image processed this way becomes the starting region for a 
region-based LSM [87] which produces the final shape of 
the coastline. The authors emphasize that they used an ACM 
[87] which does not require reinitialisation and is much more 
computationally efficient than the original model [76].

Mao et al. [88] used a method that calculates a global 
matrix of oriented gradient of histograms on wavelet sub-
bands. This is to allow an accurate edge information extrac-
tion for detecting the shoreline of the coast. Then, binariza-
tion is carried out. In the last step, segmentation is performed 
using a region-based ACM [76]. The authors modified the 
original version of the ACM [76] by introducing constraints 
of extracted edge information, including a constraint of pixel 
intensity information. This is because local image informa-
tion may be omitted in this ACM model [76]. The authors 
focus on the accuracy of segmentation results for example 
SAR images of a specific resolution. However, they do not 
mention the computational efficiency of the methods used. 
This method can be assumed to be inefficient because apart 
from pre-processing methods including wavelet transforms, 
it uses an ACM in which reinitialisation is necessary.

Pre-processing is aimed at reducing noise in the image, 
and also improving segmentation results produced by 
ACMs. In addition, the use of binarization produces a region 
which allows the initialisation of ACMs [76, 79, 85]. This 
solution is also used in [89]. After the noise is reduced with 
Gaussian filtering and a histogram transformation, the pro-
cessed image is binarized and then a region-based level-
set ACM is employed. In the post-processing step, surplus 
groups of pixels are removed using the opening and closing 
morphological operators [62]. Finally, shorelines of coasts 
are extracted from the binary image obtained. Shu et al. [89] 
tested the results for SAR images with a resolution of 1024×
1024 pixels, depicting both non-urbanized and urbanized 
areas. The manual determination of the binarization thresh-
old, required for each subsequent image, limits the proposed 
approach to some extent.

Huang and Zhang [90] used two ACMs. The first [76] 
executes an approximate, global segmentation, determining 
the starting contour for the next ACM which computes local 
statistics of neighbourhood regions and produces the final 
segmentation. The second model used is called a local sta-
tistical active contour. In this model, thanks to combining a 
penalizing term of a level set function, there is no need for 
the periodic reinitialisation to repair the level set function 
degraded during the evolution of the contour in subsequent 
iterations.

Table 4 summarizes the segmentation results obtained 
using active contour methods.

9  Machine Learning Methods

Machine learning can be divided into two main categories: 
supervised and unsupervised. In supervised learning, input 
data includes a set of training examples (e.g. a set of ready, 
correctly conducted segmentations) which are then used to 
train the learning model. In unsupervised learning, only the 
data set is provided with no correct output results. So, in 
this approach, pattern segmentations are not used or are not 
present in the available data set.

9.1  Unsupervised

Unsupervised learning methods process specific features 
taken from the statistical distribution using data from the 
input set. Then, these methods should learn to label every 
input image, having no information about pattern labels. 
Image segmentations are obtained based on indeterminate 
features like the intensity and gradient. The results obtained 
may be worse than produced by supervised methods. How-
ever, if there are no ready pattern segmentations, the use of 
these methods is perfectly appropriate. Figure 9 shows an 
example of a typical unsupervised learning diagram.

Liu et al. [91] presented a solution in which a texture 
feature set must be created at the beginning. Six difference 
of offset Gaussian (DOOG) filters and also two different dif-
ference of Gaussian filters [92] were used for this purpose. 
Then, the principal component analysis method (PCA) [93] 
was used to limit the amount of superfluous information 
obtained in the previous step and to optimize the features 
obtained. In the next step, the K-means++ algorithm [94] 
was used to simplify selecting the right initial seeds for the 
K-means clustering method [95] which produced a coarse 
land/sea segmentation, unfortunately containing many 
superfluous regions. To eliminate this oversegmentation, the 
adaptive homogeneity test (AHT) was used [96]. The AHT 
method compares the feature distributions of two regions 
and is a criterion of the similarity of regions, allowing them 
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to be properly merged, separately for pixels representing the 
sea and land.

Meng et al. [97] presented an approach in which SAR 
images were pre-processed to reduce speckle noise using the 
wavelet decomposition algorithm [98]. Then, the classical 
method of Fuzzy C means (FCM) [86] was used to extract 
clusters containing water and land areas. After the FCM 
method was initialised, clusters representing water and land 
were separately, iteratively merged. A way of distributing 
data into clusters was assumed that maximises the dissimi-
larity between the different clusters while simultaneously 
minimising the similarity degree between the pixels divided 
into the same cluster (water/land). The experimental data 
came from two satellites, namely: Gaofen 3 and Sentinel 
1, for which a comparison of the produced coast shorelines 
was presented.

In [99], the authors used data from images produced 
both by SAR and by the Interferometric Synthetic Aperture 
Radar (inSAR). First, non-local filtering [100] was applied 
to amplitude and coherence images acquired with the inSAR 
technology. Then, Gaussian filtering was used for specified 
variance values, which produced a certain set of processed 
images. In the next step, segmentation was performed using 

the K median clustering method [101] which is a version of 
the better-known K-means clustering method [95]. The dif-
ference between these approaches is that the median [101] 
is used instead of the mean [95] to calculate centroids in 
clusters. Then, an averaged binary image is produced after 
checking the common number of pixels representing water 
and land in the images obtained in the previous step. If there 
are separate, small groups of pixels (i.e. noise and/or inland 
water bodies), a morphological fillhole algorithm [62] is 
used to eliminate them from the binary image. At the end, 
the extracted shorelines of coasts are superimposed on a 
SAR amplitude image in order to compare them with pat-
tern contours.

Table 5 summarizes the results of segmentations per-
formed using unsupervised learning methods.

9.2  Supervised

Segmentation is performed using specific features (e.g. 
image intensity, gradient) obtained from images from the 
training set. The machine learning model is trained using 
defined features and the appropriate labels, obtained on the 
basis of segmentations prepared by experts. Then, after the 
training process, this model is used to segment images from 
the test set. A general diagram of supervised learning is 
shown in Fig. 10.

Fig. 7  A diagram of the parametric model operation. The segmen-
tation process consists in the evolution of the parametric curve C as 
a result of applying the external force ( F

ext
 ) and the internal force 

( F
int

 ). F
ext

 is defined based on image data, such as the intensity or 
gradient. F

int
 has set parameter values which are to allow controlling 

the curve C, influencing its flexibility and preventing its bending

Fig. 8  A diagram of the operation of a geometric model. The contour 
is evolved using the level set method in which the level set function 
( Φ ) must be specified. After the contour is initialised, its evolution is 
controlled by the speed function. After the contour has finished evolv-
ing, its current position enables the segmentation and corresponds to 
the zero-level of the function ( Φ)
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Fig. 9  Diagram of unsupervised learning. The segmentation model 
is developed on the basis of extracted, indeterminate features of the 
source image, such as its intensity and gradient. The model is then 

evaluated and fine-tuned to obtain the best segmentation results. The 
evaluation and fine-tuning of the model are usually made possible by 
the distance error or the root mean standard error

Fig. 10  A diagram of super-
vised learning. At the training 
stage, image features such as 
the intensity and gradient are 
extracted from the images in the 
training set. These features and 
labels, which are pattern seg-
mentations, are used to train the 
machine learning model. Then, 
the trained model can be used to 
segment new, previously unused 
images from the test set
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Convolutional Neural Networks (CNN or ConvNet) are 
a class of artificial neural networks (ANN) mainly used for 
processing data with a grid-like topology, such as digital 
images. To separate water and land pixels, a CNN uses pat-
terns taken from a training set containing images with anno-
tations. The CNN can then make predictions about images 
from the testing set and it works very well for a large quan-
tity of labelled data. As the CNN utilises fully connected 
layers, it can be used directly for the segmentation [102, 
103]. During the training of the CNN, the convolutional lay-
ers of the network can automatically generate features and 
then combine them into hierarchical predictive models [104, 
105]. A major advantage of CNNs is that they can model 
patterns of objects of variable shape.

Artificial neural networks (ANN) that make deep learning 
possible can have an architecture with 10+ or even many 
more layers. Network models that can consist of 100+ lay-
ers have already been developed [106, 107]. Deep neural 
networks can successively and systematically filter data 
from the training set, and then fine-tune and extract impor-
tant features that are later used in the pattern recognition or 
classification process. However, deep learning methods can 
only produce good results if there is a sufficient quantity of 
training data and if it has been correctly selected. If there 
is little training data and if the training set contains incom-
plete annotations, it is worth using a dense convolutional 
network called the U-Net [108, 109] for the segmentation. 
This model features two paths, namely the contraction (also 
known as the encoder) and the expansion (also known as the 

Fig. 11  Diagram of the U-Net 
model [108]. Every rectangle 
corresponds to a multi-channel 
feature map. The number of 
channels is given at the top of 
the rectangle, and the size of 
features is shown at its lower 
left edge. White boxes represent 
copied feature maps. The arrows 
show specific operations as 
listed in the right legend

Table 5  Summary of coastline segmentation methods using unsupervised learning (evaluation metrics are given in Table 2 )

References Testing Dataset Metrics results Pros Cons

[91] Sentinel-1A radar satellite data,
3 SAR images.

RMSE = up to 4.19 pixels Allows obtaining smooth and 
precise contours approximating 
shorelines of coasts.

Segmentations were not car-
ried out for areas with port 
infrastructure and/or highly 
urbanized areas.

[97] Gaofen-3, Sentinel-1 radar
satellite data, 4 SAR images.

RMSE = up to 5.07 meters Segmentation results were pre-
sented for both non-urbanized 
areas and those with port infra-
structure.

Small number of test images.

[99] TanDEM-X satellite,
2 SAR scenes.

eD up to 34 meters Segmentation results are presented 
for both non-urbanized and 
urbanized areas.

The experiments were carried 
out for selected geographical 
areas consisting of 2 SAR 
scenes.
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decoder), which is symmetrical to the contracting path. The 
encoder is a classical convolutional network consisting of 
convolutional and maxpooling layers. The decoder, in turn, 
is used to enable the precise localization using transposed 
convolutions. The connection path between the contracting 
and expanding paths (also called the bottleneck) includes 
two successive 3x3 convolutions followed by a ReLU acti-
vation. The literature also describes newer varieties of this 
model, such as U-Net++ [110] or U-Net 3+ [111]. The 
U-Net++ model has an architecture with nested and dense 
skip connections which are to improve its segmentation 
accuracy. A further development of this model is the U-Net 
3+, whose architecture contains full-scale skip connections 
and deep supervisions. In practice, this makes it possible 
to obtain low-level details with high-level semantics from 
feature maps in different scales [111] and limits the number 
of parameters required. To segment the coastline based on 
SAR images, the U-Net model and its certain modifications 
proposed by article authors were most frequently used. A 
diagram of the U-Net model is shown in Fig. 11.

Figures 1, 2 and 3 show that the shorelines of coasts differ 
a lot, especially when non-urbanized and urbanized areas, 
e.g. in the vicinity of ports, are compared. Unfortunately, 
so far there have been no publicly available datasets with 
annotations and pattern segmentations prepared by experts, 
which could be used to train neural networks and then evalu-
ate their performance on a test set. Authors of papers use 
private, inaccessible collections of images that contain pat-
tern segmentations. This is a significant limitation, as it is 
difficult to uniformly assess and verify the results obtained.

In [29], a U-Net was used for a segmentation allow-
ing coast shorelines to be detected in SAR images. In this 
research project, a very small set of images was available (25 
images in the training set and 30 images in the test set). This 
is why, to create new image samples, the authors applied 
data augmentation to the training set in a way that also 
reduced the undesirable overfitting in the learning model. 
In particular, they used intensity and spatial augmentation 
and multi-sample mosaic augmentation. Intensity augmen-
tation includes specific image processing techniques, i.e.: 
gamma, additive, or multiplicative intensity shifts, blurring, 
multiplicative or additive noise, blurring and cropout [112]. 
Spatial augmentation, in turn, encompasses the following 
transformations: rescale, flips, creating random patches, 
rotation, mosaicing. The authors proposed four models with 
different activation functions in the last layer (i.e. softmax 
or sigmoid), and also used specific loss functions (that is 
Dice+Focal [113, 114] or binary cross-entropy [115]). [29] 
contains a discussion of various possible U-Net network 
configurations and the impact of specific processing methods 
on improving or worsening segmentation results.

Heidler et al. [116] developed a HED-UNet to perform 
a segmentation allowing Antarctic coast shorelines to be 

extracted from images acquired with synthetic radar sen-
sors. The proposed solution is a combination of a holisti-
cally nested edge detection network (HED) [117] and a 
semantic segmentation framework that uses a UNet [108]. 
The HED is a CNN-based edge detection system that can 
be used for both natural and grey-level images. The results 
produced using classical edge detection methods are very 
often distorted by various factors such as: speckle noise, 
uneven lighting brightness, distortions from imaging arte-
facts, rough surfaces, wave crest lines, and by inland struc-
tures whose appearance is very similar to the shorelines 
of coasts. Unfortunately, this makes pre-processing and/or 
post-processing or even manual corrections necessary. What 
is more, classical edge detection methods cannot recognize 
the meaning of objects outside and inside the edge line and 
hence the result is insufficient for labelling land and sea 
areas. However, combining the results produced using edge 
detection and semantic segmentation can solve this problem 
[116]. The authors presented a comparison of the segmenta-
tion results produced by various neural network models as 
well as several popular edge detection techniques.

Zhang et al. [118] developed an approach in which the 
methods presented in [42] were first used to determine the 
approximate location of water lines in high-spatial-resolu-
tion SAR images. Then, the authors proposed a U-shaped 
Deep CNN-based model for executing the segmentation. In 
[118], the authors used solutions from the U-Net 3+ model 
[111] utilising full-scale skip connections which make it 
possible to obtain enough information from the full-scale 
feature map. The authors found that the direct use of the 
U-Net 3+ model would be very time consuming and could 
also produce incorrect results due to the very high fore-
ground-background class imbalance. This is because coast-
lines make up less than one percent of the whole image. To 
solve the problem of class imbalance, an �-balanced cross-
entropy loss function [113] was used.

The U-Net model was also used in [119]. This model was 
used to perform a segmentation allowing the shorelines of 
the coast of the island of Taiwan to be detected. The results 
of the segmentation process are binary images which require 
postprocessing, i.e. extracting edges with the Canny edge 
detection algorithm and using specific morphological opera-
tors to achieve continuous boundary lines.

[120] presents a shoreline detection method using an 
artificial neural network (NN). This approach uses the feed-
forward NN to classify the pixels into two categories, that 
is land and sea. Then, the location of the shoreline is deter-
mined as the boundary between these two groups of classi-
fied pixels. The structure of a feedforward NN consists of 
four layers, i.e.: an input layer, two hidden layers, and an 
output layer. The shoreline of coasts was extracted using a 
two-dimensional horizontal wavelet obtained as a product 
of Haar and Gaussian functions.
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De Laurentiis et al. [121] proposed the joint use of an 
autoencoder and a Pulse-Coupled Neural Network (PCNN) 
[122, 123] to extract shorelines of coasts. Autoencoders are 
simple learning networks whose task is to transform inputs 
into outputs with as few distortions as possible on the output 
[124]. In practice, autoencoders are used to reduce distor-
tions, including speckle noise, in SAR images. The use of a 
parameter adaptive PCNN in the next step can allow achiev-
ing high segmentation accuracy at a low computational cost 
[125]. The authors compared the results they obtained to 
those of several other methods, including approaches that 
are combinations of different methods, e.g. a Principal 
Component Analysis [126] and a PCNN (PCA-PCNN), an 
Artificial Autoencoder Neural Network and an Expectation-
Maximization (EM) image segmentation [127] (AAN-EM) 
and also PCA-EM.

Table 6 summarizes the results of segmentations per-
formed using supervised learning methods.

10  Other Segmentation Methods

This section presents segmentation methods that are repre-
sented by one or two research papers, i.e.: graph-based, edge 
tracing and watershed methods. As these methods constitute 
separate approaches, they are described in separate subsec-
tions. Segmentation results obtained for these methods with 
the use of metrics employed in them are shown together in 
Table 7.

10.1  Graph‑Based

In graph-based approaches [128, 129], the image is consid-
ered as a graph G = (V ,E) , where V is a set of nodes (i.e. 
pixels) and E ⊆ V × V  is a set of ordered pairs of elements 
from V, i.e. edges. If (u, v) ∈ E implies that (v, u) ∈ E and 
vice versa, then this means that the graph is directed. If not, 
the graph is undirected. In a digital image, E is a set of undi-
rected edges between pairs of pixels. It is also assumed that 
the weight of the edge w(u, v) is a function describing the 
similarity between nodes u and v. The set V is divided into 
subsets by a graph cut. The graph cut is a division of the set 
V into two subsets A and B such that

where the ‘cut’ is done by removing the edges connecting 
subgraphs A and B. Image segmentation can be interpreted 
in the form of a graph cut as follows [129]:

(21)A ∪ B = V and A ∩ B = �

(22)cut(A,B) =
∑

u∈A,v∈B

w(u, v)

The minimum cut of a graph [129, 130] (min-cut) is defined 
as the minimum sum of weights of edges. This means that 
the lower the edge cost, the weaker the binding as a region 
is. Consequently, edges whose cost is low generally become 
parts of the final edge. Instead of calculating the sum of 
weights of edges, a measure of ‘disassociation’ can be used, 
which computes the cost as a fraction of the total number of 
edge connections to all nodes (i.e. pixels) in the graph. This 
measure is called the normalized cut (Ncut) [128, 132]. It is 
defined as follows:

where the cut(A, B) is given by eq. (22) and

is the total connection from nodes in A to all nodes in the 
graph. The definition of assoc(B, V) is similar.

The following graph partitioning methods are used to sep-
arate water and land pixels: minimum graph cuts [129, 130] 
in [131] and a normalized graph cut [128, 132] in [133]. 
Figure 12 shows the general diagram of the operation of 
graph-based segmentation methods.

The approach presented in [131] utilises several image 
pre-processing techniques to simplify performing a segmen-
tation that separates water and land pixels using the min-cut 

(23)
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)

(24)assoc(A,B) =
∑

u∈A,z∈V

w(u, z)

Fig. 12  A diagram of the opera-
tion of graph-based segmenta-
tion methods. First, a graph 
is created based on: (a) pixels 
belonging to two different 
classes, i.e. water and land, 
which can be marked manually 
by the user (using labels), (b) 
and/or image features extracted 
using the appropriate methods. 
Then, a specific method of 
dividing the graph, called the 
graph-cut, is used to segment 
the entire image, i.e. to divide 
it into pixels representing water 
and land. The graph-cut is 
made by minimising the cost 
term, which depends on the 
image gradient and the coastline 
shape, and divides the graph 
into subsets of water and land
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method [129, 130]. First, a morphological component analy-
sis (MCA) [134–136] is applied to decompose source SAR 
images into a texture image which includes speckle and 
spatial patterns, and an outline image. The MCA method 
requires a dictionary which is a matrix of parameters rep-
resenting spatial patterns of image intensity. The dictionary 
is used to conduct the process of training spatial patterns. 
The authors note that the training process does not require 
any training data and is automatic. The learned dictionary 
has atoms (in columns) for outline and texture, and both 
are mixed in the dictionary. Atoms are small patches of the 
image of a fixed size. Then, the outline image is used for 
further processing. This image is smoothed using a non-local 
means filter [137] to reduce noise still present in it. In the 
next step, the segmentation is performed using the min-cut 
method [129, 130] which allows reflecting the distribution 
of pixel values and differences compared to adjacent pixel 
values. In [131], the edge cost for the graph cut technique 
is determined using histograms of the distribution of pixel 
values of the sea side and the land side. The sea-side and 
land-side pixels are selected by the user (only one pixel on 
each side). The result is a binary image representing sea and 
land areas. The authors assumed that the boundary between 
these two areas is the shoreline of the coast. An optional 
step is to use the parametric ACM [59] model when the 
shorelines of the coasts are not smooth.

Ding and Li [133] presented a solution that consists 
of three image processing steps, namely: pre-processing, 
land-sea segmentation, and then post-processing. Dur-
ing pre-processing, the image is prepared for subsequent 
segmentation using the following methods: speckle noise 
reduction, geometric correction, and then anisotropic dif-
fusion filtering. Speckle noise is reduced using the Lee fil-
ter [43]. Then, the geometric correction avoids geometric 
distortions of the SAR image. For this purpose, a defined 
number of Ground Control Points (GCPs) can be used in 
the source image [138]. The anisotropic diffusion filtering 
[44] amplifies strong edges along the coastline and at the 
same time eliminates weak edges, and also unifies changes 

in pixel intensity for the water and land area. The land/sea 
segmentation step allows the image to be divided into a cer-
tain number of blocks, and then every block is partitioned 
into regions using the multiscale normalized cut segmenta-
tion method (MSNCS) [132]. The MSCNS method forms 
groups of pixels that represent homogeneous regions of the 
image. The MSCNS method forms groups of pixels belong-
ing to homogeneous regions of the image, representing water 
and land. The MSCNS method is an extension of the basic 
normalized cuts framework [128] using a multiscale graph 
partitioning approach with linear running time [132]. In the 
post-processing step, waterline edge pixels are identified, 
which are then superimposed on the source image, and a 
manual correction is performed if the obtained results do not 
fit the actual shoreline of the coast. In [133], SAR images 
of non-urbanized and suburban areas were analysed. The 
authors focused on conducting experiments to determine the 
shoreline movement of the study region within a specified 
time period.

10.2  Edge Tracing

Methods allowing coastal shorelines to be traced in SAR 
images must be initialised using one or more seed points, 
and then subsequent points are determined using data calcu-
lated in the analysed image. Seed points must be initialised 
using image pre-processing methods or manually. Tracing 
methods can be useful for segmenting very irregular and 
non-continuous coast shorelines for which a certain number 
of seed points should be initialised, separately for individual 
coast sections. A general diagram of segmentation methods 
based on tracing the shoreline is shown in Fig. 13.

[139] proposes a method of tracing coastlines based on 
information obtained about edges identified in SAR images. 
First, an edge magnitude map which is to facilitate identify-
ing the land/sea boundary is created in such a way that the 
magnitude of pixels on the boundary is greater than in non-
boundary regions. This map is produced using the calculated 
statistical properties of the brightness distribution of pixels 

Fig. 13  A diagram of the operation of segmentation methods based 
on edge (i.e. coast shoreline) tracing. Methods that allow tracing 
coast shorelines in SAR images require the initialisation of one or 
more seed points. After the initialisation, a new point is obtained by 

finding the best fit among all possible new positions (tracing hypothe-
ses) to the shoreline being identified. The fit is computed using image 
features calculated in the neighbourhood of the last determined point
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characteristic for water and land. The seed point from which 
edge tracing starts is the pixel with the maximum magnitude 
in the map created. The next point is the pixel with the great-
est magnitude in the determined neighbourhood. In each 
subsequent step, the authors determine the local neighbour-
hood of pixels and the permissible direction of identifying 
points in order to prevent incorrect results. In the proposed 
approach, the authors did not use the Canny edge detector, 
which was utilised in the segmentation methods presented 
earlier [42, 49, 55, 119] and is a very popular technique 
in digital image processing. This method uses information 
about the image gradient and allows edges to be obtained 
based on two user-defined image brightness thresholds, i.e. 
the high and low brightness thresholds [39]. However, the 
use of these parameters also has some limitations, e.g., it is 
difficult to determine whether the selected threshold values 
will be appropriate for all the SAR images analysed. If not, 
the user has to intervene to set them again.

10.3  Watershed

The watershed segmentation is a region-based method that 
splits an image into different non-overlapping regions. It 
uses concepts from topography, which are expressed with 
specific operators of mathematical morphology [62]. Popu-
lar watershed segmentation algorithms include: the water-
shed by immersion segmentation [140] with a linear time 
complexity in relation to the number of input image pixels, 
as well as an approach called the power watershed [141] that 
already has a quasi-linear complexity. The power watershed 

Fig. 14  A diagram of the operation of watershed segmentation meth-
ods. After the image gradient has been determined, a watershed seg-
mentation is performed. If the results obtained are incorrect due to 
oversegmentation, a specific method is used to obtain correct results
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approach was developed by adding the maximum span-
ning forest [142] for watershed segmentation to an existing 
combination of algorithms used for image segmentation, 
namely: graph cut [129], random walker [143] and shortest 
path [144].

Unfortunately, a problem that often occurs in the water-
shed segmentation is a great fragmentation of regions, 
called oversegmentation. As a result, these regions may 
not correspond to the shapes of the objects that need to be 
extracted from the image. In order to eliminate oversegmen-
tation, auxiliary transformations are performed before and 
after the watershed segmentation. They can include initial 
image filtering [140, 142], using markers [62, 140], merging 
regions by maximising the average contrast [145], or using 
a region adjacency graph (RAG) [146]. Figure 14 shows the 
general diagram of the operation of watershed segmentation 
methods.

[147] proposes an approach which extracts shorelines 
of coasts using the watershed segmentation by immersion 
[148]. However, before the actual watershed segmentation, 
the image has to be pre-processed to eliminate speckle noise 
and prevent oversegmentation. For this purpose, the speckle 
reducing anisotropic diffusion (SRAD) method is used 
[149]. In the SRAD method, edge detection is performed 
by the instantaneous coefficient of variation (ICOV) opera-
tor that enhances the edges. The ICOV operator combines 
a normalized Laplacian operator and a normalized gradient 
magnitude operator. Then, after the watershed segmenta-
tion, RAG [146] and a similarity metric are used to merge 
fragmented regions and obtain shorelines of coasts.

11  Discussion and Conclusion

The literature review included 32 papers:

– 11 papers presenting active contour methods [61, 64, 73, 
75, 79–81, 85, 88–90]

– 9 papers concerning machine learning methods [29, 91, 
97, 99, 116, 118–121]

– 8 papers presenting approaches that use thresholding [42, 
46, 47, 49, 50, 52, 54, 55]

– 2 papers presenting graph-based approaches [131, 133]
– 1 paper using the watershed segmentation method [147]
– 1 paper presenting the results of an edge-tracing method 

[139]

According to it, ACMs are the most commonly used, as they 
are described in 11 articles in total. There are slightly fewer 
papers on machine learning and thresholding. However, 
thresholding can also be a supporting technique in other 
approaches, as shown in Fig. 5. The same applies to the 
watershed segmentation, which is to enable producing the 

initial contour for an ACM [61]. Similarly, various ACMs 
can be used to produce shorelines of coasts [64]. To summa-
rize the segmentation results produced, it can be said that it 
is difficult to evaluate them unequivocally because the met-
rics used in papers are different, as are the data sets that 
have been utilised. Unfortunately, the authors of the papers 
did not provide example, pattern segmentations prepared 
by experts, which greatly limits the possibility of evaluat-
ing and verifying the methods developed and of proposing 
new, improved solutions whose results could be compared 
to the existing ones. This problem could be solved by regu-
larly organizing competitions in which all participants would 
use the same metrics, determined by experts, to evaluate 
the segmentation results. This would certainly allow uni-
fying the results obtained and unequivocally selecting the 
best approaches. What is more, during the competitions and 
also after their completion, the results of individual methods 
would be made public, including the data sets on which the 
experiments were carried out [150].

This literature review justifies the claim that most of the 
papers proposed segmentation methods for small sets of SAR 
images representing specific geographical areas selected 
by the authors. Consequently, it is hard to say whether the 
results obtained in other regions would be similar. In the 
field of coastline detection in optical images, there is a very 
interesting initiative to develop a global shoreline mapping 
toolbox [151], which allows one to use publicly available 
Landsat and Sentinel-2 satellite imagery. Unfortunately, no 
similar tool has yet been developed for SAR images.

The quality of the acquired images is very important for 
the segmentation performed, hence the need for pre-process-
ing to reduce noise and/or using auxiliary methods to obtain 
preliminary, approximate segmentation results. This also 
requires the use and then the appropriate setting of param-
eters that control the pre-processing and/or segmentation. 
The more parameters there are, the greater the difficulty in 
controlling such methods and then applying them in practice. 
Moreover, only nine of the papers concern segmentation 
methods that can extract coastlines in both urbanized and 
non-urbanized areas [47, 64, 81, 88, 89, 97, 99, 119, 133]. 
If only images from non-urbanized areas are experimented 
on, this may not yield correct segmentation results in the 
vicinity of visible man-made infrastructure, e.g. civilian, 
military, and especially port or industrial infrastructure. For 
example, port water regions are strongly impacted by the 
surrounding buildings and ships, and this is visible in the 
SAR images in the form of scatter points. This is consistent 
with the effect that metal surfaces of ships as well as metal 
roofs and walls of buildings cause a very strong scattering 
of electromagnetic pulses [152, 153].

In future research, it is also worth considering the 
diverse coast morphology visible in SAR images, as it 
poses a serious challenge to segmentation methods. 
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Urbanized coastal areas [47, 97] differ significantly from 
sandy [154, 155] or gravel beaches [156]. In addition, 
wetlands [118] or rocky coasts [157] have features com-
pletely different from coastal areas covered in ice [158, 
159]. Consequently, when regions of interest are selected, 
coastal areas with both simple and complex morphologi-
cal and geometric features should be included. Of course, 
sufficiently large sets of high-resolution SAR images are 
necessary to conduct such research, but their availabil-
ity is still problematic. Monitoring the ongoing changes 
of coast shorelines requires time-series data because of 
the dynamic behaviour of coastal regions. Acquiring and 
processing SAR satellite images from time series is time-
consuming, which makes the stage of preparing data for 
research difficult.

The number of papers dealing with the use of machine 
learning is almost trice smaller than of those dealing with 
other methods. This is certainly due to the unavailability of 
public image databases with ready-made pattern segmen-
tations. Unfortunately, the authors of papers use private, 
inaccessible databases. Manually segmenting a large data-
set is very time-consuming, tedious, and requires specialist 
knowledge. However, in the case of medical image seg-
mentation, the literature contains the opposite proportion, 
i.e. papers on the use of supervised learning methods are 
the most numerous. This is particularly true if there are 
public repositories available to researchers and if these are 
expanded or new ones are created.

The use of segmentation methods utilising deep learn-
ing is increasing, which is possible thanks to the growing 
computing power of computers. Deep learning makes it 
possible to extract an internal representation of the pro-
cessed image that will best match the expected results. In 
classical machine learning algorithms, on the other hand, 
it is very important to be able to obtain the correct features 
of the image, and doing this properly often requires great 
skill and specialist knowledge.

The literature describes such deep learning methods as 
unsupervised deep learning [160, 161], semi-supervised 
learning [162, 163] and also generative networks [164, 
165]. These methods were created to enable an efficient 
learning process, also with the use of incomplete data sets. 
However, these methods have not yet been used for detect-
ing and extracting shorelines of coasts in SAR images.

A valuable research direction is to propose segmenta-
tion methods that make use of two imaging techniques, 
i.e. SAR images and images acquired with optical instru-
ments [42, 54]. Another significant direction of research 
is to develop methods of extracting water, both in urban-
ized and non-urbanized areas, for different geographical 
regions of coasts, and then the results obtained can be 
used to more easily extract shorelines of coasts. Such solu-
tions, making use of deep learning methods [166–170], 

have been proposed recently. What is more, if other SAR 
images, e.g. those representing riverbeds, were also used 
in the learning process, the approach could be applied 
more universally, not only for water body extraction, but 
also to segment riverbeds or identify flood areas. However, 
a representative set of data is necessary to address these 
subjects.
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