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Abstract: The aim of the article is presentation of the testing methodology and results of examination
the probabilistic model of the measurement process. The case study concerns the determination of
the risk of an incorrect decision in the assessment of the compliance of products by measurement.
Measurand is characterized by the generalized Rayleigh distribution. The model of the measurement
process was tested in parallel mode by six risk metrics. An undesirable effect in the reconstruction
building block of the model was detected, consisting in the distortion of probability distribution at
the edges of the measuring range. The paper gives guidelines on how to use the model, to obtain the
analytical risk assessment consistent with the results of the Monte Carlo method. The study can be
useful in product quality control, test design, and fault diagnosis.

Keywords: mathematical model; sensor sub-process; reconstruction sub-process; measurement
uncertainty; risk analysis

1. Introduction

The Joint Committee for Guides in Metrology issued the document JCGM 106:2012 [1]
dedicated to the role of measurement uncertainty in deciding conformance to the relevant
standards or specified technical requirements of products, processes, systems, and mate-
rials. Conformity assessment is an area of importance in manufacturing quality control,
legal metrology, and in the maintenance of health and safety [2]. The audience of this
document includes quality managers, members of standards development organizations,
accreditation authorities and the staffs of testing and measuring laboratories, inspection
bodies, certification bodies, regulatory agencies, and researchers [1]. Section 9 of [1] is
particularly useful for analyzing the risk of an erroneous decision based on a measurement
result close to the tolerance limit, which cannot be repeated due to the passage of time or
the disappearance of the measured phenomenon.

Methods of risk evaluation are based on the joint probability density function char-
acterizing a measurable property of the item of interest, and the measurement process.
Methods of assigning a prior probability density function for a measurand are discussed
in Annex B to [1]. About the measurement process, it is said “The form of a model is
assigned based on the design of the measuring system, information supplied by calibra-
tions and knowledge of relevant influence quantities”. Readers are forced to look for such
probabilistic models in the literature of measurement science.

In many papers [3–21] authors regard any measurement process as a concatenation
of two sub-processes, namely, sensor process and reconstruction process. Sensor process
is the physical process of producing an observable output by transferring measurement
information into easily interpretable phenomena, typically electrical, or optical ones. Re-
construction constitutes the determination of the measurand, given as numbers, from
the observable output. The simplest reconstruction process is reading of the scale of an
indicating instrument by the operator [4,14]. In this case, the measurand is reconstructed
based on the visual comparison of the image of the pointer with the image of the scale.
It is worth noting that the sub-processes names “conversion” and “reconstruction” [4] or
“observation” and “restitution” [5] are also used, respectively.
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In the probabilistic approach to the analysis of measurement processes [5,6,12] the
output of the measuring system is treated as a random variable Xm, whose value is not
clearly determined by the measurand X but is characterized by the conditional probability
distribution.

In work [22] authors implemented a probabilistic measurement model in the Matlab
environment and used it to optimize a built-in self-tester for a fully differential electronic
circuit. The model was used for setting test limits under production process deviations
as a trade-off between defect level and yield loss. During this previous work, some
discrepancies were found between the results of the analytical calculations and the results of
the Monte Carlo simulation. It prompted the authors to thoroughly examine the properties
of the model, find the sources of errors and remove them. The methodology of testing the
model was applied consisting in calculation the set of risk measures increased to six, not
only two as previously. The research was run based on a case study, additionally using,
as a reference, the Monte Carlo method with a large number of trials. As a result of the
tests, an undesirable effect in the reconstruction sub-process was detected, consisting in
the distortion of probability distributions at the ends of the measuring range. This effect is
amplified with increasing measurement uncertainty, causing errors in risk assessment.

The plan of the paper is as follows. The definitions of the metrics of the risk of
an incorrect decision, due to measurement uncertainty, were systematized in Section 2.
Section 3 presents in short the probabilistic model of the measurement process and its
numerical reference standard. In Section 4, verification of the model was carried out using
case study. An exemplary production testing process was studied, in which the voltage
magnitude was a measured parameter. Section 5 explains the mechanism of formation of
distortions of probabilistic distributions and proposes a way to eliminate them. Numerical
results of testing the model for the case study are also presented. Finally, discussion and
some general conclusions are given in Sections 6 and 7.

2. Risk of Incorrect Decision Due to Measurement Uncertainty

The content of this section is known [23–26] and it does not convey any original
novelty but is necessary for a full description of the methodology used for testing the
probabilistic model of the measurement process.

The measurement uncertainty is a parameter that characterizes the dispersion of values
that can be reasonably assigned to the measured quantity. The measurement uncertainty
considered in this paper is interpreted as a standard deviation of the random variable
describing the state of knowledge about a measurement process.

Conformity to a specified requirement means that a feature of an item of interest
lies within the tolerance interval L. The item, whose property x conforms to the specified
requirement (x ∈ L) is good (G), otherwise (x /∈ L) it is bad (B). The status of an item
is checked during testing, which is the combination of the measurement and decision
processes.

Usually, a binary decision rule that concerns acceptance or rejection of the unit under
test is used. There are four possible outcomes of a conformity assessment inspection
(Table 1). If the measurement process was perfectly accurate, then it would accept (A) the
good items (xm ∈ D) and reject (R) the bad items (xm /∈ D), based on measured quantity
value xm and acceptance interval D. The influence of measurement uncertainty leads to
the risk of mistake in deciding whether an item conforms to a specified requirement. Such
mistakes are of two types: the item is rejected but conforms with the specification, or the
item is accepted but does not conform with the specification.
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Table 1. Joint probabilities characterizing the binary decision process.

Test Result
Status of an Item under Test

Good (G) Bad (B)

A Valid acceptance
P(A, G) = P(x ∈ L, xm ∈ D)

False acceptance
P(A, B) = P(x /∈ L, xm ∈ D)

R False rejection
P(R, G) = P(x ∈ L, xm /∈ D)

Valid rejection
P(R, B) = P(x /∈ L, xm /∈ D)

The risk of false rejection has traditionally been called the producer’s risk, while the
risk of false acceptance has been called the consumer’s risk. By conditioning the probability
on the status of the unit under test (good or bad), one obtains four conditional probabilities
characterizing the test (Table 2).

Table 2. Probabilities conditioned on the status of an item under test.

Test Result
Status of an Item under Test

Good (G) Bad (B)

A
Good item accepted

P(A|G) =
P(x∈L,xm∈D)

P(x∈L)

Bad item accepted
P(A|B) = P(x/∈L,xm∈D)

P(x/∈L)

R
Good item rejected

P(R|G) =
P(x∈L,xm /∈D)

P(x∈L)

Bad item rejected
P(R|B) = P(x/∈L,xm /∈D)

P(x/∈L)

By conditioning the probability on the test result (accepted or rejected), one obtains
four conditional probabilities, characterizing the quality of an item after testing (Table 3).

Table 3. Probabilities conditioned on the test results.

Test Result
Status of an Item under Test

Good (G) Bad (B)

A
Accepted item good

P(G|A) =
P(x∈L,xm∈D)

P(xm∈D)

Accepted item bad
P(B|A) =

P(x/∈L,xm∈D)
P(xm∈D)

R
Rejected item good

P(G|R) = P(x∈L,xm /∈D)
P(xm /∈D)

Rejected item bad
P(B|R) = P(x/∈L,xm /∈D)

P(xm /∈D)

Analysis of Tables 1–3 leads to the conclusion that the producer’s risk metrics may
be two kinds of probabilities: joint P(R,G), and conditional P(R|G), P(G|R), and the
consumer’s risk metrics the probabilities: joint P(A,B), and conditional P(B|A), P(A|B).

The risk metrics, specified in Tables 1–3, are used in the subsequent sections to test the
probabilistic model of the measurement process, to assess its performance.

3. Probabilistic Models of the Measurement Process

A measurement is a process of experimentally determining one or more values that can
reasonably be attributed to the selected quantity [27]. When we perform a measurement,
we get an observation Y, based on which, we can identify the value of the measurand X. The
description of the sensor sub-process is provided by the conditional probability distribution

p(y|x) (1)

that is, the probability distribution of Y, given the value x of the measurand X. The accuracy
of the probability distribution (1) depends on the sophistication of the sensor design,
protection against environmental factors, and on the removal of method errors.
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Reconstruction sub-process may be described as the probabilistic inversion of the
transformation defining the sensor sub-process [3,5,6,8,10,12]. Such an inversion is per-
formed with Bayes’ theorem, using a non-informative prior, that is, a prior with minimal
influence on the inference. Rossi in [5] recommends using a flat (uniform) prior, according
to the Bayes-Laplace postulate. Although a priori information on measurand X is available,
at this stage of calculation, a uniform distribution is assumed to obtain a posterior distribu-
tion only based on the probabilistic characteristics of the sensor process. For the uniform
prior distribution, we can approximate the results from Bayes’ theorem by substituting a
constant for the prior distribution so that

p(x|y) = p(y|x)∫
LX

p(y|x)dx
(2)

where Lx is the admissible range of values for X.
The best estimate of X, constituting a single measurement value, is the expectation

xm = E(X|y) of distribution (2). The measurement value is also a random variable Xm,
since it is not uniquely determined by the measurand X but is characterized by the con-
ditional probability distribution p(xm|x), obtained by concatenation of the results of two
modeling steps. The reconstruction of a measurand and concatenation of two subprocesses
is simultaneously performed by integration of distribution p(y|x), with respect to Y, using
a random variable transformation theorem [28]

p(xm|x) =
∫

DY

δ[xm − E(X|y)] p(y|x)dy (3)

where DY—the set of possible values for Y, and δ—the Dirac delta operator.
Distribution (3) describes the overall measurement process, relating the measurement

value Xm to the measurand X using general definition of xm. In many cases it may be
possible to express xm directly in terms of y [12].

Numerical Reference Standard

The Monte Carlo (MC) method was used as the numerical reference standard for model
verification. Many approaches have been explored in the literature toward estimation of
performance metrics, with ppm precision, for electronic circuits [29–34]. Statistical model of
the electronic circuit that can be simulated very fast is crucial to achieve them in reasonable
time. In [29], the proposed method relies on estimating the joint probability density
function (pdf), which is subsequently sampled to rapidly generate a large volume of new
data. In [30] authors used a very fast statistical simulation called statistical blockade [31].
The key idea of the method [32] is to build a statistical model of the tested circuit using
nonparametric adaptive kernel density estimation. In our paper the statistical model of the
circuit under test, used in case study, was derived analytically.

Using the statistical model, risk assessment consists in counting the number of results
of a computer experiment and dividing the sum by the size of the population of results or
a subset of this population. For example, the risk P(B|A) is determined by counting the
results of simulations belonging to the region of incorrect acceptance and dividing it by the
sum of the results falling within acceptance range D. When determining the risk P(R|G),
we count the results belonging to the region of incorrect rejection and divide it by the sum
of results within the tolerance interval L.

Contemporary personal computers allow the calculation of risk by the MC method
with a large number of trials, in reasonable time. This paper presents the probabilities
evaluated after 109 trials.

4. Case Study

For a given production process and measurement system used, knowledge about
the possible results of checking the compliance of a product, selected at random from the
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population, is contained in the joint probability distribution of the measurement result
and the measurand [1]. Deriving this distribution requires knowledge of the probability
distributions that characterize the measurement process and the measurand.

Verification of the model of measurement process was carried out for an example of
production testing using voltage magnitude as the measured parameter. Suppose that it
is a critical parameter of production process. Such a measurand is characterized by the
Rayleigh distribution, which became widely known in communication theory for describ-
ing instantaneous peak power of radio signals. It has received a considerable attention from
engineers and physicists for modelling wave propagation, radiation, synthetic aperture
radar images, and other related phenomena [35].

Let x denote the measured voltage magnitude (measurand), xm denote the result
of measurement, and Lu the specified upper tolerance limit of the parameter x. The
generalized Rayleigh distribution p(x) is assigned to characterize the measurand

p(x) =
x

σασβ

√
1− r2

e
− x2

2(1−r2)
a
I0

(
x2

2(1− r2)

√
b2 + c2

)
(4)

where

a =
σ2

α+σ2
β

2σ2
α σ2

β

, b =
σ2

α−σ2
β

2σ2
α σ2

β

, c = r
σασβ

, r =
σαβ

σασβ
; σα, σβ—standard deviations of the real and

imaginary part of the voltage, respectively; r—correlation coefficient between the real and
imaginary parts; σαβ—covariance; I0—modified zero order Bessel function.

Equation (4), derived in [22], is a generalized Rayleigh distribution, adequate for the
measured voltage magnitude, for which the real part and imaginary part are characterized
by normal probability distributions with zero mean values and various standard deviations.
Figure 1 shows the graph of the probability density function (4) for the given standard
deviations: σα = 14.8 mV, σβ = 18.6 mV, and correlation coefficient r = 0.
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The measured voltage magnitude x is a de-stimulant of quality and too high values
speak against the product. The binary classification of product items, distinguishing
between correctly made (conforming with specification) items and items that exceed the
specified voltage magnitude level (non-conforming), is performed by direct comparison
with the upper acceptance limit Du using an analog comparator, for which we know the
standard uncertainty of the threshold. Distribution of the comparator threshold depends
on stochastic and deterministic effects. It represents stochastic temporal noise comprising
thermal and flicker noise, and the deterministic offset due to fabrication imperfection and
transistor mismatch. It was found empirically that the distribution of the comparator
threshold is Gaussian [36].
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The observation of the measurand x is disturbed by the random component W, repre-
senting the uncertainty of the comparator threshold

Y = X−W (5)

The sensor process is described by the conditional probability distribution p(y|x),
which is the Y distribution for X taking a fixed value of x. When we substitute X = x into
(5), the random variable Y differs from W by only the fixed component of x. Hence, the Y
distribution for a fixed X is the W distribution which we will denote pW(.). Thus, we have

p(y|x) = pW(x− y) (6)

If we use the normal distribution to characterize the uncertainty of the comparator
threshold, then the conditional probability distribution p(y|x), describing the sensor pro-
cess, has the shape shown in Figure 2 (standard deviation of the distribution is equal to
5 mV).

Sensors 2021, 21, x FOR PEER REVIEW 6 of 16 
 

 

The measured voltage magnitude x is a de-stimulant of quality and too high values 
speak against the product. The binary classification of product items, distinguishing be-
tween correctly made (conforming with specification) items and items that exceed the 
specified voltage magnitude level (non-conforming), is performed by direct comparison 
with the upper acceptance limit uD  using an analog comparator, for which we know the 
standard uncertainty of the threshold. Distribution of the comparator threshold depends 
on stochastic and deterministic effects. It represents stochastic temporal noise comprising 
thermal and flicker noise, and the deterministic offset due to fabrication imperfection and 
transistor mismatch. It was found empirically that the distribution of the comparator 
threshold is Gaussian [36]. 

The observation of the measurand x is disturbed by the random component W, rep-
resenting the uncertainty of the comparator threshold 

Y X W= −  (5)

The sensor process is described by the conditional probability distribution p(y|x), 
which is the Y distribution for X taking a fixed value of x. When we substitute X = x into 
(5), the random variable Y differs from W by only the fixed component of x. Hence, the Y 
distribution for a fixed X is the W distribution which we will denote ( ).Wp . Thus, we have 

( ) ( )| Wp y x p x y= −  (6)

If we use the normal distribution to characterize the uncertainty of the comparator 
threshold, then the conditional probability distribution p(y|x), describing the sensor pro-
cess, has the shape shown in Figure 2 (standard deviation of the distribution is equal to 5 
mV). 

The reconstruction process is the numerical transformation that maps the observa-
tion into the measurement value. It is the stage of information processing which, depend-
ing on the technology, can be embedded in the measuring system, or implemented off-
line [9]. The reconstruction is based on the probabilistic inversion of distribution (6). The 
result of the inversion is presented in Figure 3. 

 
Figure 2. A probability density function governing the sensor process. Figure 2. A probability density function governing the sensor process.

The reconstruction process is the numerical transformation that maps the observation
into the measurement value. It is the stage of information processing which, depending
on the technology, can be embedded in the measuring system, or implemented off-line [9].
The reconstruction is based on the probabilistic inversion of distribution (6). The result of
the inversion is presented in Figure 3.
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The pdf obtained after probabilistic inversion (Figure 3) is distorted at the ends of
the measuring range due to the boundary effect, which will be described in Section 5.1.
Distortions are a significant source of errors in risk assessment.

We will obtain a probabilistic model of the overall measurement process by combining
the sensor process with the reconstruction process using (3). Result has the form of a
conditional probability distribution, combining every possible value of the measurand with
the possible measurement results that can be attributed to the measurand. Concatenation
is another source of distortions at the ends of the measurement range.

The synthesis of the joint probability distribution of the measured value xm and the
measurand x requires the multiplication of the distribution characterizing the measure-
ment process, and the distribution characterizing the production process. The probability
distribution p(x) does not depend upon the probability distribution characterizing the
measurement equipment, and vice versa, the model of measurement process p(xm|x) does
not depend on the probability distribution characterizing the measurand. Hence, the
distributions listed are statistically independent, their product forms the joint distribution
of the measurement results and the measurand

p(xm, x) = p(xm|x)p(x) (7)

The joint pdf of the measurement results xm and the measurand x is presented in
Figure 4. Distortion of the distribution body near the beginning of the measuring range
can be observed.
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The risk metrics, presented in Section 2, are useful for testing the probabilistic model
of a measurement process. The values of consumer’s and producer’s risks can be calculated
based on distribution (7) after determining the appropriate integration areas. This task
is facilitated by Figure 5, which shows the square areas, determined by the range of
measurand changes, and the domain of the measurement results, both from 0 mV to 100 mV.
The vertical line corresponds to the specified upper tolerance limit Lu. The horizontal
line corresponds to the upper acceptance limit Du. The values Lu and Du do not have
to be equal; often a margin is used between them to manage the risk. The probability
for a given rectangular region is found by integrating the joint pdf (7) over the region.
Working formulas for determining individual risk types can be derived by using Figure 5.
Figure 5a shows the shaded region used to calculate the probability of false acceptance of
the non-conforming product. The region in Figure 5b allows one to calculate the probability
that the product will be accepted. The probability of rejecting a product that conforms to
the specification is represented by the shaded region in Figure 5c. The shaded region in
Figure 5d allows one to calculate the probability that the product is truly functional.
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For example, to calculate the P(R|G) risk, we used the probability that the conform-
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The risk metrics can be used, among others, in product quality control, test design, 
and fault diagnosis. An example of practical application is evaluation of test quality and 
comparison of test architectures for fully differential electronic circuits, by using two risk 
metrics: P(B|A) as defect level and P(R|G) as yield loss [22]. 

  

Figure 5. Specified upper tolerance limit LU and upper acceptance limit DU defining integration
areas for calculation of the probability that: (a) an item that passes the test, in fact, does not conform
to the specification; (b) an item will be accepted; (c) an item is truly functional, but it fails the test; (d)
an item is truly functional.

To calculate the risk metrics: false acceptance and false rejection, based on the joint
probabilities, we use the following equations:

P(A, B) =
∫

xm≤DU

∫
x>LU

p(xm, x)dxdxm (8)

P(R, G) =
∫

xm>DU

∫
x≤LU

p(xm, x)dxdxm (9)

To determine the risk metrics based on the conditional probabilities—P(A|B), P(B|A),
P(R|G), and P(G|R)—we divide the surface areas of the respective regions of Figure 5
as follows:

P(A|B) =

∫
xm≤DU

∫
x>LU

p(xm, x)dxdxm∫
xm

∫
x>LU

p(xm, x)dxdxm
(10)

P(B|A) =

∫
xm≤DU

∫
x>LU

p(xm, x)dxdxm∫
xm≤DU

∫
x p(xm, x)dxdxm

(11)

P(R|G) =

∫
xm>DU

∫
x≤LU

p(xm, x)dxdxm∫
xm

∫
x≤LU

p(xm, x)dxdxm
(12)

P(G|R) =
∫

xm>DU

∫
x≤LU

p(xm, x)dxdxm∫
xm>DU

∫
x p(xm, x)dxdxm

(13)

For example, to calculate the P(R|G) risk, we used the probability that the conforming
product will fail the test, calculated using the region from Figure 5c, and the probability
that the product conforms to the specification, determined using the region from Figure 5d.

The risk metrics can be used, among others, in product quality control, test design,
and fault diagnosis. An example of practical application is evaluation of test quality and
comparison of test architectures for fully differential electronic circuits, by using two risk
metrics: P(B|A) as defect level and P(R|G) as yield loss [22].
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5. How to Apply the Probabilistic Model of Measurement Process Successfully

This section raises a variety of practical points on modeling considerations, in partic-
ular, the necessity of using the likelihood function and cautions regarding the choice of
domain during calculation of the joint pdf p(xm, x).

5.1. Application of the Likelihood Function

The inversion of the conditional probability distribution p(y|x) is realized by using
Bayes’ Formula (2) but there is no mechanism by which the x- and y-axes are transposed
to obtain the correctly oriented posterior distribution p(x|y). This problem was solved by
R.A. Fisher, who proposed the concept of likelihood. Following this concept, we are using
the likelihood function instead of p(y|x). Given the data y, p(y|x) may be regarded as a
function not of y but of x. It is called the likelihood function of x for a given y and can be
written as

p(y|x) = L(x; y) (14)

As a result of using the likelihood function, the posterior conditional pdf is correctly
oriented in space.

The likelihood function (14) looks like the joint probability, but a semicolon is used
in its notation instead of a comma, which means that y is not a random variable but a
parameter. From a geometric standpoint, the family of probability distributions p(y|x)
can be viewed as a family of curves parallel to the y-axis, while the family of likelihood
functions L(x; y) are the curves parallel to the x-axis. Construction of an appropriate
function L(x; y) requires engineering knowledge which is specific to the measuring process
being modeled. Box and Tiao [37] described a method based on a data-translated likelihood.
Mathematically, the data-translated likelihood must be expressible for a given x and
parameter y in the data translated format

L(x; y) = ϕ[ f (x)− t(y)] (15)

Here, the likelihood is the function L = ϕ(z), where z = f (x) − t(y). In the case of
Gaussian function, for the mean, f (x) = x, and t(y) = y. For the standard deviation
f (σ) = log σ, and t(y) = log s. In our case, parameter y is scalar, hence in Matlab format,
concrete form of the likelihood function for the mean is

L(x; y) = ((1./sqrt(2. ∗ pi. ∗ u.ˆ2)). ∗ exp(−((x − y).ˆ2)./2./u.ˆ2))

where u is the measurement uncertainty.
In the data-translated likelihood function, y only influences x by a translation on the

scale of the function ϕ, i.e., from ϕ(z) to ϕ(z + a). To put it simply, the data only serve to
change the location of the likelihood function (Figure 6a). The likelihood functions have
the same form for each observation y, but those near the ends of the observation domain
are cut off.

Using the likelihood function and the uniform prior, we can write Bayes’ Formula (2) as

p(x|y) = L(x; y)∫
Lx

L(x; y)dx
(16)

if the integral
∫

Lx
L(x; y)dx, taken over the admissible range of x, is finite.
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Figure 6. Likelihood functions: (a) before standardization; (b) after standardization.

The role of the denominator in Bayes’ formula (16) is the standardization of the
likelihood function. The standardization means the likelihood is scaled so that the area
of each section is equal to one. Apart from standardization, nothing is performed by
Equation (16). Hence, the posterior distribution is equal to the standardized likelihood
function. A side effect of the standardization are distortions of the posterior at the ends
of the observation domain, which can be the source of errors during further calculations.
The mechanism of formation of distortions is shown in Figure 6b. Likelihood functions
that have a cropped surface area, during standardization must be lengthened up for the
surface area to reach a value of 1. The probabilistic inversion distorts the posterior at the
edges of the observation domain more, the greater the measurement uncertainty. This is a
significant disadvantage of the model of reconstruction sub-process.

The method of correct calculation of the joint pdf is based on the extension of the
x and xm domains. We observe the joint distribution p(xm, x) in the nominal domain,
looking for distortions or truncation. The distribution should be observed at the ends of
the measuring range. The elimination of distortions consists in extending the domain until
the results of the risk calculations stop changing. To avoid the influence of distortion on
the result of the multiplication of probabilities p(x) and p(xm|x), the pdfs should cross
each other in the area free from distortion. In the case of Rayleigh distribution, this means
that during calculations of the joint pdf, the domains of measurand x and measurement
value xm should be extended below the 0 point of the measuring range. Figure 7 shows an
example of the extended x and xm domains, where the distortions do not spoil the result of
multiplication of two distributions.
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5.2. The Choice of the Domain of Measurement Values during Calculations of the Joint pdf
p(xm, x).

Another important point in risk calculation is the choice of the domain for p(xm, x).
The product of the Rayleigh and Gauss densities goes below the zero point of the domain
of measurement values, in the direction of negative values of xm. The effect of exceeding
the zero point is strengthened as the measurement uncertainty increases. A truncation
appears (Figure 8a), which is the source of errors during integration of the volume under
the surface of the solid figure of the joint probability density.
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The accuracy of the risk metrics obtained with the probabilistic model can be greatly
increased by expanding the domain of measurement results xm below the measurement
range. As a result, the joint probability density will be formed in full (Figure 8b).

5.3. Testing of the Model

The results of testing the model by using the risk metrics specified in Tables 1–3, are
summarized in Table 4. Tests were performed for standard measurement uncertainties
equal to u = (2, 5, 10) mV and 6 metrics of risk of erroneous decisions, resulting from these
measurement uncertainties, and calculated using (8–13).

Table 4. Results of the risk analysis for Model 1, Model 2, and results of the MC simulation for the measurand with the
Rayleigh distribution and the Gauss distribution characterizing the measuring system.

Risk Metric

Measurement Uncertainty (mV)

u = 2 u = 5 u = 10

Risk of Incorrect Decision (%)

Model 1 Model 2 MC Model 1 Model 2 MC Model 1 Model 2 MC

P(A, B) 0.5732 0.57109 0.570 1.1790 1.17412 1.174 1.7767 1.76977 1.768

P(R, G) 0.7606 0.75781 0.757 2.3547 2.34580 2.344 6.3781 6.35267 6.356

P(A|B) 9.3824 9.38061 9.380 19.298 19.2979 19.30 29.084 29.0757 29.07

P(B|A) 0.6139 0.61034 0.609 1.3010 1.26600 1.266 2.1615 1.98115 1.980

P(R|G) 0.8131 0.80506 0.806 2.5651 2.49771 2.496 7.3484 6.76429 6.768

P(G|R) 12.080 12.0771 12.07 32.323 32.3274 32.32 59.552 59.5563 59.56

The following column labels are used in Table 4: Model 1—risk metrics based on
the model presented in Section 3, Model 2—risk metrics based on the model, in which
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the domains of measurand and measured values have been extended, MC—risk metrics
obtained by the Monte Carlo method.

Table 4 allows us to evaluate the conformity of the risk metrics obtained using the
analytical model with the reference risk metrics obtained by the MC method. The results of
the MC analysis confirmed the correctness of the Model 2-driven calculations.

For the moderate measurement uncertainty (u = 5 mV), the biggest error of determina-
tion of the risk P(R|G) by using Model 1, relative to the reference MC method, reaches 3%.
As the measurement uncertainty increases, Model 1 generates larger errors of risk assess-
ment. For example, the assessment error of the risk P(B|A), for measurement uncertainty
u = 10 mV, reaches even 9% of the reference value. Risk assessment errors are the result of
the distortions generated during calculation steps and are the result of truncation of the
joint probability distribution. The location of the Rayleigh distribution at the beginning of
the measuring range, in the area of distortions, favors errors.

A significant improvement in the conformity of the analytical results with the MC
method can be observed for Model 2. Conformity was obtained because the joint probability
distribution is free from distortion and truncation.

In the Monte Carlo method, samples from the generalized Rayleigh distribution, ade-
quate for the measured voltage magnitude, are obtained by geometric summation samples
of the real part and imaginary part, generated by the normal probability distributions
with zero mean values and various standard deviations. The uncertainty u is entered in
the simulation as the standard deviation of the normal distribution, characterizing the
sensor sub-process. The generated pseudo-random number, with standardized normal
distribution, is multiplied by u. The resulting pseudo-random number "offset" is added to
the "threshold" of the comparator. An excerpt from the Matlab program demonstrates the
simplicity of this approach:

N = 1000000000;
R = sqrt(normrnd(mualfa,sigmaalfa,N,1).ˆ2 + normrnd(mubeta,sigmabeta,N,1).ˆ2);
offset = u.*randn(N,1);
for k = 1:N;
if (le(R(k), threshold + offset(k)))&(gt(R(k), threshold))
counter = counter + 1;
end
The reliability of the reference model was assessed using confidence intervals. Table 5

presents examples of confidence intervals expressed in ppm for the two most popular
risk measures in the context of production processes—defect level and yield loss. Risk
measures are mean values of 30 random populations of 109 instances. The analysis of
Table 5 leads to the conclusion that only 2 or 3 digits of the risk assessment results are
stable. However, the practical use of the results requires a larger number of digits, which
implies a larger number of trials than the applied 109, and hence the usefulness of the MC
method is limited. The following practical example illustrates this problem and shows the
advantage of the analytical model over the MC method.

Table 5. The confidence intervals of the risk metrics reference values.

Risk Metric

Measurement Uncertainty (mV)

u = 2 u = 5 u = 10

Confidence Interval (ppm) for Confidence Level of 95%

P(B|A) 6092 ± 5 12,654 ± 7 19,802 ± 9

P(R|G) 8062 ± 6 24,969 ± 10 67,668 ± 16

5.4. Validation of the Correctness and Consistency of the Testing Results

To assess the practical usefulness of the results collected in Table 4, let us consider an
example of a production process, characterized by low yield: about 94%. For production
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characterized by the probability distribution in Figure 1, we get this production yield
for a measured voltage upper tolerance limit Lu = 40 mV. From (4), we calculate that the
probability of producing a conforming product is 93.91604%. In a batch of one million
copies, 939,160 products meet the specification (this is, the production yield), and 60,840
do not conform. Let us assume that to detect and eliminate the non-conforming products,
we test the voltage amplitude with a comparator, whose threshold uncertainty equals
u = 5 mV and the value of the voltage upper acceptance limit Du = 40 mV. In the middle
column of Table 4, for Model 2 we read the value of P(R,G) = 2.34580%. This means that
because of the uncertainty of measurements, 23,458 eligible products will be incorrectly
classified as non-conforming. Hence, 93,9160 – 23,458 = 915,702 products will be qualified
as conforming. The value of P(A,B) = 1.17412% indicates that due to the uncertainty of
measurements, an additional 11,741 non-conforming products will be incorrectly qualified
as conforming. In total, 915,702 + 11,741= 927,443 products will enter the market, of which
11,741/927,443 ≈ 1.2659% will be unsuitable for use. This value corresponds to a consumer
risk level, determined in accordance with the definition of P(B|A) = 1.2660%. The ratio
of the number of incorrectly rejected products to the number of products constituting the
production yield will be 23,458/939,160 ≈ 2.4977%, which corresponds to the producer’s
risk level, determined by P(R|G) = 2.49771%. Analysis of this example production process
confirms the mutual agreement of the results of the risk calculations presented in the middle
column of Table 4. Similar calculations carried out for the other two uncertainties: u = 2 mV,
and u = 10 mV, confirmed the correctness and consistency of the results throughout Table 4,
as well as the practical usefulness of the proposed way of modeling.

6. Discussion

Measurement results are accompanied by their uncertainty, which carries the risk of
making erroneous decisions in accepting or rejecting a product. Risk analysis resulting
from measurement uncertainty is used, among others, in the design of tests to check the
compliance of products with the specification. It enables the determination of the required
accuracy for measuring instruments, and the selection of the acceptance range for the tested
product attribute (risk management). It also allows the impact of measurement uncertainty
on direct production costs, and on the costs of the consequences of incorrect decisions of
conformity, to be assessed.

The paper presents problems arising during the application of the probabilistic model
of measurement process to analyze the risk of erroneous decisions in conformity assessment
and proposes ways to solve them. It was found that in Bayes’ formula, used for probability
inversion, there is no mechanism for the correct orientation in space of the posterior
distribution, and hence the need to use the likelihood function arises.

The use of multiple risk metrics allowed thoroughly examine the model, because
each fragment of the two-dimensional probability distribution was investigated during
calculations. The procedure for calculating risk using the model is complex. In the stages
of calculations, distortions arise that must be monitored and eliminated by selecting the
domain. The first source of distortion is inversion of the conditional distribution. The
second, independent source of distortion is the concatenation of two sub-processes. The
third source of error is truncation of the joint distribution. The effect of truncation of
the solid figure of a joint probability distribution p(xm, x) is the result of exceeding the
zero point of the domain of measured values. In-depth study of probabilistic model
requires experimenting with probability distributions of various shapes. The truncated
join distribution was detected due to the shape of the generalized Rayleigh distribution
that was used in the case study. It is possible to reconstruct the distribution body by
performing calculations, in a domain of measured values xm, wider than the measuring
range. This remark is especially important when the measurement process is affected by
high uncertainty.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2021, 21, 2053 14 of 15

7. Conclusions

The main contribution of the work includes:

• A proposal to test a probabilistic model of the measurement process by six metrics of
risk in parallel.

• Detection of the distortion and truncation effect of the joint probability distribution
p(xm, x), which is the basis for calculation risk metrics.

• Giving a recommendation on how to avoid distortion and clipping of the distributions.
• Obtaining compliance of the analytical results with the results of Monte Carlo simulation.
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