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A B S T R A C T

The serotonergic system is involved in various psychiatric and neurological conditions, with serotonergic drugs 
often used in treatment. These conditions frequently affect spatial memory, which can serve as a model of 
declarative memory due to well-known cellular components and advanced methods that track neural activity and 
behavior with high temporal resolution. However, most findings on serotonin’s effects on spatial learning and 
memory come from studies lacking refined analytical techniques and modern approaches needed to uncover the 
underlying neuronal mechanisms. This In Focus review critically investigates available studies to identify areas 
for further exploration. It finds that well-established behavioral models could yield more insights with modern 
tracking and data analysis approaches, while the cellular aspects of spatial memory remain underexplored. The 
review highlights the complex role of serotonin in spatial memory, which holds the potential for better under-
standing and treating memory-related disorders.

1. Remembering space and time

Our self is constantly shaped by experiences as we encounter them 
across various physical spaces at different moments of our lives (Klein 
and Nichols, 2012). These events, typically intertwined with cues from 
sensory domains, become embedded in our preexisting neural networks 
(Buzsáki et al., 2022). This implies that space and time are fundamental 
elements for our declarative memory and, therefore, crucial building 
components of our self-identity (Buzsáki et al., 2022; Eichenbaum, 
2017; Grilli and Verfaellie, 2015; Klein and Nichols, 2012; Martinelli 
et al., 2013). Losing the ability to encode and retain information about 
space and time can have dramatic outcomes on our ability to function in 
daily life. This is often observed in patients with severe dementia of 
various etiology. At some point in the disease, we may lose the ability to 
recognize our own home or loved ones (Jetten et al., 2010; Rose Addis 
and Tippett, 2004; Strikwerda-Brown et al., 2019).

2. Mental maps

Spatial memory has been proposed as one of the mnemonic mecha-
nisms providing a general framework for the functioning of declarative 
memory (Bellmund et al., 2018; Bicanski and Burgess, 2018; Buzsáki 
et al., 2022; Buzsáki and Moser, 2013; Eichenbaum and Cohen, 2014; 
Tolman, 1948; Varga et al., 2024; Viganò and Piazza, 2020). Not only 
does this concept apply to environmental frames that physically exist 
and are experienced through the senses, but it is also proposed to involve 
the creation of abstract cognitive maps, or as some refer to them, mental 
maps (Aronov et al., 2017; Buzsáki and Moser, 2013; Constantinescu 
et al., 2016; Eichenbaum and Cohen, 2014; Guelton, 2023; Tolman, 
1948). These putative mental maps would organize our memories 
within abstract spatiotemporal frameworks (Eichenbaum and Cohen, 
2014; Galvez-Pol et al., 2021; Guelton, 2023; Neupane et al., 2024). 
Thus, we can travel mentally through abstract spaces of interconnected 
memories, further process all stored information, and produce new as-
sociations (Fragueiro et al., 2021). In this In Focus review, we will 
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specifically focus on spatial memory as a framework to examine the 
impact of serotonin on this distinct category of memory.

3. Why serotonin?

Despite less than 0.1 % of neurons in the mammalian brain having 
the ability to synthesize and release serotonin (5-hydroxytryptamine, 5- 
HT) (Okaty et al., 2019), much discussion has centered on how it can 
alter and potentially enhance our quality of life in a variety of mental 
health disorders. This includes moderating anxiety and stress, promot-
ing patience and coping mechanisms, and opening the window for 
greater neural plasticity, depending on the type of receptors involved 
(Carhart-Harris and Nutt, 2017; Deakin, 2013; Miyazaki et al., 2012, 
2014). Serotonergic drugs have been proposed and are widely used in 
treating a broad spectrum of mental health conditions, particularly 
mood disorders (Hieronymus et al., 2016; Moncrieff et al., 2023; Pour-
hamzeh et al., 2022). This is despite controversies regarding serotonin 
dysregulation being the major cause of these conditions (Kirsch, 2019; 
Moncrieff et al., 2023). Furthermore, serotonergic drugs are also found 
in the realms of recreational drug use (Elmer et al., 2024; Parrott, 2002), 
microdosing (Cavanna et al., 2022), and other recently emerging fields 
of prescribed or self-prescribed neuro-enhancement (Daubner et al., 
2021; Jannini et al., 2022; Marazziti et al., 2021; Sakakibara, 2020), 
which aim to improve human mood, well-being, creativity, and the 
balance between wakefulness and sleep (Cavanna et al., 2022; Ces-
puglio, 2018; Daubner et al., 2021; Elmer et al., 2024; Gandotra et al., 
2022; Jannini et al., 2022; Marazziti et al., 2021; Monti, 2011; Parrott, 
2002; Sakakibara, 2020; Schmitt et al., 2006).

Reflecting on these widespread applications, substances acting on 
the brain’s serotonin system have become prevalent across all age 
groups in our society (Giovannini et al., 2020; Jannini et al., 2022).

4. Spatial memory in mental health disorders linked to 
serotonin

Psychiatric conditions such as depression, bipolar disorder, anxiety, 
post-traumatic stress disorder (PTSD), obsessive-compulsive disorder 
(OCD), and even schizophrenia are associated with deficits in spatial 
memory (Cornwell et al., 2010; Galkin et al., 2020; Heinzel et al., 2021; 
Hørlyck et al., 2022; Lamy et al., 2008; Marlatte et al., 2022; Park, 1992; 
Smith et al., 2015; Vance and Winther, 2021; Vytal et al., 2013). Many of 
these conditions, which affect spatial cognition, are commonly treated 
with selective serotonin reuptake inhibitors (SSRIs) (Murphy et al., 
2021; Vaswani et al., 2003).

Various aspects of spatial memory impairment have been observed in 
individuals with depression. Depressed patients often exhibit difficulties 
with spatial navigation (Cornwell et al., 2010), while those with mild 
depressive disorders tend to show decreased spatial working memory 
(Galkin et al., 2020). In children diagnosed with major depressive dis-
order, there is a more pronounced impairment in spatial working 
memory (Vance and Winther, 2021). Additionally, a selective impair-
ment in high-load allocentric spatial memory, which is more affected 
than egocentric memory was found in patients with remitted unipolar 
depression and bipolar disorder (Hørlyck et al., 2022). This suggests a 
potential link to impaired hippocampal function. Interestingly, implicit 
memory impairments in depressed individuals appear to be specific to 
spatial context, as these patients generally show normal improvement 
with practice, normal color priming, and even stronger location priming 
effects compared to healthy controls (Lamy et al., 2008). Overall, these 
findings suggest that depression impacts different facets of spatial 
memory, particularly those related to hippocampal dysfunction.

In anxiety disorders, spatial working memory is frequently impaired 
(Vytal et al., 2013), and anxiety in general has been shown to affect the 
hippocampus and spatial memory (Bannerman et al., 2014). PTSD pa-
tients also exhibit significant spatial memory deficits. When tested on 
tasks that rely on hippocampus-dependent processing, individuals with 

PTSD were selectively impaired in allocentric spatial processing, which 
involves understanding the position of objects in relation to one another 
(Smith et al., 2015). Some studies suggest that PTSD patients struggle 
not only with navigating complex spatial environments but also with 
imagining neutral, spatially coherent scenes. Those with broader im-
pairments in spatial processing tend to have reduced hippocampal vol-
umes and abnormalities in white matter tracts involved in multisensory 
integration (Marlatte et al., 2022). Animal models of PTSD show similar 
trends, with impaired spatial memory and enhanced habit memory 
observed in rats (Goodman and McIntyre, 2017).

OCD is another condition treated with SSRIs, and studies have shown 
that individuals with OCD experience impairments in spatial working 
memory performance (Heinzel et al., 2021). Similarly, patients with 
schizophrenia display significant deficits in spatial working memory 
(Park, 1992). These findings across different psychiatric conditions 
further underscore the connection between spatial memory impairments 
and the hippocampal dysfunction commonly associated with the disor-
ders treated with SSRIs. Moreover, a systematic review of modern-era 
clinical studies on the therapeutic effects of classic serotonergic psy-
chedelics highlights their use in treating major depressive disorder, 
substance use disorders, OCD, and anxiety disorders (Andersen et al., 
2021).

5. Spatial memory in neurological conditions treated or 
supplemented with SSRIs

In neurological disorders like chronic pain syndromes (Moriarty 
et al., 2017; Xia et al., 2020), sleep disorders (Piber, 2021; Simon et al., 
2022), and Parkinson’s disease (Harrington et al., 2022; Possin et al., 
2008) spatial memory is also often impaired. In epilepsy, animal models 
of temporal lobe epilepsy (TLE) have demonstrated deficits in spatial 
learning and memory (Chauvière et al., 2009; Murphy, 2013). In 
humans, the impact on spatial memory varies depending on the severity 
of the condition. Some studies report no significant impairment 
(Maidenbaum et al., 2019), while others suggest mild deficits in specific 
aspects of spatial memory, particularly in patients with temporal lobe 
epilepsy (Rosas et al., 2013), reflecting the patterns seen in animal 
models. Patients with these conditions frequently receive SSRIs, either 
for the primary neurological disorder (Patetsos and Horjales-Araujo, 
2016; Wiegand, 2008) or for comorbid conditions like mood disorders, 
which commonly accompany epilepsy and Parkinson’s disease (Górska 
et al., 2018; Lemke et al., 2004; Tallarico et al., 2023). SSRIs have shown 
good effectiveness in treating depression in Parkinson’s disease (PD) 
patients, improving daily activities and motor function, though adverse 
effects are unneglectable (Lemke et al., 2004). Intriguingly, research 
suggests that starting antidepressant therapy in non-Parkinsonian pa-
tients may increase the risk of developing Parkinson’s disease (PD) 
within two years, indicating that in some cases depressive symptoms 
could be an early sign of the disease, appearing before motor symptoms 
(Alonso et al., 2009). Some SSRIs have been shown to improve spatial 
memory and learning both in healthy animals (Tao et al., 2016) and in 
animal models of Alzheimer’s disease (Wei et al., 2017).

This brief review explores serotonin’s roles in modulating spatial 
memory and its neuronal correlates. Despite the widespread use of 
serotonergic drugs for mental health conditions, a significant gap re-
mains in understanding the mechanisms by which serotonin affects 
spatial memory. We propose that future studies use advanced analytical 
techniques to integrate behavioral and electrophysiological approaches 
for a comprehensive understanding of serotonin’s impact on this type of 
declarative memory.

6. Global changes in brain serotonin and spatial memory – 
missing bits and pieces

The serotonergic system has been identified as capable of modulating 
spatial memory through various mechanisms, although its effectiveness 
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can vary depending on the type of manipulation applied, the experi-
mental method, and the approach to data analysis (Fig. 1) (Coray and 
Quednow, 2022; Dale et al., 2016; Glikmann-Johnston et al., 2015). The 
majority of earlier studies investigating serotonin’s role in spatial 
memory relied on standard, well-established behavioral tests, such as 
the Morris water maze, radial arm maze, Barnes maze, and similar as-
says. These studies often employed basic behavioral analyses, focusing 
on metrics such as the time required to locate a target location or the 
duration spent in the chosen area. Results were typically presented as 
average time in seconds. For instance, a global decrease in serotonin 
levels induced by acute tryptophan depletion (ATD) (Hood et al., 2005; 
Van Donkelaar et al., 2011; Young et al., 1989) did not significantly 
impact spatial memory in rats and mice across several studies (Lieben 
et al., 2004; Liu et al., 2013; Stancampiano et al., 1997; Uchida et al., 
2007). Similarly, nonspecific neurotoxic lesions targeting serotonin 
neurons using 5,7-dihydroxytryptamine (5,7-DHT) did not significantly 
alter outcomes in those basic behavioral models (Lehmann et al., 2000; 
Majlessi et al., 2003; Nilsson et al., 1988). The serotonin depletion 
induced by inhibiting tryptophan hydroxylase with 
Para-chlorophenylalanine (PCPA) (Dringenberg et al., 1995; Miczek 
et al., 1975) also did not affect significantly the learning performance of 
rats in water maze (Fig. 1) (Beiko et al., 1997; Dringenberg and Zalan, 
1999; Harder et al., 1996; Jäkälä et al., 1993; Richter-Levin and Segal, 
1989; Riekkinen et al., 1993, 1992) and active place avoidance, a spatial 
task that requires allothetic mapping and cognitive coordination and is 
highly dependent on the hippocampus (Petrásek and Stuchlík, 2009).

On the other hand, several studies have shown that global decrease 
in serotonin levels altered certain aspects of spatial memory (Fig. 1). In 
the Barnes maze, the performance of the serotonin transporter (5-HTT) 
knockout (-/-) mice was indistinguishable from that of heterozygous 
(+/-) and wild-type (+/+) mice. However, they performed worse in the 
Morris water maze. Nevertheless, over the course of repeated water 
maze trials, 5-HTT knockout (-/-) mice improved to reach the perfor-
mance level of wild-type mice (Karabeg et al., 2013). The serotonin 1 A 
receptor (5-HT1A) knockout animals exhibited deficits in 
hippocampal-dependent learning and memory tasks, including Morris 
water maze and a version of the Y maze (Sarnyai et al., 2000). In the 
other experiments, young adult 5-HT1A knockouts, but not aged ones, 
exhibited impaired learning and retention in the Morris water maze 
(Wolff et al., 2004).

There is also evidence suggesting that global long-term increase in 
serotonin levels can improve particular aspects of spatial memory 
(Fig. 1). A daily injection of the serotonin precursor, 5-hydroxytrypto-
phane (5-HTP), prior to training sessions, improved considerably the 
performance of the old rats in the water maze but had no effect on the 
behavior of the young rats (Levkovitz et al., 1994). Enhanced perfor-
mance in radial maze was also observed in rats treated with tryptophan 
(Haider et al., 2006). Furthermore, systemic administration of various 
agonists and antagonists of the large family of serotonergic receptors 
had different effects on spatial memory in animal models using water 
maze and radial arm maze tests, and in human spatial memory tasks 
(Table 1) (Beaudet et al., 2015; Coray and Quednow, 2022; Dale et al., 
2016; De Filippis et al., 2015; Wingen et al., 2007).

Based on Table 1, it is evident that acute systemic manipulation of 
specific 5-HT receptors can affect animals’ ability to solve spatial 
memory tasks, unlike long-term changes in global serotonin levels. This 
is particularly notable given that the results are often inconsistent and 
occasionally contradictory. For instance, systemic administration of the 
5-HT1A and 5-HT7 receptor agonist, 8-Hydroxy-2-(di-n-propylamino) 
tetralin (8-OH-DPAT), impaired performance in the Delayed Non- 
Matching to Position test in rats (Warburton, et al., 1997), yet 
improved performance in a radial maze task in mice (Miheau and Van 
Marrewijk, 1999). This highlights the complexity of the effects of sys-
temic administration of this particular 5-HT agonist on spatial memory, 
which may be influenced by multiple factors, including the behavioral 
tests employed and the animal species used. However, the majority of 

these studies rely on coarse measures of behavior in standard tests, an 
approach that significantly reduces our capability to quantify the rich 
and dynamic nature of behaviors occurring at sub-second time scales. 
Recent high-resolution animal tracking methods, automated behavior 
recognition, data-driven and hierarchical approaches for behavioral 
data analysis, and other available resources could help to shed new light 
on the role of serotonin in spatial memory that seems to be more com-
plex and will require more sensitive analytical methods (Amir et al., 
2020; Correia et al., 2024, 2017; Hu et al., 2023; Jankowski et al., 2023; 
Könings et al., 2019; Mathis et al., 2018; Pereira et al., 2020, 2019; Ryait 
et al., 2019; Storchi et al., 2020; Van Dam et al., 2023). Those include 
open-source tools such as DeepLabCut (Mathis et al., 2018), LEAP 
(Pereira et al., 2020, 2019), LabGym (Hu et al., 2023), a method for 3D 
reconstruction of the mouse body, enabling quantification of various 
motor actions (Storchi et al., 2020), and many other open-source re-
sources (Isik and Unal, 2023).

7. Local changes in brain serotonin affect spatial memory

So far, attempts to change global serotonin levels have most 
frequently failed to produce significant effects. However, in some cases, 
they have either impaired or improved spatial memory and learning. 
The systemic action on specific serotonergic receptors, though more 
effective, produces inconsistent and sometimes contradictory results. 
When we examine experiments involving more targeted, localized 
changes in serotonin levels within specific brain structures, it appears to 
be a more effective approach (Fig. 2). Optogenetic activation of sero-
tonergic terminals in the CA1 region of the hippocampus enhanced 
water maze memory formation, while inhibition of these terminals in 
the CA1 region impaired it (Fig. 2A) (Teixeira et al., 2018). Recent study 
by Gerdey and Masseck (2023) failed to reproduce these results possibly 
due to different genetically modified mouse models used in both studies. 
In Gerdey and Masseck (2023) study, manipulating median raphe se-
rotonin input to the dorsal CA1 subfield, whether through activation or 
inhibition at CA1 fiber terminals, did not affect significantly spatial 
memory. However, activation of serotonergic fibers to the CA1 region 
altered strategies used in the Barnes Maze. Moreover, activation of 
5-HT1A receptors, abundant in CA1’s pyramidal neurons, significantly 
enhanced spatial memory (Fig. 2A) (Gerdey and Masseck, 2023).

Several studies have investigated the role of the serotonergic system 
in spatial memory through local injections of 5-HT receptor agonists or 
antagonists, primarily into the dorsal hippocampus, but also into the 
medial septum - a structure known for its strong influence on hippo-
campal activity (e.g. Müller and Remy, 2018). In most of these studies, 
the agonist 8-OH-DPAT, targeting 5-HT1A and 5-HT7 receptors, was 
used. These two 5-HT receptor types are highly concentrated in brain 
regions involved in spatial learning and memory (Mengod et al., 2010), 
and are thought to play an important role in memory formation (Roberts 
and Hedlund, 2012; Teixeira et al., 2018). Both receptor types have been 
implicated in memory deficits and have been suggested as potential 
therapeutic targets (for review see Meneses, 2013). In general, infusion 
of 8-OH-DPAT into the hippocampus or medial septum impairs spatial 
memory in rats tested in various behavioral tests, such as the radial-arm 
maze or Morris water maze (Table 2) (Bertrand et al., 2000; Carli et al., 
1992; Egashira et al., 2006; Jeltsch et al., 2004; Koenig et al., 2008; 
Warburton et al., 1997). Interestingly, in one study the administration of 
8-OH-DPAT produced opposite effects depending on the targeted brain 
structure. Infusion into the median raphe nucleus improved perfor-
mance in the Delayed Non-Matching to Position test, while adminis-
tration into the dorsal hippocampus impaired performance in the same 
test (Warburton, et al., 1997). These findings suggest that the final 
outcome may depend on whether the stimulated serotonergic receptors 
are located presynaptically or postsynaptically.

The role of the serotonergic system in spatial memory becomes even 
more enigmatic when considering other types of serotonergic receptors 
in the hippocampal system. For example, Naghdi and Harooni (2005)
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Effects of global serotonin level changes
on spatial memory tasks in rodents
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ATD: Lieben et al., 2004; Liu et al., 2013; Stancampiano 
et al., 1997; Uchida et al., 2007. 
5,7-DHT: Lehmann et al., 2000; Majlessi et al., 2003; 
Nilsson et al., 1988. 
PCPA: Beiko et al., 1997; Dringenberg and Zalan, 1999; 
Harder et al., 1996; Jäkälä et al., 1993; Richter-Levin 
and Segal, 1989; Riekkinen et al., 1993, 1992.

5-HTT knockout mice: Karabeg et al., 2013. 
5-HT1A knockout mice: Sarnyai et al., 2000; 
only young rats: Wolff et al., 2004.

5-HTP in old rats: Levkovitz et al., 1994
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5,7-DHT: Lehmann et al., 2000

Tryptophan: Haider et al., 2006
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Fig. 1. This figure summarizes research on how changes in global serotonin levels affect spatial memory in rodents across various tasks, such as the Morris water 
maze, radial arm maze, and Barnes maze. It depicts three main outcomes observed in previous studies: non-significant changes, decreased performance, and 
increased performance, marked by arrows in black, red, and green, respectively. Behavioral effects were produced through various experimental interventions. These 
included acute tryptophan depletion (ATD), neurotoxic lesions induced by 5,7-dihydroxytryptamine (5,7-DHT), serotonin depletion caused by inhibiting tryptophan 
hydroxylase with Para-chlorophenylalanine (PCPA), genetic manipulations such as knockouts of the serotonin transporter (5-HTT) or serotonin 1 A receptor (5- 
HT1A) genes, as well as administration of serotonin precursors like 5-hydroxytryptophan (5-HTP) and tryptophan (TRP). Key studies are cited for each outcome, 
providing an overview of the role of serotonin in spatial memory.
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reported varying effects on rats’ performance in the Morris water maze, 
depending on which receptor antagonist was infused into the dorsal 
hippocampus: a 5-HT2A/2 C receptor antagonist led to improvement, 
while a 5-HT3 receptor antagonist caused impairment. Although some 
possible explanations have been proposed, the authors conclude that the 
precise mechanism by which these two receptor types affect spatial 
memory remains unclear. Furthermore, in studies by Staubli and Xu 
(1995), systemic administration of a 5-HT3 antagonist improved mem-
ory performance in the radial maze, producing effects opposite to those 
observed in the water maze after local infusion into the hippocampus 
(Naghdi and Harooni, 2005). This suggests that, in the case of 5-HT3 
receptor antagonists, their effects on spatial memory may also depend 
on the route of administration and the type of behavioral test used.

8. Serotonin, theta rhythm, and spatial memory

Following lesions in the fimbria, fornix, and cingulate bundle of 
adult rats with 5,7-DHT to deplete hippocampal serotonin, 
Gutiérrez-Guzmán et al. (2011) observed a facilitation of place learning. 
This effect was associated with dominant high-frequency theta activity 
(6.5–9.5 Hz) (Gutiérrez-Guzmán et al., 2011). Similarly, serotonin 
depletion in the medial septum facilitated learning in Morris water maze 
and increased the frequency of the hippocampal theta activity during the 
first days of training to 8.5 Hz (Gutiérrez-Guzmán et al., 2017). The 
depletion of serotonin in the medial septum and Broca’s diagonal band 
(MS/DBB) facilitated working memory also in the radial arm maze and 
again induced a higher expression of high-frequency (6.5–9.5 Hz) theta 
activity (López-Vázquez et al., 2014). On the other hand, depletion of 
serotonin in the supramammillary nucleus impaired learning in Morris 
water maze and altered the expression of hippocampal high-frequency 
theta activity (Fig. 2B) (Hernández-Pérez et al., 2015).

Some studies indicate that the serotonergic system plays a role in the 
tonic modulation of theta rhythms in septo-hippocampal network 
(Gordon et al., 2005; Kazmierska and Konopacki, 2015; Kudina et al., 
2004; Olvera-Cortés et al., 2013; Sörman et al., 2011; Vertes, 2010). 
Mice lacking the 5-HT1A receptor exhibit increased anxiety-related 

behavior, with the hippocampus implicated as a key modulatory struc-
ture. Local field potential recordings showed increased hippocampal 
theta oscillations in knock-outs, particularly in anxiety-provoking situ-
ations (Gordon et al., 2005). Studies on freely behaving rabbits showed 
that serotonergic manipulation via fluoxetine, a serotonin reuptake 
blocker, decreased the magnitude of hippocampal theta oscillations. 
This provided evidence of the inhibitory control of rhythmic theta ac-
tivity by the serotonergic system (Kudina et al., 2004). Serotonergic 
manipulation via the 5-HT2C receptor agonist mCPP also suppressed 
hippocampal theta rhythm in rats, with a stronger effect observed dur-
ing REM sleep than waking theta states. This suppression was 
dose-dependent and reversible by the 5-HT2C receptor antagonist 
SB-242084, highlighting the role of 5-HT2C receptors in the modulation 
of hippocampal theta oscillations (Sörman et al., 2011). On the other 
hand, serotonergic manipulation via the 5-HT1A receptor antagonist (S) 
WAY 100135 induced theta rhythm in hippocampal slices, providing 
evidence that these serotonergic receptors are involved in the modula-
tion of hippocampal theta oscillations in rats in vitro (Kazmierska and 
Konopacki, 2015). Serotonin modulates hippocampal theta activity by 
desynchronizing it through its action on medial septal neurons, which 
affects both cholinergic and GABAergic inputs. Earlier studies indicate 
that serotonin depletion may alter theta rhythm generation and in-
fluences spatial learning and memory formation by decreasing hippo-
campal theta power under certain conditions, highlighting its role in 
regulating cognitive processes related to theta oscillations 
(Olvera-Cortés et al., 2013).

Hippocampal theta frequency and power were evaluated before and 
after subcutaneous administration of the 5-HT6 antagonist (SAM-531) 
and agonist (EMD386088) in both urethane-anesthetized and freely 
moving rats. EMD386088 suppressed sleep and reduced theta peak 
frequency in a dose-dependent manner during awake theta states, while 
in anesthetized rats, it selectively decreased theta frequency without 
altering theta power; this effect was effectively blocked by coadminis-
tration of SAM-531 (Ly et al., 2013). Gener et al. (2019) investigated 
how selective pharmacological activation and inhibition of 5-HT1A, 
5-HT2A and dopaminergic D2 receptors influence prefrontal cortex 

Table 1 
Effects of systemic administration of various serotonergic receptor agonists and antagonists on chosen aspects of spatial memory in animal behavioral models.

Receptor 
type

Agonist / Antagonist Species Administration 
site

Behavioral test Effect References

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Systemic Water maze Impairment (Carli et al., 1995; Carli and 
Samanin, 1992)

5-HT1A/7 Agonist 
(8-OH-DPAT) (+muscarinic receptor 
antagonist)

Rat Systemic Water maze Impairment (Riekkinen et al., 1995)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Mouse Systemic Radial maze Improvement (Miheau and Van Marrewijk, 
1999)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Systemic Delayed Non-Matching to 
Position

Impairment (Warburton, et al., 1997)

5-HT1A Antagonist 
(WAY− 101405)

Rat Systemic Water maze Improvement (Hirst et al., 2008)

5-HT 1B Antagonist 
(SB− 216641)

Rat Systemic Water maze Improvement (Cai et al., 2013)

5-HT2A Agonist 
(TCB− 2)

Mouse Systemic Water maze Impairment (Zhang et al., 2017)

5-HT3 Antagonist 
(ondansetron)

Rat Systemic Radial maze Improvement (Staubli and Xu, 1995)

5-HT4 Agonist 
(BIMU8)

Rat Systemic Water maze Improvement (Teixeira et al., 2018)

5-HT4 Antagonist 
(GR125487)

Rat Systemic Water maze Impairment (Teixeira et al., 2018)

5-HT4 Agonist 
(RS67333)

Rat Systemic Water maze Improvement (Fontana et al., 1997)

5-HT6R Antagonist 
(SB− 271046-A, or SB− 357134-A)

Rat Systemic Water maze Improvement (Rogers and Hagan, 2001)

5-HT6 Antagonist 
(SB− 271046)

Rat 
(aged)

Systemic Water maze Improvement (Foley et al., 2004)

5-HT 7 Antagonist 
(SB− 269970)

Rat Systemic Radial maze Improvement (Gasbarri et al., 2008)
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and hippocampal neural activity and phase synchronization between 
those structures in freely moving mice. They found that acute admin-
istration of risperidone, 5-HT1AR agonist 8-OH-DPAT, 5-HT2AR 
antagonist M100907, and D2R antagonist haloperidol reduced loco-
motor activity, neural spiking, theta and gamma oscillations, and theta 
phase synchronization between hippocampus and prefrontal cortex. The 
effects of the selective 5-HT3 receptor antagonist, ondansetron alone and 
combined with donepezil (cholinesterase inhibitor) on hippocampal 
oscillations were studied using in vivo electrophysiology in 
urethane-anesthetized rats. During brainstem pedunculopontine 
tegmental nucleus stimulation, donepezil dose-dependently increased 
hippocampal theta and gamma power, while ondansetron further 

potentiated these responses (Skovgård et al., 2018). A similar result was 
obtained in anesthetized rats during electrical stimulation of the nucleus 
pontis oralis when selective 5-HT6 receptor antagonist idalopirdine was 
administrated in combination with donepezil (Herrik et al., 2016). A 
study performed on a visceral hypersensitivity rat model induced by 
chronic water avoidance stress revealed that rats showed increased 5-HT 
levels, reduced 5-HT1A receptor expression, and enhanced theta oscil-
lations in the anterior cingulate cortex (ACC). Activation of 5-HT1A 
receptors via the agonist 8-OH-DPAT reduced theta enhancement in 
ACC of stressed rats, while the antagonist WAY100135 increased theta 
oscillations in normal rats. Tandospirone suppressed theta band 
enhancement in ACC both in vitro and in vivo, alleviating anxiety-like 

Serotonergic neuron
(Raphe nuclei)

Morris water maze

improved performance

decreased performance

Activation

Inhibition

(Teixeira et al., 2018)

Activation of 5-HT1A
(Gerdey and Masseck, 2023)

Optogenetic stimulation 

Se
ro

to
ne

rg
ic

te
rm

in
al

s 
 

 Hippocampus CA1

A

SuM

Hip

Recording

DBB fr

Cb

MS

Increased high-frequency 
theta activity (6.5-9.5 Hz)

Local 5,7-DHT serotonergic lesions  

MS, DBB, fi, fr, Cb,

SuM

B

fi

(Gutiérrez-Guzmán et al., 2011, 2017; López-Vázquez et al., 2014)

Fig. 2. Impact of targeted serotonergic system manipulations on spatial memory in the Morris water maze task: (A) Optogenetic activation of serotonergic terminals 
or 5-HT1A receptors in the hippocampal CA1 region of the hippocampus enhanced performance of mice in water maze, while inhibition of serotonin terminals in the 
CA1 region impaired it. (B) Local neurotoxic lesions induced by 5,7-dihydroxytryptamine (5,7-DHT) in the medial septum (MS), diagonal band of Broca (DBB), 
fimbria (fi), fornix (fr), and cingulate bundle (Cb) improved rats performance in water maze, while lesion in supramammillary nucleus (SuM) decreased performance.
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behavior in stressed rats by modulating 5-HT1A receptors (Zhan et al., 
2022). Increased serotonin transporter (5-HTT) expression in male 
5-HTTOE mice caused decrease in cue-evoked theta neuronal oscilla-
tions in basolateral amygdala during Pavlovian fear conditioning 
(Barkus et al., 2014). Continuous high-density global EEG recordings 
revealed significant changes in cortical neural dynamics following 
intravenous N,N dimethyltryptamine (DMT), a serotonergic psychedelic 
infusion, including a marked decrease in theta band spectral power 
(Glynos et al., 2024). These findings collectively indicate that seroto-
nergic manipulations, whether via receptor modulation or alterations in 
transporter expression, consistently affect theta oscillations observed in 
global EEG recordings and within limbic structures.

9. Serotonin and spatially tuned neurons

Theta activity plays a critical role in spatial memory, particularly in 
the hippocampus, where place cells coordinate their firing with network 
oscillations and neurons in other brain regions through processes such as 
phase precession, phase locking, and phase rolling (Buzsáki, 2002; Jones 
and Wilson, 2005; Siapas et al., 2005; Skaggs et al., 1996; Sloin et al., 
2022). Theta activity at its core is generated by the synchronous activity 
of multiple single neurons in specific neural networks, such as those in 
the medial septum and hippocampus (Herreras, 2016; Nuñez and Buño, 
2021). Therefore we expected that we would find numerous papers 
concerning the effects of serotonin on cellular substrates of spatial 
memory such as place cells, grid cells, boundary cells, head direction, or 
object and object-trace cells (Grieves and Jeffery, 2017). Despite the 
availability of advanced methods for studying spatial memory at the 
single-cell level and its relations with theta rhythm in both rodents and, 
increasingly, humans, we found it challenging to locate studies that 
detail such research. Our investigation uncovered research conducted by 
Zhang et al. (2017) demonstrating that the administration of the phe-
nylalkylamine hallucinogen TCB-2, a selective agonist of 5-HT2A re-
ceptors, increased the latency for trained mice to initiate goal-directed 
swimming in the Morris water maze. This effect could be prevented by 
the 5-HT2A receptor antagonist MDL 11,939. TCB-2 did not affect pre-
viously established place fields of CA1 neurons in mice exploring a 
familiar environment, nor did it impact the remapping of place cells in a 
novel environment. However, it did impair the long-term stability of 
place fields for the novel environment initially encoded under the in-
fluence of TCB-2, an effect that could also be prevented by 5-HT2A re-
ceptor antagonist MDL 11,939 (Zhang et al., 2017). Recently, Ivan et al. 
(2024) investigated the effects of the classic psychedelic psilocybin on 
neural activity patterns and spatial encoding in the retrosplenial cortex 

of head-fixed mice navigating on a treadmill. Psilocybin reduced the 
place specificity of neurons to distinct locations along the belt and 
decreased the stability of place-related activity across trials and reduced 
functional connectivity among simultaneously recorded neurons. The 
5-HT2A receptor antagonist ketanserin blocked most of these effects. 
These data support proposals that psychedelics increase the entropy of 
neural signaling and suggest a potential neural mechanism for the 
disorientation frequently reported by humans after taking psychedelics 
(Ivan et al., 2024). In a study by Sandoval et al. (2008), the serotonergic 
antagonist methiothepin altered the directional characteristics of head 
direction cells in the anterior dorsal thalamus only when combined with 
the muscarinic antagonist scopolamine. These studies suggest that 
manipulating serotoninergic activity holds potential for modulation of 
the cellular substrates of spatial memory and merits further study.

10. Conclusions

In summary, the serotonergic system has the potential to modulate 
spatial memory, though its effects are complex and require more 
advanced experimental and data analysis methods for comprehensive 
understanding. Current behavioral experiments often report inconsis-
tent or contradictory results, possibly due to reliance on sparse mea-
sures. This approach might lack the sensitivity or specificity required to 
detect subtle or complex interactions. Meanwhile, the interplay between 
the neuronal substrates of spatial memory and serotonin remains 
underexplored. Both areas present promising avenues for research that 
could be pursued with the extensive array of tools available at hand.
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Table 2 
Effects of local administration of various serotonergic receptor agonists and antagonists on chosen aspects of spatial memory in animal behavioral models.

Receptor type Agonist / Antagonist Species Administration site Behavioral test Effect References

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Dorsal hippocampus Water maze Impairment (Carli et al., 1992)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Medial septum Water maze Impairment (Bertrand et al., 2000)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Dorsal hippocampus Radial maze Impairment (Egashira et al., 2006)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Dorsal hippocampus Delayed Non-Matching to Position Impairment (Warburton, et al., 1997)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Median raphe Delayed Non-Matching to Position Improvement (Warburton, et al., 1997)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Medial septum Water maze Impairment (Koenig et al., 2008)

5-HT1A/7 Agonist 
(8-OH-DPAT)

Rat Medial septum. water maze Impairment (Jeltsch et al., 2004)

5-HT 1B Agonist 
(CP− 93,129)

Rat CA1, Dorsal hippocampus Radial maze Impairment (Buhot et al., 1995)

5-HT2A/2 C Antagonist 
(ritanserin)

Rat CA1, Dorsal hippocampus Water maze Improvement (Naghdi and Harooni, 2005)

5-HT3 Antagonist 
(granisetron)

Rat CA1 field of the dorsal hippocampus Water maze Impairment (Naghdi and Harooni, 2005)
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