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Abstract
This paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming 
(ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is 
known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic 
Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control algorithm. Based on this integration, 
Actor-Critic Time-Delay Control (AC-TDC) is proposed. It offers a high-performance robust-adaptive control approach 
for path following of autonomous ships under deterministic and stochastic disturbances induced by the winds, waves, and 
ocean currents. Computer simulations have been conducted under two different conditions in terms of the deterministic and 
stochastic disturbances and all simulation results indicate an acceptable performance in tracking of paths for the proposed 
control algorithm in comparison with the conventional TDC approach.

Keywords Autonomous ships · Robust adaptive · Actor-critic learning · Approximate dynamic programming · Time-delay 
control

1 Introduction

Marine autonomous vehicles have been impressively 
improved during the last decade. Their applications are very 
extensive ranging from inspection tasks to accomplishing 
complex underwater explorations. Nowadays, intelligent 
transportation using the autonomous platforms has become 
a new research area as state of the art for researcher. In a few 
years from now, autonomous ships are expected to be used 
in the sea transportation to carry the goods without assis-
tance of human operator in their navigation. The Interna-
tional Maritime Organization (IMO) specifies four degrees 
of autonomy for autonomous ships:

ship with automated processes and decision support: sea-
farers are on board to operate and control shipboard systems 
and functions. Some operations may be automated.

Remotely controlled ship with seafarers on board: the 
ship is controlled and operated from another location, but 
seafarers are on board.

Remotely controlled ship without seafarers on board: the 
ship is controlled and operated from another location. There 
are no seafarers on board.

Fully autonomous ship: the operating system of the ship 
is able to make decisions and determine actions by itself.

As can be seen, the role of human operator is expected 
to be reduced throughout the development of autonomous 
ships. It can also be expected that during this process, the 
exploited ships may fuse two or more degrees of autonomy. 
The main difference between manned and unmanned ships in 
terms of control systems is that autonomous ship control sys-
tem relies on three dependent subsystems which are known 
as navigation, guidance and control (NGC) systems, while 
there is no a full decision-making system for the manned 
ships in particular for the collision avoidance and steering 
goals.

Designing a high-performance motion control system 
for these platforms is most significant challenge due to the 
complexity and nonlinearity of the ship dynamics as well as 
time-varying external disturbances. There are two groups of 
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perturbations, which affect the autonomous ship’s motion. 
The first group stems from the uncertainties in autonomous 
ship’s dynamics caused by parameter variation in the inertia, 
particularly when there is a variable load carried by ship. 
Another group is a result of external perturbations includ-
ing deterministic and time-varying stochastic disturbances, 
which are induced by the wind, wave and ocean currents. To 
address these two kinds of perturbations simultaneously a 
robust-adaptive control approach should be adopted. A brief 
literature review of related solutions in the marine robotics 
control area is provided below.

The main author of this paper proposed a perturbation 
compensating algorithm addressing accurate path track-
ing of a marine autonomous vehicle in the presence of 
environmental disturbances—a robust Model Predictive 
Control (MPC) [1]. In [2], the author presented a robust 
strategy based on Time-Delay Control (TDC) algorithm 
and Terminal Sliding Mode (TSM) designed to control an 
Underwater Vehicle-Manipulator System (UVMS). In this 
work, TDC was used to estimate some perturbations using 
a Time-Delay Estimation (TDE) part. In addition, SMC was 
adopted for withstanding other perturbations, which cannot 
be estimated by TDC. As for other robust control strategies, 
which were adopted to address trajectory tracking control 
of marine robots, some researches upon the underwater 
robotics were done in [3–6]. A robust and adaptive control-
ler based on the H-infinity approach was proposed in [7], 
where some of ship’s parameters were unknown. A related 
research conducted in [8] by the main author of this paper 
proposed to use an approximate dynamic programming to 
optimally adjust the control gains in a super-twisting slid-
ing mode controller for a Maritime Autonomous Surface 
Ship (MASS). A nonlinear MPC was used for an Unmanned 
Surface Vehicle (USV) in [9]; however, a conventional MPC 
was used there and it could not guarantee sufficient robust-
ness. In addition, the environmental disturbances in ocean 
or sea have not been considered there. In [10], a backstep-
ping control approach combined with sliding mode control 
algorithm was designed to address the trajectory tracking 
problem of an underactuated USV. An autonomous robotic 
boat was presented in [11], and for its controller, a nonlinear 
model predictive control (NMPC) was adopted. However, 
the uncertainty effect, resulting from the changes in iner-
tia, was not taken into account there. Another weakness of 
this work was neglecting the influences due to determin-
istic and stochastic disturbances. In [12], a nonlinear dis-
turbance observer was designed for an autonomous vessel 
to estimate unknown parameters and external disturbances. 
However, this observer was able to estimate only constant 
disturbances. A control law for path tracking of marine 
autonomous vessel was adopted in [13], where a singular 
perturbation method was used to decompose the system 
into two Lyapunov-based control subsystems. For tuning of 

gains in a PID controller of USV, a self-regulator PID was 
designed in [14] in which coefficients have been regulated 
by the fuzzy rules.

In general, despite significant progress, none of the 
above-mentioned nonlinear conventional robust control 
algorithms managed to successfully address internal uncer-
tainties in autonomous ships and time-varying stochastic 
disturbances upon them with sufficient accuracy. To success-
fully deal with these perturbations, other algorithms have 
been proposed as adaptive robust approaches. For this case, a 
disturbance observer was proposed in [15] for the trajectory 
tracking of Unmanned Marine Vehicles (UMVs). Research-
ers in this work adopted an adaptive law to estimate and 
compensate the disturbance observer error. Following this, 
by combining a nonlinear disturbance observer, dynamic 
surface control and adaptive robust backstepping together, 
they developed a dynamic surface adaptive robust controller. 
In another robust-adaptive approach [16], a nonlinear track-
ing differentiator combined with a reduced-order extended 
state observer (ESO) was adopted to estimate external dis-
turbances and uncertainties with a small estimation error. 
Another interesting work has been accomplished using the 
finite-time extended state observer-based distributed forma-
tion control for marine surface vehicles with input saturation 
and external disturbances. The time-varying external dis-
turbances induced by winds, waves, and ocean currents are 
considered there in the computer simulation [17]. Authors in 
[18] proposed an MPC approach combined with an adaptive 
line-of-sight (LOS) guidance for path following of Autono-
mous Surface Vehicles (ASVs). However, the conventional 
MPC algorithm is not a robust algorithm inherently. Hence, 
the robustness analysis should have discussed in aforemen-
tioned research. By combining the adaptive continuous 
sliding mode control with backstepping technique, an adap-
tive-robust control algorithm was adopted in [19]. Another 
backstepping-based control algorithm was presented in [20], 
in which a sliding mode disturbance observer is designed 
and applied to the path-following system of a container ship 
to estimate the time-varying environmental disturbances. 
Concerning some artificial intelligence-based control algo-
rithms for the autonomous marine platforms, an adaptive 
neural network (NN) controller for fine trajectory tracking 
of surface vessels with uncertain environmental disturbances 
was presented in [21]. A novel robust-adaptive formation 
control scheme based on the Minimal Learning Parameter 
(MLP) algorithm and the Disturbance Observer (DOB) was 
presented in [22]. Using the MLP algorithm, a remarkable 
descent in tunable parameters for the controller and DOB 
has been achieved, which in turn led to great reduction of 
the online computational time.

An artificial intelligence-based robust control strategy 
in the form of a multi-layer neural network was combined 
with adaptive robust techniques in [23]. This resulted in 
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the control system of great robustness against uncertain 
nonlinearities and environmental disturbances. The pro-
posed approach efficiently compensated both parametric 
and non-parametric uncertainties including time-varying 
disturbances induced by waves and ocean currents.

In this study, we propose an adaptive-robust strategy 
for path following control of an autonomous ship under 
deterministic and stochastic disturbances induced by 
winds, waves and ocean currents. This strategy includes 
a learning-based algorithm, which is based on the Actor-
Critic Approximate Dynamic Programming (ACADP), as 
an adaptive part and a TDC control algorithm as a robust 
part. Furthermore, the proposed control algorithm brings 
an optimal characteristic, which results from solving the 
Hamilton–Jacobi–Bellman (HJB) equation using Approx-
imate Dynamic Programming (ADP) procedure, for the 
conventional robust TDC algorithm.

The rest of this paper is organized as follows: an auton-
omous ship dynamical model associated with all of the 
time-varying external disturbances including deterministic 
and stochastic parts as well as uncertainties is described in 
the next section. The third section is dedicated to describe 
a time-delay control algorithm. In Sect. 4, the proposed 
hybrid Actor-Critic Time-Delay Control (AC-TDC) as 
an adaptive-robust approach is explained. In Sect. 5, the 
computer simulation results and comparison of them are 
shown and discussed to confirm high performance of the 
proposed hybrid control. Finally, the conclusion of this 
research is provided in Sect. 6.

2  Nonlinear dynamics of autonomous ships

In the control systems designed for the maneuvering con-
trol of ships, it is common to consider a 3 DOFs model as 
a coupled surge–sway–yaw model and thus neglect heave, 
roll and pitch motions. Therefore, the nonlinear dynam-
ics of an autonomous ship can be described in form of 3 
DOFs as follows:

where velocity and position vectors are defined as 
�(t) = [u(t), v(t), r(t)]T and η(t) = [x(t), y(t),ψ(t)]T , respec-
tively. u(t) and v(t) are speed signals of autonomous ship 
along the x - and y-axes, respectively. In addition, r(t) is an 
angular speed of ship around the y-axis. The respective 
frames of surge, sway and yaw motions are shown in Fig. 1. 
In the aforementioned equation, the rotation matrix 

(1)
{

M�̇� + C(𝜗)𝜗 + D(𝜗)𝜗 = Uc +MRT(𝜓)Γ

𝜂 = R(𝜓)𝜗

R(ψ) =

⎡⎢⎢⎣

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤⎥⎥⎦
 is adopted to transfer coordi-

nates from the body-fixed frame to the inertial frame.
For presenting Eq. (1) in a standard form based on posi-

tion vector, we can rewrite it using the property of the 
rotation matrix η̇ = R(ψ)𝜗 as

where all the related components of each matrix in Eq. (2) 
were presented in [24] analogous to the dynamics of robotic 
manipulators. Uc = [Fx, Fy, τψ]

T and Γ are control inputs and 
external disturbances including deterministic and stochas-
tic disturbances, respectively. These time-varying stochas-
tic disturbances are induced by the winds, waves and ocean 
currents, which are shown by the vector of Γ = [Γu,Γv,Γr]

T . 
In this research, we consider these disturbances for apply-
ing upon the autonomous ship with 3 DOFs, in which each 
term of Γu , Γv and Γr consists of the constant determinis-
tic components and the time-varying stochastic parts [25]. 
Therefore, we can rewrite them as follows:

where 
−
∗ and ∼∗ denote deterministic and stochastic compo-

nents of external disturbances, respectively. Regarding sto-
chastic components, a Wiener process is used to model them 
as follows [25]:

(2)M(η)η̈ + C(η, η̇)η̇ + D(η, η̇)η̇ = Uc + Γ

(3)

⎧⎪⎨⎪⎩

�u =
−

�u +
∼

�u

�v =
−

�v +
∼

�v

�r =
−

�r +
∼

�r

(4)

⎧⎪⎨⎪⎩

∼

�u = Δ1(t)ẇ1
∼

�v = Δ2(t)ẇ2
∼

�r = Δ3(t)ẇ3

Fig. 1  Autonomous ship with three degrees of freedom [31]
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where Δ1 , Δ2 , and Δ3 denote time-varying covariance and wi 
is a Wiener process:

where C(η, η̇) ∈ ℝ
3 , D(η, η̇) ∈ ℝ

3 are constant inertia 
matrix, time-varying inertia matrix, time-varying Coriolis 
matrix, and time-varying hydrodynamic damping matrix 
including both linear and nonlinear parts, respectively. 
Indeed, with taking into account the nonlinear damping 
parts, the matrix D(η) is changed to the form D(η, η̇) and 
nonlinear coefficients ( dij) are dependent on velocity vec-
tor η̇ = R(ψ)𝜗.

2.1  Time‑delay control

Let us assume that the desired paths, which must be fol-
lowed by the autonomous ship, are denoted by the vector 
�d . A control strategy of the autonomous ship path fol-
lowing is the adopted to provide a position vector � for 
following the �d . Let us define the tracking error and its 
first and second derivatives as

We regard parameters of es , esw and ey as compo-
nents of the tracking error vector e(t) for an autonomous 
ship, which are surge, sway and yaw tracking errors, 
respectively:

where � , �d are supposed to be measurable. In Eq. (2) 
from the modeling section let M(η) be approximated 
with 

−

M as a constant matrix. Then, Eq.  (2) can be 
rewritten as

where nominal term N(𝜂, �̇�) and perturbation term H(𝜂, �̇�, �̈�) 
including uncertainties Ch , Dh and external deterministic 
and time-varying stochastic disturbances Γ are expressed 
as follows:

� =

⎡
⎢⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎥⎥⎦
∈ ℝ

3,M(η) ∈ ℝ
3,

(5)e(t) = �d(t) − �(t)

(6)ė(t) = �̇�d(t) − �̇�(t)

(7)ë(t) = �̈�d(t) − �̈�(t)

(8)es(t) = xd(t) − x(t)

(9)esw(t) = yd(t) − y(t)

(10)ey(t) = ψd(t) − ψ(t)

(11)
−

M �̈� + N(𝜂, �̇�) + H(𝜂, �̇�, �̈�) = Uc

Following the control scheme of the Computed Torque 
Control (CTC) method, the control reads as

where 
∼

H , kd and kp are the estimated value of perturbation of 
H using Time-Delay Estimation (TDE) part, and the deriva-
tive and the proportional gain matrices, respectively. Substi-
tuting Eqs. (13) and (14) into Eq. (11), final error dynamics 
is expressed as

In the TDE part of TDC, under the assumption that the 
time delay ( L ) is very small and equal to the simulation 
step size ( L = Δt ), H(t) can be approximated as

Combining Eqs. (13), (14) and (16), the Time-Delay Con-
trol (TDC) law is obtained as

In addition, the second derivative for the delayed posi-
tions is implemented using the following equation [2]:

To guarantee that the control system is stable, the con-
stant matrix 

−

M should be adopted as follows:

where Θ is the minimum bound of eigenvalues �i of M(�) 
for all �.

2.2  Actor‑critic TDC and approximate dynamic 
programming

Although the induced perturbations can be partially esti-
mated by the TDE utility in Eq. (16), this estimation will 
be inaccurate and bring in large estimation errors when the 
autonomous ship is encountered with the deterministic and 
time-varying stochastic disturbances with high amplitudes. 

(12)

⎧
⎪⎪⎨⎪⎪⎩

N(𝜂, �̇�) = Cn(𝜂, �̇�)�̇� + Dn(𝜂, �̇�)�̇�

H(𝜂, �̇�, �̈�) =
�
M(𝜂)−

−

M

�
�̈� +…

…Ch(𝜂, �̇�)�̇� + Dh(𝜂, �̇�)�̇� − Γ

(13)Uc =
−

M uCTC+
∼

H (𝜂, �̇�, �̈�)

(14)uCTC = �̈�d(t) + kdė + kpe

(15)ë(t) + kdė(t) + kpe(t) = 0

(16)
∼

H (t) ≅ Ht−Δt = Uc(t − Δt)−
−

M �̈�(t − Δt)

(17)
uTDC = uTDC(t − Δt)−

−

M �̈�(t − Δt)+
−

M (�̈�d(t) + kdė + kpe)

(18)�̈�(t − L) =
𝜂(t) − 2𝜂(t − Δt) + 𝜂(t − 2Δt)

Δt2

(19)
−

M= 𝛾I, 0 < 𝛾 < 2Θ
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Furthermore, if we improperly choose the constant com-
ponents of the matrix 

−

M , the estimation error of TDC will 
increase. To address this problem in TDC algorithm, we 
propose a backpropagation policy algorithm based on 
approximate dynamic programming and actor-critic learn-
ing for compensating of TDE error, particularly when 

−

M 
has not been truly tuned.

Let us define TDE error as

Substituting Eqs. (16) into (17) and considering the 
above equation, Eq. (17) is rewritten as follows:

Then, we adopt an optimal guaranteed cost control part 
uAC to incessantly compensate TDE errors and increase 
convergence speed.

Let us define uAC as a compensator signal as

where it is optimally generated using an approximate 
dynamic programming algorithm based on a propagation 
actor-critic learning approach.

Therefore, combining the TDC technique with optimal 
control theory, a robust TDC scheme is proposed for path 
following control of autonomous ships with an inherent 
uncertain dynamics and under deterministic and time-
varying stochastic disturbances. According to Eqs. (16), 
(21) and (22), the hybrid AC-TDC is designed as

where uTDC is a part of the proposed control law, which is 
used as a main part of the proposed robust strategy and uAC is 
an optimal guaranteed cost control part. The latter is used to 
partially compensate time-delay estimation error and attenu-
ate stochastic disturbance effects.

As for the actor-critic network (which will be described 
in the next section), its reward function and the weights are 
updated when the autonomous ship encounters determin-
istic and stochastic disturbances that cannot be suppressed 
solely by TDC (Inaccurate Matrix 

−

M).
The learning-based part of the proposed control 

approach can be brought to designing an optimal control 
strategy. It is responsible for solving the HJB equations 
using Actor-Critic Approximate Dynamic Programming 

(20)� =
−

M
−1[ ∼

H −H
]

Uc =
∼

H +
−

M
(
�̈�d(t) + kdė + kpe

)
+

(21)
−

M
−1[ ∼

H −H
]

(22)uAC =
∼

H −H

(23)uAC−TDC = uTDC +
−

M
−1

uAC

(ACADP) as a Policy Iteration (PI) algorithm. Figure 2 
shows the scheme of this hybrid control approach.

2.3  ACADP strategy

The proposed ACADP algorithm is based on a Heuristic 
Dynamic Programming (HDP), which is analogous to the for-
mulation of reinforcement learning (RL) using the Temporal 
Difference (TD) learning methods [26–32].

Let us define a continuous utility or reward-to-go function 
as follows:

where the state-action vector gr(t) is regarded:

and uAC(t) =
[
u
surge

AC
u
sway

AC
u
yaw

AC

]T
is the control law as a compensator part, which is deliv-

ered by an actor-critic approximate dynamic programming 
approach; 𝜔1(t) =

[
es(t) ės(t) esw(t) ėsw(t) ey(t) ėy(t)

]
 , p is 

a positive-definite diagonal weighting matrix with a proper 
dimensions. q(t) is applied to the backpropagation actor neural 
network as an input vector in the input layer and its compo-
nents are as

where Δt is simulation step size for implementing of 
ACADP iteration algorithm. We adopt a total cost-to-go 
function as

(24)r(t) = gr(t)pg
T
r
(t)

gr(t) =
[
qT (t) uT

AC
(t)

]
,

(25)q(t) =
[
�1(t − Δt) �1(t)

]T

J
(
q(t), uAC(t)

)

Fig. 2  Hybrid control scheme AC-TDC
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where r
(
q(t), uAC(t)

)
 is a positive-definite function if q(t) ≠ 0 

and uAC(t) ≠ 0 and just equal to zero when q(t) = 0 and 
uAC(t) = 0 . In above equation, � , 0 < 𝜁 < 1 is a discount 
factor. We adopt J∗(q(t)) as a solution of (26). The result 
of minimization of the mentioned cost-to-go function, 
which satisfies HJB equation as an optimal solution, can be 
expressed as

For solving Eq.  (27), a policy iteration as an iterative 
method of reinforcement learning is used. In this research, the 
ACADP approach is used as a policy iteration to approximately 
solve HJB equation. In other words, J∗(q(t)) is approximated 
by Ĵ(q(t)) , which is the output of the critic neural network. 
It also means that if estimation error of the TDE part ( � ) is 
largely compensated and tracking errors including [ es(t) , ės(t) , 
esw(t) , ėsw(t) , ey(t) , and ėy(t) ] all converge to zero, the ACADP 
control policy uAC(t) = 0 , J∗(q(t)) = Ĵ(q(t)) = 0 , and three 
positions of autonomous ship absolutely track their desired 
paths with an acceptable deviation in presence of deterministic 
and stochastic disturbances. In ACADP structure, the critic 
neural network is trained to appraise the performance of the 
current control policy, which is composited of actor control 
policy and TDC control policy.

In our design, the proposed control signal (AC-TDC) is 
generated by the sum of the TDC and the ACADP control 
laws. The outputs of the action network ( uAC ) are multiplied 
by the inverse of constant matrix ( 

−

M
−1

 ) and then adaptively 
compensate perturbation effects, while output of TDC control-
ler ( uTDC ) has a large estimation error and is not capable to 
overcome these stochastic disturbances. The related propaga-
tion algorithm of the ACADP strategy is implemented using 
MATLAB programming environment.

2.4  Critic neural network structure

This network is a function of ( q(t) , uAC(t) , wc(t) ), where 
wc(t) is the critic weight vector and the control law uAC(t) 
generated by the actor neural network is also the input to 
the critic neural network [33]. Therefore, critic’s input and 
output vectors read as

Using standard algebra, one can derive from 
E q .   ( 2 6 ) : �J(t) + r(t) − J(t − Δt) = 0  ,  w h e r e 
J(t) = J

(
q(t), uAC(t)

)
 . Then, we can define an evaluation 

(26)=

∞∑
i=0

�r(
(
q(t + iΔt), uAC(t + iΔt)

)

(27)J∗(q(t)) = min
uAC(t)

{
r
(
q(t), uAC(t)

)
+ �J∗(q(t + Δt))

}

(28)

{
ci(t) =

[
q(t)T uAC(t)

T
]T

co(t) = Ĵ(t)

factor as an error function for the backpropagation critic 
neural network as follows:

Regarding weights updating of the critic network, an 
objective function is minimized in the following equation:

Let us consider Nci and Nch as number of inputs and num-
ber of neurons in hidden layer of critic network, respectively. 
Nci = n + m , n is number of inputs in actor network and m is 
number of outputs in actor network. We adopt a hyperbolic 
tangent threshold activation function for both actor and critic 
networks as follows:

where �c(t) = �a(t) = �(t).
Let us define wc1 and wc2 as weights of the critic network 

for its input layer and its output layer, respectively. In addi-
tion, two new variables ∅cj(t) and �cj(t) for the jth neuron in 
hidden layer are expressed as

(29)ec(t) = � Ĵ(t) − [Ĵ(t − Δt) − r(t)]

(30)min
wc(t)

Ec(t) = min
wc(t)

1

2
eT
c
(t)ec(t)

(31)�(t) =
1 − e−t

1 + e−t

(32)

∅cj(t) =

n∑
i=1

qi(t)wc1,ij(t) +

m∑
i=1

uACi(t)wc1,ij(t), j = 1,… ,Nch

(33)�cj(t) = �c
(
∅cj(t)

)
=

1 − e−∅cj(t)

1 + e−∅cj(t)
, j = 1,… ,Nch

(34)Ĵ(t) =

Nch∑
j=1

wc2,j(t)�cj(t)

Fig. 3  Critic neural network
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We use a gradient-based adaption algorithm for updating 
the weights of the actor and critic neural networks. There-
fore, the weights of the critic network can be calculated 
using this algorithm as follows:

where ρc(t) is an adaptive learning rate of the critic neural 
network.

Suppose that the weights of the input-to-hidden layer are 
randomly initialized and retained fixed for both the action 
network ( wa1,ij) and the critic network ( wc1,ij) . Based on the 
universal approximation theorem of neural networks, if the 
number of hidden-layer neurons is ample enough, then the 
approximation error can be regarded small. Therefore, we 
choose the updating strategy for the critic output weights 
( wc) as the normalized gradient descent algorithm as in [29]:

A critic neural network is depicted in Fig. 3, which con-
sists of 3 layers, 15 inputs ci(t) =

[
q(t)T uAC(t)

T
]T in input 

layer, 12 neurons in hidden layer and 1 output co(t) = Ĵ(t) in 
output layer. As the simulation studies will show, this simple 
network structure turned out to result in a sufficient accuracy 
combined with a short update time.

2.5  Actor neural network structure

An actor neural network is a function of ( q(t) , wa(t) ), 
whose input and output vectors are defined as follows:

Let us defineNai , Nah and Nao as number of inputs, num-
ber of neurons in hidden layer and number of outputs of 
an actor network, respectively.uACk, k = 1…Nao . Analogi-
cally to the last section (procedure for the critic network 
design), we adopt three variables∅aj(t) , �aj(t) and�ak(t) . Let 

(35)Δwc2,j(t) = −�c(t)
�Ec(t)

�Ĵ(t)
.
�Ĵ(t)

�wc2,j(t)

(36)Δwc1,ij(t) = −�c(t)
�Ec(t)

�Ĵ(t)
.
�Ĵ(t)

��cj(t)
.
��cj(t)

�∅cj(t)
.
�∅cj(t)

�wc1,ij(t)

(37)wc2,j(t + Δt) = wc2,j(t) + Δwc2,j(t)

(38)wc1,ij(t + Δt) = wc1,ij(t) + Δwc1,ij(t)

(39)wc(t + Δt) = wc(t) − �c(t)�c(t)
[
�wT

c
(t)�c(t) + r(t) − wT

c
(t − Δt)�c(t − Δt)

]T

(40)
{

ai(t) = q(t)

ao(t) = uAC(t)

us label wa1 and wa2 as weights of the actor network for its 
input layer and its output layer, respectively. Then, the out-
put of actor network uACk(t) can be computed as follows:

The action neural network is trained using an iterative 
evaluation loop, which appraises the error between the 
desired objective ( Od ) and the approximated cost-to-go 
function provided by the critic network. Regarding desired 
objective, Od is the objective value of the total cost-to-go 
and is usually set to 0:

We can express an objective function for the actor neural 
network as

Following this, we then use a gradient-based adaption 
approach to update the actor weights adaptively. It is done 
similarly as for critic network, so we do not repeat this pro-
cedure description and the accompanying equations here. 
Based on mentioned assumption for the critic network in 
which the weights of the input-to-hidden layer are randomly 
initialized and retained fixed for both networks, the output 
weights of the actor neural network are obtained as follows:

where �(t) is a matrix with dimension Nch × m and its ele-
ments can be calculated as

(41)∅aj(t) =

Nai∑
i=1

qi(t)wa1,ij(t), j = 1,… ,Nah

(42)�aj(t) = �a
(
∅aj(t)

)
=

1 − e−∅aj(t)

1 + e−∅aj(t)
, j = 1,… ,Nah

(43)�ak(t) =

Nah∑
j=1

wa2,jk(t)�aj(t), k = 1,… ,Nao

(44)uACk(t) = �a
(
�ak(t)

)
=

1 − e−�ak(t)

1 + e−�ak(t)
, k = 1,… ,Nao

(45)ea(t) = Ĵ(t) − Od

(46)min
wa(t)

Ea(t) = min
wa(t)

1

2
eT
a
(t)ea(t)

(47)
wa(t + Δt) = wa(t) − �a(t)�a(t)[w

T
c
(t)�(t)][wT

c
(t)�c(t)]

T

(48)�jk(t) =
1

2

(
1 − �2

cj
(t)
)
wcj,n+k
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An actor neural network is shown in Fig.  4, which 
consists of 3 layers, 12 inputs ai(t) =

[
q1(t − Δt) q1(t)

]T 
in input layer, 10 neurons in hidden layer and 3 outputs 
ao(t) =

[
u
surge

AC
u
sway

AC
u
yaw

AC

]T in output layer.

2.6  Concept of uniformly ultimately bounded

Typically, the presence of bounded deterministic and stochastic 
disturbances as well as neural network approximation errors 
lead to a Uniformly Ultimately Bounded (UUB) [32]. The 
UUB is used in the stability analysis of dynamical systems—
particularly those that are based on approximate dynamic pro-
gramming algorithm. The stability property is developed to 
guarantee that each of the iterative control laws can make the 
cost-to-go index function, adaptive weights and tracking errors 
uniformly ultimately bounded. Based on Eqs. (39) and (47), a 
dynamical system of estimation errors reads as

,

{
j = 1,… ,Nch

k = 1,… ,m

(49)
∼
wa,c(t + Δt) =

∼
wa,c(t)−

where 
∼
wa,c(t) = wa,c − w∗

a,c
 . The optimal weights of critic 

and actor networks are shown by w∗
c
 and w∗

a
 , respectively. 

All the weights and activation functions are assumed to be 
bounded as

Definition 1. A dynamical system is said to be UUB with 
ultimate bound b > 0 , if for any a > 0 and t0 > 0 , there exists 
a positive number N = N(a, b) independent of t0 , such that 
‖ ∼
w (t)‖ ≤ b for all t ≥ N + t0 whenever ‖ ∼

w (t0)‖ ≤ a.

Theorem  1. If, for system (49), there exists a func-
tion L(

∼
w (t), t) , such that for all 

∼
w (t0) in a compact set 

f (wa,c(t − Δt),wa,c(t), �a,c(t − Δt), �a,c(t))

(50)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

‖wc(t)‖ ≤ wcm(t)

‖w∗
c
(t)‖ ≤ wcm(t)

‖wa(t)‖ ≤ wam(t)

‖w∗
a
(t)‖ ≤ wam(t)

‖�c(t)‖ ≤ �cm(t)

‖�a(t)‖ ≤ �am(t)

Fig. 4  Actor neural network

Table 1  Parameters for Cybership II

m 23.8 X
u

-0.72 Y
r

-7.2

Iz 1.76 X|u|u -1.32 Y|v|r -0.84
xg 0.046 Xuuu -5.86 Y|r|r -3.45
Xu̇ -2 Yv -0.89 N|r|v 0.1
Yv̇ -10 Y|v|v -36.4 Nr -1.9
Yṙ 0 Nv 0.03 N|v|r 0.08
Nv̇ 0 N|v|v 3.95 N|r|r -0.75
Nṙ -1 Y|r|v -0.8

Table 2  Setting of the neural networks

Parameter Actor Network Critic Network

Number of Learning Iterations na = 70 nc = 100

Initial Learning Rates �a = 0.2 �c = 0.2

Number of Hidden Neurons Nah = 10 Nch = 12

Number of input Neurons 12 15
Number of output Neurons 3 1
Tolerance Errors Ta = 10

−6 Tc = 10
−6

Discount Factor − � = 0.92
Fig. 5  Stochastic disturbances

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Journal of Marine Science and Technology 

1 3

K  , L(
∼
w (t), t) is positive definite and the first difference, 

L(
∼
w (t), t) < 0 for ‖ ∼

w (t0)‖ > b , for some b > 0 , such that b
-neighborhood of 

∼
w (t) is contained in K , then the system is 

UUB and the norm of state is bounded to within a neighbor-
hood of b.

Based on the above theorem and definition, a Lyapunov 
function can be adopted as follows:

With applying the above mentioned theorem and Lyapu-
nov function, presented analysis in [29] showed that errors 
between the optimal weights of the actor and critic neu-
ral networks w∗

a
 , w∗

c
 and their estimates wa , wc , which are 

approximated using the ACADP algorithm, can be all UUB. 
The UUB concept is obviously realized in the depicted 
results of our proposed hybrid algorithm, which are pre-
sented in the next section (Table 1).

3  Computer simulations and discussion

In this section, the proposed AC-TDC control algorithm is 
tasted on a small-scale autonomous surface ship (Cyber-
ship II) with the following mass-related and identified 

(51)

⎧⎪⎪⎨⎪⎪⎩

L(t) = L1(t) + L2(t)

L1(t) =
�

1

�c

�
tr(

∼
w
T

c

∼
wc)

L2(t) =
�

1

�a

�
tr

�
∼
w
T

a

∼
wa

�

parameters, which were calculated using the system identi-
fication procedure in [36]:

In the simulation, we consider all the components of 
matrices M(η), C(η, η̇), D(η, η̇) given in [24]. Damping 
matrix D(η, η̇) includes some nonlinear damping coeffi-
cients, which are described as follows [17]:

Other damping coefficients in the damping matrix 3 × 3 
are assigned to zero. In addition, the constants in the iner-
tia matrix are assigned as follows:

Furthermore, disturbances are considered for applying 
upon the Cybership II, in which their respective vectors 
� = [�u,�v,�r]

T  in Eq. (3) can be expressed as follows 
[17]:

d11 = 0.72 + 1.33|u| + 5.87u2

(52)d22 = 0.8896 + 36.5|v| + 0.805|r|

d23 = 7.25 + 0.8451|v| + 3.45|r|

d32 = 0.0313 + 3.96|v| + 0.13|r|

d33 = 1.9 − 0.08|v| + 0.75|r|

⎡⎢⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤⎥⎥⎦
=

⎡⎢⎢⎣

25.8 0 0

0 33.8 1.0115

0 1.0115 2.76

⎤⎥⎥⎦

Fig. 6  Path following of autonomous ship under stochastic disturbances
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In both case studies, we regard the following setting of 
the coefficients in Table 2 for the critic and actor neural 
networks:

The weighting matrix in Eq.  (24) is initialized by 
p = 0.1Inn , where Inn is an identity matrix with dimension 
15 × 15 (The state-action dimension is 15). In the proposed 
algorithm, we consider an adaptive step size for both neu-
ral networks, which are decreased by 0.01 in each of the 
5 steps Δt = 0.02 . The weights of the critic and actor net-
works are randomly initialized with values from the range 
[−0.2, 0.2].

(53)

⎧⎪⎨⎪⎩

�u = 0.1v3 + 0.06u + 0.01sin(t)

�v = ur + 0.1u + 0.01sin(t)

�r = 0.4ur + v2 + 0.01sin(t)

4  Case study 1:

4.1  Tracking of desired paths under stochastic 
disturbances

The desired paths from which must be followed by the 
autonomous ship under stochastic disturbances are given by 
(54). The disturbances themselves are shown in Fig. 5. The 
simulation time t = 30sec. is adopted for this tracking:

Regarding parameters of TDC, in the first case study we 
set them as follows:

(54)

⎧⎪⎨⎪⎩

x = 5cos(
1

15
�t)

y = 5sin(
1

15
�t)

� = 0.01�t

Fig. 7  Control input signals
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(
−

M=
[
1 1 1

]
I
nn
, n = 3 ), kd = kp = 2 where Inn is an iden-

tity matrix.
In this case study, we have applied only stochastic dis-

turbances in two stages during the tracking. The results of 
path following under this condition are shown in Fig. 6, 
where it is observed that the proposed AC-TDC algorithm 
is capable of handling disturbances significantly better 
than standard TDC algorithm. The deviations of TDC from 
the given path are particularly visible in the bottom part 
of Fig. 6 and upper part of Fig. 6b, where the TDC algo-
rithm clearly has problems with handling the increased 

amplitude of stochastic disturbance. In comparison, AC-
TDC was able to deal with that and avoid those deviations 
in both cases (circle path tracking and yaw path tracking).

The control input signals are depicted in Fig.7, which 
are in an optimal effort status for the hybrid algorithm 
toward the conventional TDC. Concerning performance 
of actor-critic neural network, respective results for the 
implemented algorithm of ACADP are illustrated in Fig. 8.

To clearly observe the responses of network weights, 
we provide some figures with zoom in view depicted 
in Figs. 9 and  dedicated to the actor and critic neural 

Fig. 8  Adaptive weights and parameters of actor-critic learning algorithm
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networks, respectively. As it is observed in Fig. 9c, we 
have uniformly ultimately bounded convergence for the 
output weights of actor neural network. It means that the 
actor weights, after their learning, are kept in a variable 
mode but with bounded amplitudes. Therefore, this vari-
able mode of actor weights leads to the suppression of 
unexpected stochastic disturbances. Similarly, an expo-
nential convergence is shown in Fig. 10b, c for the output 
weights of critic neural network.

5  Case study 2

5.1  Tracking of desired paths under deterministic 
and stochastic disturbances

The desired paths, which must be followed by autonomous 
ship under stochastic disturbances, are given by (55). As for 
disturbances, they are shown in Fig. 11. The simulation time 
t = 30sec. is adopted for this tracking.

Fig. 9  Zoom in view of actor output adaptive weights
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Regarding parameters of TDC in the second case study, 
we set them as follows:

(
−

M=
[
0.5 0.4 0.6

]
I
nn
, n = 3 ), kd = kp = 2 , where Inn is 

an identity matrix.
In the second case study, we have applied both kinds of 

disturbances upon the autonomous ships including deter-
ministic and time-varying stochastic disturbances. As shown 
in Fig. 11, the deterministic disturbances are applied four 
times, whereas there is for a single 30-s phase of apply-
ing the stochastic disturbance. The results of path following 
under this highly disturbed condition are shown in Fig. 12. 
It can be observed that the conventional TDC is unable to 
keep the yaw motion of autonomous ship on the reference 
values, which is depicted in Fig. 12c. In contrast to the TDC, 

(53)

⎧⎪⎨⎪⎩

x = 3(m)

y = 5sin(
1

15
�t)

� = 0.01�t

Fig. 10  Zoom in view of critic 
output adaptive weights

Fig. 11  Deterministic and stochastic disturbances
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we have a high-performance responses of the AC-TDC in 
following the desired paths of surge, sway, and yaw motion 
with much lower deviations in comparison to the TDC.

The optimal control efforts are depicted in Fig.13. Con-
cerning performance of actor-critic neural network, respec-
tive results for the implemented algorithm of ACADP are 
illustrated in Fig. 14 and some zoom-in-view figures of 
output weights of actor and critic networks are shown in 
Figs. 15 and 16.

In this case study, we have chosen smaller values for the 
components of constant inertia matrix 

−

M toward the first 
case study. It leads to an increasing in TDE error. Indeed, 
with applying the deterministic and stochastic disturbances 
simultaneously, the perturbation magnitude is increased. 
Therefore, for overcoming this compelled perturbation, we 
have to increase the values of 

−

M ’s components in the TDC 

algorithm. Otherwise, with a decrease in values of 
−

M ’s com-
ponents, the error of estimating the perturbation by the TDE 
part is increased. In such a situation (improper values of 
−

M ), the TDC algorithm is no longer capable to follow the 
path accurately. For instance it is observed in Fig. 12c. For 
tackling with this problem due to the improper assigning of 
values to the inertia matrix 

−

M , we have proposed a supple-
mentary control algorithm combined with the TDC. In this 
proposed AC-TDC control scheme, the TDE error is com-
pensated using an online learning-based part in the proposed 
control algorithm ACADP. This algorithm generates opti-
mal efforts using an actor neural network as supplementary 
control inputs in which the output weights of this network 
are instantly updated, in case of occurring the deterministic 
disturbances, as shown in Fig. 14d. As it has been depicted 

Fig. 12  Path following of autonomous ship under deterministic and stochastic disturbances
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in Fig. 14c, with occurring each new deterministic distur-
bance during of path following, a new learning process is 
commenced to assign proper weights to the actor network.

Concerning the UUB convergence, the output weights 
of the actor neural network move toward a bounded vari-
able mode, analogically to the first case study. It is shown 
in Fig. 15c.

6  Conclusion

In this paper, a hybrid robust-adaptive optimal control struc-
ture was developed to address the path following control 
problem for autonomous ships under deterministic and sto-
chastic disturbances. In the proposed structure, a TDC robust 
algorithm is combined with an ADP-based algorithm as an 

adaptive part of the proposed AC-TDC algorithm. This part 
includes an actor-critic neural network, which is used as a 
main subsystem to implement an ADP algorithm. Based on 
the capability of the heuristic ADP procedure in solving the 
HJB equation with a curse of dimensionality, a supplementary 
optimal control law is a result of this cost-to-go approxima-
tion procedure. This optimal control law was added to the 
TDC law to address high-performance path following con-
trol algorithm for the autonomous ships, particularly when 
the conventional TDC is unable to track the desired paths in 
case of facing the deterministic and stochastic disturbances, 
simultaneously. The robustness of new algorithm has been 
tested in presence of above-mentioned perturbations for two 
different case studies. The simulation results depicted that this 
procedure has significant properties in trajectory tracking with 
acceptable precision for autonomous ships under deterministic 

Fig. 13  Control input signals
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Fig. 14  Adaptive weights and parameters of actor-critic learning algorithm
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and stochastic disturbances. Concerning the future works, the 
next step is to implement the presented algorithm upon an 
underactuated autonomous surface ship equipped with a rud-
der navigation system. Moreover, the TDC part of the hybrid 
control algorithm will be enhanced by two structures. First, a 

Super-Twisting Sliding Mode Control (ST-SMC) strategy will 
be added to fulfil even greater robustness. Second, the method 
will feature optimal gain tuning of ST-SMC by means of the 
ADP part of the proposed control approach.
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