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Summary

In visual recognition, the task is to identify and localize all objects of interest
in the input image. With the ubiquitous presence of visual data in modern days,
the role of object recognition algorithms is becoming more significant than ever and
ranges from autonomous driving to computer-aided diagnosis in medicine. Current
models for visual recognition are dominated by models based on Convolutional Neu-
ral Networks (CNNs), which achieve impressive performance on many benchmarks.
However, when deployed to the real world, the performance of these CNN models
can drop drastically, lacking the desired robustness property. This is because of the
so-called distributional shift, where the test-time data differ from data observed dur-
ing training, and it poses one of the most important challenges in modern machine
learning. At the same time, modern CNN-based models may be too expensive or
too slow for general deployment.

As such, the goal of this thesis is to develop robust and efficient models for
visual object recognition. In the experimental section, the focus is on autonomous
driving because of the datasets’ availability, and also because the aforementioned
problems are essential for autonomous driving.

Evaluating robustness is challenging since collecting out-of-distribution data
(for example, rare events, atypical weather conditions in the case of autonomous
driving) is often not feasible. As such, this thesis starts with analyzing methods
for evaluating models’ robustness. This includes cross-dataset evaluation, adding
synthetic distortions during testing, and for day-to-night transition (when models
trained on daytime images are evaluated on night-time images). Throughout the ex-
periments, it was shown that using different measures, such as model accuracy (that
is, accuracy on “clean” datasets, but also using the proposed methods) and uncer-
tainty estimation, is crucial for fully understanding the impacts of some methods
(e.g., data augmentation) on model performance.

Equipped with the tools for evaluating model robustness, the next goal was to
understand the impact of model compression methods is on model accuracy. Model
compression works by removing some neurons or filters during training, which im-
proves the inference time, without hurting overall accuracy. This is possible since
current CNN-based models are over-parametrized. Such methods are very popular
in visual recognition, however, the side effects of such techniques are unknown. In-
deed, it was found that compression methods disproportionately increase the model
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vulnerability to different corruption types. Some of the corruptions are heavily im-
pacted by the compression methods (i.e., Gaussian noise), while others (blur effect)
are only slightly affected. Also, it was found that compression techniques have a dis-
proportionate impact on different object classes, even at moderate compression rates.
It was hypothesized that one of the reasons for this is data imbalance, a compressed
model (with smaller capacity) will firstly remove neurons responsible for recognition
of less-common data. The experimental section found that using data balancing
methods helped to improve the accuracy of some classes. Careful evaluation and
analysis of the results are an important part of this thesis - fully understanding the
impact of some interventions (using model compression in this case) is essential for
models deployed to the real world.

Further, the robustness of model ensembles is investigated, which are known
because of their remarkably high accuracy, which comes, however, at a significantly
increased computational cost. Semantic segmentation models are studied in the
domain adaptation setting under a varying level of distributional shift (when doing
cross-dataset adaptation and when adapting from data from simulation). Indeed, it
was found that using a model ensemble with diverse models (by means of different
backbones and data augmentation schemes) resulted in very high accuracy, even
when the distributional shift was large. Further, it was observed that uncertainty
calibration improved in the distributional shift scenario, which was an important
finding. Given those observations, the next goal was to transfer the ensemble’s
knowledge into a single model. For that case, a self-learning approach was utilized
to efficiently distill the knowledge from the model ensemble and significantly improve
the single model accuracy in the target domain.

The final research question investigates whether two previously studied meth-
ods, namely model compression, and ensembling, can be efficiently combined. The
thesis proposed and implemented a design for multi-input multi-output (MIMO) ar-
chitecture in the object detection task. The MIMO framework works by predicting
multiple images simultaneously, using the same capacity as with the standard model
(single image prediction). During inference, all images are the same, and as a re-
sult, several potentially different predictions are obtained for a single image. This
is possible because of the over-parameterization of current CNN-based models. In
practice, it was found that it is hard to obtain more than two parallel predictions
for object detection. Overall, the results (including out of distribution accuracy
and uncertainty calibration) were similar to model ensembling, with a much smaller
computational cost. The detailed analysis showed that one of the reasons for the
improved performance is that training the model in the MIMO framework works as
a strong regularization.
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Streszczenie pracy

Celem rozpoznawania obrazu jest identyfikacja oraz lokalizacja wszystkich
obiektów zainteresowania w obrazie wejściowym. W związku z ogromną liczbą ak-
tualnie dostępnych danych obrazowych, rola algorytmów rozpoznawania obrazu jest
większa niż kiedykolwiek i obejmuje takie m. in. takie dziedziny jak pojazdy auto-
nomiczne, inteligentny monitoring wizyjny czy wspomaganie decyzji personelu me-
dycznego. Współczesne algorytmy przetwarzania obrazu wykorzystują splotowe sieci
neuronowe, które w ostatnich czasach pozwoliły na znaczące zwiększenie dokład-
ności rozpoznawania obrazu na wielu zbiorach danych. Niestety, w przypadku zas-
tosowania w świecie rzeczywistym, dokładność tych modeli często znacząco maleje.
Jest to najczęściej wynik warunków panujących w czasie testowania, które mogą się
znacząco różnić od reprezentowanych w zbiorze treningowym. Zwiększenie zdolności
generalizacyjnych modeli do nowych warunków jest jednym z największych wyzwań
uczenia maszynowego. Ponadto, wiele modeli opartych o sieci splotowe ma zbyt
duże wymagania obliczeniowe lub są zbyt kosztowne.

Celem pracy jest stworzenie modeli rozpoznawania obrazu o możliwie wysokich
zdolnościach generalizacyjnych przy jednocześnie niewielkich wymaganiach oblicze-
niowych. W eksperymentach wykorzystano głównie zbiory danych dotyczące zas-
tosowań analizy obrazu dla potrzeb pojazdów autonomicznych, ze względu na dużą
ich dostępność oraz ponieważ opisane wyżej problemy są kluczowe w tym zastosowa-
niu. Opracowane algorytmy zostały przetestowane dla zadań detekcji obiektów i se-
mantycznej segmentacji.

Ewaluacja zdolności adaptacji modeli do nowych warunków jest wymagającym
zadaniem ponieważ zebranie tego typu danych (rzadkie wydarzenia, np. nietypowe
warunki atmosferyczne, wypadki drogowe w przypadku zastosowania w pojazdach
autonomicznych) często nie jest możliwe. W związku z tym w rozdziale 3 przeanali-
zowano metody oszacowania zdolności generalizacyjnych modeli na przykładzie zada-
nia detekcji pieszych. Opisane metody wykorzystują testowanie na nowych zbiorach
danych, dodawanie syntetycznego szumu w czasie testowania oraz badanie adap-
tacji modeli do nowych warunków (np. testowanie modeli na zdjęciach nocnych,
podczas gdy zostały wytrenowane na zdjęciach uzyskanych w dobrych warunkach
oświetleniowych). W toku eksperymentów sprawdzone zostało jak specjalistyczne
metody wzmacniania danych wpływają na dokładność modeli oraz oszacowanie ich
niepewności. Eksperymenty pokazały, że korzystanie z powyższych metod jest kluc-
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zowe aby uzyskać możliwie pełen obraz pozwalający na ocenę działania modeli.

W kolejnym rozdziale przeanalizowano dokładniej metody kompresji modeli.
Metoda ta działa poprzez usuwanie neuronów lub filtrów sieci neuronowej, pozwala-
jąc poprawić szybkość działania sieci, a jednocześnie w niewielkim stopniu wpływając
na dokładność modelu. Takie metody są popularne w zastosowaniach przetwarzania
obrazu, ale niezbadane zostało do tej pory, jak wpływają one na dokładności modeli
w obliczu warunków, znacząco różniących się od zbioru treningowego. Ekspery-
menty z udziałem modeli detekcji obiektów pokazały, że metody kompresji szczegól-
nie mocno wpływają na zakłócenia związane z szumem (np. szum Gaussowski, który
może być efektem zakłóceń czujnika wizyjnego), a w znikomym stopniu wpływają
na wrażliwość modeli na efekty związane z rozmyciem obrazu wejściowego. Pon-
adto, zauważono, że kompresja modeli istotnie obniżyła dokładność rozpoznawania
niektórych klas. Założono, że jedną z przyczyn może być fakt, że niektóre klasy
są bardziej liczne od innych i podczas kompresji w pierwszej kolejność usuwane
są filtry związane z rozpoznawaniem mniej popularnych klas. W dalszym kroku,
pokazano, że użycie standardowych technik bilansowania danych może być szczegól-
nie pomocne w takim przypadku. Eksperymenty pokazują, że dokładna ewaluacja i
analiza dokładności modeli w różnych warunkach jest szczególnie istotna dla modeli,
które muszą działać w świecie rzeczywistym.

W kolejnym rozdziale wykorzystano metody grupowania modeli (ang. model
ensembling), ponieważ są one znane z bardzo wysokiej dokładności. W metodzie
tej uzyskiwane są predykcje dla wielu różnych modeli, a następnie są agregowane,
co wiąże się z wysokim kosztem obliczeniowym. W eksperymentach skupiono się
na zadaniu semantycznej segmentacji w przypadku adaptacji do nowej domeny
(czyli gdy np. mamy do czynienia z innym zbiorem danych w czasie testowania).
Aby utrudnić zadanie dla modelu (i tym samym sprawdzić jego zdolności gener-
alizacyjne) w jednym z eksperymentów trenowany jest on na danych uzyskanych
z symulatora, a testowany na danych pochodzących ze świata rzeczywistego. Za-
proponowana metoda grupowania, korzystająca z 5 modeli (różniących się architek-
turą oraz metodą augmentacji danych) uzyskała wysoką dokładność segmentacji,
również gdy różnica między dziedzinami była bardzo duża. Dodatkowo zauważono,
że uzyskane modele charakteryzują się dokładnym oszacowaniem niepewności. Biorąc
pod uwagę te wnioski, kolejne zadanie polegało na transferze wiedzy z grupy mod-
eli do pojedynczego modelu, tak aby zmniejszyć koszt obliczeniowy. W tym celu
została wykorzystana metoda samo-uczenia (ang. self-learning), która pozwoliła na
znaczące zwiększenie możliwości adaptacji modelu do nowej dziedziny.

W ostatniej części pracy podjęto próbę połączenia metod opisanych w poprzed-
nich rozdziałach: kompresji oraz grupowania modeli. W pracy zaproponowano
wykorzystanie architektury wielokrotnego-wejścia wielokrotnego-wyjścia (MIMO)
do zadania detekcji obiektów. Taka architektura działa poprzez uzyskanie wielu
równoległych predykcji dla pojedynczego obrazu (a więc podobnie jak przy metodzie
grupowania modeli), wykorzystując tyle samo parametrów co standardowy model
(dokonujący pojedynczej predykcji). Jest to możliwe, ponieważ współczesne modele
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oparte o sieci splotowe posiadają ogromnę liczbę parametrów, która często może
być efektywnie zredukowana (poprzez kompresję modeli). W praktyce okazało się,
że zapro- ponowany model jest najbardziej skuteczny gdy wykonywane są dwie
predykcje jed- nocześnie. Ewaluacja pokazała, że zaproponowana architektura jest
podobnie skuteczna jak metoda grupowania modeli, przy znacznie mniejszym kosz-
cie obliczeniowym. Wnikliwa analiza działania pokazała, że architektura MIMO
pozwala również na efektywną regularyzację trenowanego modelu.
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List of abbreviations

The following abbreviations has been used throughout this thesis.

acc accuracy
BDD Berkeley Deep Drive dataset
CJ color jittering data augmentation
CNN convolutional neural network
COCO Common Objects in Context dataset
CSP Center Scale Prediction architecture
CT computed tomography
DE deep ensembles
DNN deep neural network
DPM Deformable Part Model
ECE Expected Calibration Error
ECP EuroCity Persons dataset
ENS effective number of samples method
FCN fully convolutional network
FN false negative
FP false positive
fppi false positives per image
GPU graphical processing unit
GTA Grand Theft Auto
HOG histogram of oriented gradients
i.i.d independent and identically distributed
INV inverse square root re-weighting method
IoU Intersection over Union
LAMR log-average miss rate
mAP mean average precision
MIMO Multi-input Multi-Output framework
mIoU mean Intersection over Union
MLP multi-layer perceptron
mr miss-rate
MRI magnetic resonance imaging
MSE mean squared error
NMS non-maximum suppression
o.o.d out of distribution
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PCA principal component analysis
pix. acc pixel accuracy
R-CNN Region-Based Convolutional Neural Network
ReLU Rectified Linear Unit
RFS repeat factor sampling method
ROI region of interest
RPN Region Proposal Network
SGD stochastic gradient descent
SVM support vector machine
TP true positive
WBF Weighted Boxes Fusion
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Chapter 1

Introduction

1.1 Foreword and Motivation

Recent years have witnessed noteworthy progress in the application of machine
learning models to the real world. DeepMind company has developed an algorithm
to play GO (Chinese chess-style game) that defeated the world champion [1], a goal
that many considered a milestone in the development of artificial intelligence. Other
prominent examples are significant improvements in machine translation [2], appli-
cations of visual recognition to medicine [3], and face recognition [4].

The current machine learning revolution started in 2012 when a large convolu-
tional neural network (CNN) significantly improved image recognition performance
over previous work [5]. However neural networks existed long before 2012; some of
the foundations were established in the 1950s. For example, the perceptron network
was the first example of a neural network built for image recognition [6]. Still, many
architectural details such as the number and size of layers, appropriate non-linear
functions, and weights initialization were required to make them work. Because
modern neural networks usually contain many hidden layers, they are often referred
to as deep learning.

Recent success would not be possible without the increasing computing power
(thanks to Graphic Processing Units – GPUs) and the availability of large-scale
datasets. A very prominent example is the ImageNet dataset [7]. It contains 14 mil-
lion images grouped into 22,000 visual categories. Such datasets play a vital role in
the field. First, they provide a lot of data for training current deep learning mod-
els known as data-hungry. Second, they are used for benchmarking and measuring
progress, encouraging scientists to test their algorithms.

With the increasing potential of machine learning, there comes a need for
building trustworthy algorithms, which can be used, for example, in autonomous
driving or medical applications. One of the main challenges when applying machine
learning algorithms to the real world, is the fact that the real world is very compli-
cated, and no matter how big the dataset is, it will contain only an infinitely small
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Figure 1.1: Examples of some challenges in visual recognition: overexposed images
(upper left), camera movement and low light (upper right), adverse weather condi-
tions (bottom row) and atypical object instances (bottom right). The upper row
shows images recorded from the author’s camera, the bottom row figures are from
the DAWN dataset.

part of all of the possible situations that may occur. For example, in the case of
autonomous driving, it is impossible to collect a dataset that will contain all of the
different weather conditions, types of vehicles, or road situations.

Visual recognition plays a vital role in machine learning. With the ubiquitous
presence of visual data across various domains (e.g., medicine, autonomous driving,
surveillance, social media, computer games), the role of computer vision algorithms
is more significant than ever. At the same time, many of these algorithms are de-
ployed to new environments which may be different from those found in the training
dataset, which may drastically reduce recognition accuracy. As the problem is very
challenging and of great importance, the author is interested in developing algo-
rithms that can be effectively used for visual recognition for models deployed to the
real world.

Reliability is crucial for systems operating in the real world since current deep
learning models are very vulnerable to changes in the data distribution [8, 9], do not
generalize well across datasets [10, 11, 12], and tend to base their prediction on su-
perficial features [13, 14, 15]. Such models perform very well only when the test-time
distribution matches or is close to the training-time distribution, otherwise current
models can make unexpected predictions in the presence of a distributional shift (Fig.
1.1). This is not an issue for many applications, e.g., when operating in a closed
environment (e.g., inside a factory) or when it is satisfactory for the model to work
well only in the ‘typical’ case (for example, in entertainment applications). How-
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ever, for safety-critical applications operating in the real world (medicine, robotics,
autonomous vehicles), such behavior is unacceptable. Therefore, the first goal of
this thesis is to design an algorithm that can be safely deployed to an un-
familiar environment, meaning it is resistant (robust) to a shift of data
(for example, due to the sensor noise or different weather conditions than those in
the training data).

Regarding robustness, the conventional wisdom in the machine learning com-
munity is that “bigger models are always better” [9, 2, 16]. However, such an
approach is not feasible for real-world deployment when the computational cost is
important. Hence, the second goal of this work is to develop algorithms that
are computationally efficient. When reducing computational cost, one needs to
analyze the trade-off between hardware cost and model efficiency carefully.

It is also important for models operating in the real world to “know when
the model does not know”. In such a case, the algorithm might inform the medical
doctor that the prediction may be unreliable or ask the driver to take control of the
steering wheel in the case of autonomous driving. Because of that, it is also crucial
that developed algorithms provide reliable uncertainty estimates in order to safely
act in the real world. As such, in this thesis, the methods for improving uncertainty
calibration under distributional shift are studied.

As it was mentioned before, large-scale datasets are an essential aspect of the
progress in machine learning. Because many such datasets exist for autonomous
driving and because robustness to distributional shift is important for that task,
most experiments in this thesis are conducted using autonomous driving datasets.
However, the methods developed in this thesis are general, and their usage is by
no means limited to autonomous driving.

1.2 Scope and Contributions

The goal of this thesis is to develop robust and efficient models for
visual object recognition. High-level visual recognition tasks such as object de-
tection and semantic segmentation are essential in computer vision applications such
as surveillance systems, autonomous driving, and medicine. Semantic segmentation
can be viewed as a pixel-wise classification problem where the goal is to assign to
each pixel a predicted category c ∈ {1, ..., C}. Each label c represents a different
class (e.g., pedestrian, car, bicycle). For object detection, the goal is to find the
coordinates of important objects in the observed image using bounding box anno-
tations. In the case of semantic segmentation, a list of classes is usually extended
by adding a background class. A simple illustration is presented in Fig. 1.2. Both
topics are explained in more detail in sections 2.2 and 2.3.

While visual recognition is a problem that, thanks to the recent advances in
computer vision, can currently be solved in typical cases (e.g., clear weather and
good lighting conditions, typical traffic scene in the case of autonomous driving),

25

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 1.2: Example ground truth annotations for the object detection (upper row)
and semantic segmentation (bottom row) task from the Cityscapes dataset.

it is challenging to create a system that will work with near 100% accuracy in
all situations, which is crucial for developing systems operating in the real-world.
Typical challenges in object detection and semantic segmentation include:

• changes in the illumination significantly alter objects’ appearance. Recognizing
objects in insufficient illumination (i.e., at night) is a significant challenge for
the community,

• adverse weather conditions (heavy rain, snow),

• object occlusion,

• large variability in the appearance of different objects. In the case of pedes-
trians, those might be caused by diverse types and styles of clothing. Also,
different accessories such as sunglasses, hats, backpacks further significantly
change pedestrian appearance,

• presence of rare events (e.g., very rare medical conditions, vehicle accidents),

• domain adaptation. When the models are deployed to the real world, the
conditions might differ from those in the training dataset.
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Recent neural-network-based computer vision algorithms have achieved im-
pressive performance on many benchmarks, but they lack robustness to novel con-
ditions (e.g., weather or lighting conditions that were not a part of the training
data) and may produce erroneous predictions in such cases. Additionally, measur-
ing progress in the models’ robustness is very hard, especially for systems operating
in the real world since it is usually unfeasible to collect a testing dataset that would
contain all possible difficult situations for the visual perception system (e.g., ad-
verse weather and lighting conditions, sensor noise, rare events). A meaningful way
to measure model robustness is using out-of-distribution (o.o.d.) data [17], which
tests a model on data from different distributions than the training data. However, it
was only recently that out-of-distribution settings started to gain more attention in
the research community. O.o.d. testing includes cross-dataset evaluation, evaluating
models on conditions not seen during training (e.g., weather type not seen during
training), or using synthetically generated distortions (e.g., simulated sensor noise).
Throughout this work, several ways of measuring model robustness are evaluated.

At the same time, it was shown that current machine learning models are
heavily over-parametrized, which allows them to fit random labels [18]. Optimizing
the size of visual recognition models is essential in many applications because of
the energy consumption and hardware cost. Consequently, many methods were
developed to reduce the computational cost, including model pruning (removing
model parameters) [19], quantization (using lower precision computation) [20], and
designing specialized architectures [21]. On the other hand, it was shown that bigger
models are more robust [9]. From the safety perspective, it is essential to study the
effect of reduced model capacity (reduced network parameters). It was only recently
shown that pruning significantly affects robustness in the image classification task
and might disproportionately impact different object classes [22]. When reducing
model capacity, it is hypothesized that information about rare classes might be lost
first [23]. We hypothesize that using standard methods for data balancing could be
effective in such setting, which formulates the first hypothesis of this work:

• pruning neural networks impacts model accuracy disproportionately
on different object classes for object detection, and data balancing
methods could be highly effective in such conditions.

On the other hand, particularly good accuracy can be obtained by an ensemble
of models [24], which involves aggregating results from many classifiers, which is a
standard trick to improve final model accuracy. While model ensembling has a high
computational cost, which forbids its use in real-time systems, we investigate how
ensembling can be used for domain adaptation settings (when there is limited data
in the target environment). In this thesis, the model ensembling was combined with
a self-learning approach [25]. Self-learning is an approach where an initially trained
model (using available datasets) is used to generate predictions on the target domain.
Then, the generated pseudo-labels (after some filtering) are used to adapt the model
to the target domain. This leads to the formulation of the second hypothesis of this
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work:

• model ensembling can be efficiently combined with a self-learning
approach for the domain adaptation task in visual recognition.

Finally, a direct connection between the work on model compression and model
ensembling is drawn in the last paragraph. Since current CNN-based models are
heavily overparameterized, recent work results have shown that they can fit (train)
more than one subnetwork within the original model capacity [26, 27, 28] for the
more straightforward image classification task. Thus, it obtains multiple predictions
(for the same image) with a minimal increase in computational cost. As such, the
last hypothesis of this work is formulated as follows:

• it is possible to obtain parallel-predictions from single object detec-
tion model, to improve model robustness.

Scope of the thesis. While object detection and semantic segmentation are
also studied in the context of another type of sensor, i.e., LiDAR, this work focuses
on RGB cameras only. Such sensors are much more widespread and cheaper, thus
creating algorithms for visual recognition using only RGB cameras has excellent
potential for applications, which is the strategy is followed by the Tesla company.

Also, in this work, the subject of interest is visual recognition from a single
image. Visual recognition from video sequences is a whole field by itself, which
utilizes additional techniques such as temporal smoothing and localization. However,
single-image recognition models are often an important component of video-based
visual recognition models, which means that video-based visual recognition is likely
to benefit from improved recognition from a single image. Also, a large gap still
exists between human and machine vision in out-of-distribution setting [29, 30, 31],
which ideally should be closed. Thus, visual recognition from a single image is a
vital topic in computer vision. This also makes the methods developed in this thesis
applicable across various domains.

1.3 Thesis outline

Section 2 outlines the essential aspects for the task of object detection and
semantic segmentation. It starts with a brief introduction to supervised learning and
describes the learning process. Then the bias-variance trade-off is introduced, which
is a particularly important problem throughout the work. Further, the Convolutional
Neural Networks (CNNs) for the object detection and semantic segmentation tasks
are described, together with the datasets and evaluation metrics used throughout
the work. Finally, ways to measure models’ robustness are explored, and metrics
used throughout this thesis are presented.

Section 3 shows the importance of out-of-distribution testing (using pedes-
trian detection as an example) and explores different data augmentation techniques.
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Various strategies for evaluating model robustness are investigated. It was shown
that some data augmentation strategies improve model robustness but may reduce
model accuracy on the clean (uncorrupted) dataset. Simultaneously, some data aug-
mentation strategies improve model accuracy on the clean dataset without affecting
model robustness. A simple data augmentation strategy was proposed using those
observations, which achieved competitive results. The evaluation setting used in
this section will be used throughout the rest of the thesis.

Section 4 shows how the robustness in object detection is affected by the
model capacity controlled by means of compression techniques. It was shown that
pruning affects models’ sensitivity to different distortion types and their accuracy for
specific classes with different impacts. Several methods for handling data imbalance
were evaluated, and it was shown that data balancing methods might be helpful in
compressed neural networks, which confirms the first thesis of this work.

In section 5, accuracy and uncertainty calibration are evaluated in the distri-
butional shift setting for the high-level vision task of semantic segmentation. Model
ensembling is used to aggregate predictions, which significantly improves the per-
formance, including the challenging task of adaptation from simulation. Finally,
ensemble of models is used as a teacher of a single model, which allows for efficient
domain adaptation.

Section 6 investigates whether combining the advantages of the techniques
described in the previous sections (model compression and ensembling) is possible.
A multi-input multi-output object detection architecture is proposed, which signifi-
cantly improves the robustness with minimal computational cost.

Finally, the last section discusses the contributions reported in this thesis,
which provide discussion and directions for future work.

1.4 Publications

This section lists all peer-reviewed journal and conference publications that
the author has contributed throughout the Ph.D. studies. The core publications
used this thesis are listed below:

• Section 3 - S. Cygert, A. Czyżewski, ”Toward robust pedestrian detection with
data augmentation”, IEEE Access vol. 8, 2020, pages 136674-136683.

• Section 4 - S. Cygert, A. Czyżewski, ”Robustness in Compressed Neural Net-
works for Object Detection”, International Joint Conference on Neural Net-
works (IJCNN), Shenzhen, China, 2021.

• Section 5 - S. Cygert, B. Wróblewski, R. Słowiński, K. Woźniak, A. Czyżewski,
”Closer Look at the Uncertainty Estimation in Semantic Segmentation un-
der Distributional Shift”, International Joint Conference on Neural Networks
(IJCNN), Shenzhen, China, 2021.

29

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


• Section 6: Robust Object Detection with Multi-input Multi-output Faster
R-CNN. This paper was accepted to be presented at the 21st International
Conference on Image Analysis and Processing (ICIAP 2021).

Additionally, the following works are related to the thesis:

• S. Cygert, F. Górski, P. Juszczyk, S. Lewalski, K. Pastuszak, A. Czyżewski,
A. Supernat, ”Towards Cancer Patients Classification Using Liquid Biopsy”,
PRIME workshop at MICCAI conference 2021. This paper evaluates impact
of several regularization techniques on model performance, using medical data.

• S. Cygert, A. Czyżewski, ”Vehicle Detection with Self-Training for Adaptative
Video Processing Embedded Platform”, Applied-Sciences vol. 10, 2020, article
number - 5763. This paper explores a self-training approach to improve model
adaptation to the target environment.

• S. Cygert, A. Czyżewski - ”Evaluating Calibration and Robustness of Pedes-
trian Detectors”, International Conference on Multimedia Communications,
Services and Security (MCSS) 2020.

• S. Cygert, A. Czyżewski, ”Style Transfer for Detecting Vehicles with Thermal
Camera”, Signal Processing: Algorithms, Architectures, Arrangements, and
Applications (SPA), 2019. This work proposes to use style-transfer data aug-
mentation for adapting models trained on RGB images to the images obtained
from the thermal camera.

• S. Cygert, A. Czyżewski - ”Vehicle detector training with labels derived from
background subtraction algorithms in video surveillance”, Signal Processing:
Algorithms, Architectures, Arrangements, and Applications (SPA). This pa-
per explores fine-tuning the object detection model using weakly supervised
techniques.

• D. Węsierski, S. Cygert - Shape-Based Pose Estimation of Robotic Surgical In-
struments, MICCAI Workshop on Computer-Assisted and Robotic Endoscopy
(CARE), Quebec City, Canada, Best Paper Award (2nd place). This paper
explores the task of surgical tool detection using an ensemble of shape-based
templates.
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Chapter 2

Background and related work

Visual recognition is an important research area that spans a few decades,
which lies at the intersection of machine learning and computer vision. This section
introduces essential concepts for the rest of the thesis. It starts with a brief intro-
duction to machine learning and supervised learning (section 2.1). Further, modern
models for object detection (section 2.2) and semantic segmentation (section 2.3) are
described. Datasets used in this thesis are presented in section 2.4, while section 2.5
describes related works on the robustness of evaluated models. Finally, evaluation
metrics such as accuracy and uncertainty calibration are presented (section 2.6).
Since the subject related to visual recognition is extensive, this section only shows
what is indispensable in this thesis to keep it concise.

2.1 Supervised learning

Machine learning algorithms build mathematical models based on the training
data, which are then used during test time to make predictions on new data. Each
input is typically represented as a vector x ∈ Rd, where d represents values for
different features, hence the vector is often called a feature vector. Thus, the whole
dataset, consisting of n examples, can be defined as the matrix X ∈ Rn∗d. Machine
learning is traditionally divided into three general categories[32]:

• supervised learning. The model is given a training set consisting of input
vectors xi, the desired output yi, and the goal is to learn a mapping from the
input to the output,

• unsupervised learning. In this scenario, no labeled data is available. Given
only the unlabeled data, the goal is to find structure in the input, for ex-
ample, dividing the input into similar clusters. Unsupervised learning is also
commonly used as the feature extraction step,

• reinforcement learning. An agent can interact with the environment, in which
it learns to satisfy a particular goal. Feedback (reward function) is used to
find the model parameters.
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This is only a high-level partition of the learning types, and some approaches
cannot be easily categorized. Semi-supervised learning is an approach where only
some of the data have a label, therefore learning in such a model usually consists
of supervised and unsupervised loss functions. Self-supervised learning contains
no labels, and the model is used to solve a so-called pretext task in a supervised
manner. Regarding the tasks of object detection and semantic segmentation (and
visual recognition in general), supervised learning is the most relevant type and is
presented with more details in the following subsections.

2.1.1 Loss function

Supervised learning can be formulated as follows: given a labeled dataset
D = {(xi, yi), i ∈ n}, where xi is the i-th example, and yi is its label (e.g., class),
find model parameters w which parametrizes a function fw : X− > Y , where X

is the input space and Y is the output space. A function fw is a chosen model
(e.g., logistic regression). Given a model, the goal of supervised learning is to find
its parameters w such that the function fw best fits the training data. How well
a function fits the training data is defined by the loss function LD(w). To reduce
the chance of overfitting to the training data often a regularisation term LW (w) is
added. The whole loss can be defined as:

L(w) = LD(w) + λLW (w) (2.1)

where λ is the regularization scaling factor. Hence, finding w is an optimization
problem:

∗
w = argmin

w
L(w) (2.2)

which is also called empirical risk minimization. The choice of the loss function
depends on typy of the problem: classification or regression. In classification, a
target label is a category (e.g., classifying patients into healthy and unhealthy). In
regression, the output variable is a real value (e.g., depth estimation in the input
image).

One of the simplest supervised learning algorithms is linear regression. Linear
regression takes as an input the vector x ∈ Rd and outputs the scalar value y ∈ R.
The output is a linear function of the input, given the input x, the predicted value
ŷ is computed as:

ŷ = wTx+ b (2.3)

where w ∈ Rd is a vector of model parameters, often referred to as weights, and
b ∈ R is the bias term. Note, that the equation corresponds to a linear function plus
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a constant. Each input feature xi is associated with its feature weight wi. If the
feature xi receives the positive weight wi, an increase in the value of that feature also
increases the prediction; similarly, the negative weight wi implies that an increase
in the value of the feature decreases the value of the prediction. At the same time,
a large magnitude of the weight wi, means that the feature xi has a large effect on
the prediction, while zero weight means that the feature xi is ignored in the model.

The mean squared error is a natural choice for the loss function (also known
as the cost function or objective function). Given the model prediction for the i-th
training sample: ŷ = fw(xi), the MSE loss is computed as:

MSE =
1

n

n�

i=1

(ŷi − yi)
2 (2.4)

In simple linear problems (with a small dataset size), weights for the linear
regression can be computed using a closed-form solution. However, many modern
machine learning problems defined over large datasets are solved using the gradient
descent methods described in section 2.1.3.

Linear regression can also be applied to the classification problem, where the
label yi belongs to a predefined number of classes. In binary classification, there are
two classes: class 0 and class 1, the output from the linear regression can be then
‘squashed’ into the [0, 1] interval using the sigmoid function:

σ(x) =
1

1 + e−x
(2.5)

which results in the model prediction for an input belonging to one of the classes.
Such a model is also known as logistic regression. In the case of multi-class clas-
sification, the problem model returns a logit vector z ∈ RC , where C is the number
of classes. A softmax function is then applied to obtain a categorical distribution.

σ(zi) =
ezi

�C
j=1 e

zj
(2.6)

Popular choice of loss function for a classification problem, is a cross-entropy
function. Given a ground truth distribution p(y|x) and model predictions p̂(y|x) the
cross-entropy is computed as:

H(p, p̂, x) = −
C�

i=1

p(yi|x)logp̂(yi|x) (2.7)

This allows to formulate a cost function:

J(w) =
1

n

n�

i=1

H(p, p̂, xi) (2.8)
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Linear regression and its classification equivalent, logistic regression, are simple
supervised learning algorithms that serve as a basis for other approaches. However,
another supervised learning algorithm, namely neural networks, is fundamental in
high-dimensional inputs such as images.

2.1.2 Neural networks

Neural networks are a common choice for dealing with the input of very high
dimensionality (e.g., images, natural language processing). Building a connection
with the previous section, logistic regression can be viewed as the simplest form of
a neural network consisting of input and output layers. In the case of multi-layered
perceptron (MLP), at least one hidden layer is added between those, and it can be
written for the classification problem as:

h = σ1(W1x+ b1)

y = softmax(W2h+ b2)
(2.9)

where σ is the activation function, W is the weight matrix, and b is the bias vector
for the corresponding layer. Cells in each layer are often referred to as neurons.
There can be any number of hidden layers. While MLP with one hidden layer is a
universal approximator function [33], modern deep neural networks contain many
hidden layers (usually dozens), since it makes current architectures more effective
at solving certain problems [5].

Computing the output of the neural network is also known as a forward pass.
The predicted value is compared against the ground truth labels during training,
and an error is calculated (using a loss function). The error is then backpropagated
through the network, and the weights are updated in relation to the amount that
they contributed to the error. This is achieved by computing the gradient of the
cost function concerning the individual weights of the neural network. The chain
rule makes it possible to compute the gradient, one layer at a time, iterating back-
ward from the last layer, hence the name of the procedure: backpropagation. Those
operations are computed over the whole training dataset. The next section provides
more details on gradient descent optimization, which can train different machine
learning algorithms over large training datasets.

An essential aspect of a neural network is the activation function, which ac-
cepts the output from the previous cell, and converts it into a form that serves as an
input to the cell in the next layer. Usually, activation functions are non-linear, which
allows the neural network to learn complex patterns from the data. As an example,
it is impossible to model a simple XOR gate using only linear activation functions.
The rectified linear unit (ReLU) is a vital activation function used in modern neural
networks. In contrast to the previously used non-linear functions such as softmax
and hyperbolic tangent (tanh), it is less prone to the vanishing gradient problem.
When neural networks consist of many layers, the chain rule will make the gradient
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Figure 2.1: ReLU activation function

for the initial layers shift toward 0, which was a large problem in properly training
deep neural networks before the introduction of the ReLU activation function. Inter-
estingly, ReLU activation was loosely inspired by the functioning of the cortex [34].
An additional relevant property of the ReLU activation function is that it provides
some level of sparsity, the output is non-0 only when the input is larger than 0.

MLP is an example of a fully connected neural network since each cell in
one layer is connected to every cell in the following layer. As a result, even simple
MLP architectures working on real-world high dimensional data can result in a
model containing millions of parameters. The main building blocks of modern neural
networks have already been known for a very long time. The first MLP architecture
was described by Rosenblatt in 1961 [6], similar to backpropagation which was first
presented in 1960 [35]. However, large datasets, computing power, and design tricks
that stabilize training (such as the ReLU activation function) were still required to
make neural networks work for real-world data. Another prominent development in
the history of neural networks was the introduction of convolutional neural networks
(CNNs), which drastically reduced the number of parameters for high dimensional
input data such as images.

Convolutional Neural Networks. CNNs were already known in the 1990s.
One of the first successful implementations was the LeNet5 architecture by Yann
LeCun [36], which was used for recognizing characters in documents. CNNs were
inspired by how the visual cortex works [37, 38], where individual neurons respond
to stimuli only in a certain region of the visual field (receptive field). Similarly, in
CNNs each neuron has a restricted receptive field and computes its response on small
input image patches. Each neuron is defined by a small filter (usually of size 3x3 or
5x5) and computes its response to the input signal using the convolution operation:

G[i, j] =

k�

u=−k

k�

u=−k

H[u, v]F [i− u, j − v] (2.10)

where H is the input image, F is the filter of size 2 ∗ k + 1. CNNs make extensive
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Figure 2.2: Schematic overview of a CNN architecture for image classification.

use of parameter sharing – the same feature is computed at various locations in the
input, which allows CNNs to be translation invariant (to some extent), making CNNs
computationally efficient. Between subsequent layers, a pooling operator is applied,
which subsamples the feature map using the max or average operator, effectively
reducing the size of the feature map. Typically, a subsample by a factor of two is
used.

There are many reasons for CNNs being particularly useful in image process-
ing:

• CNNs are equivariant to translation: if an object is translated in an image,
then the convolution outcome is equally translated [39],

• Pooling operation makes the network invariant (to some degree) to small image
translations and distortions,

• CNNs explore local spatial correlation in natural images; each neuron is con-
nected to only a small region of the input volume,

• They work as feature extractors by providing a feature vector after the last
convolutional layer in the network. Again, this is especially useful when a
large-scale dataset is available. It was shown that features learned on large-
scale datasets transfer well to a new domain, where only limited data are
available. This is also known as transfer learning,

• Weight sharing, using pooling operations, make them very computationally
efficient, especially for parallel processing with GPUs.

For most practical applications, the original input variables will be of very high
dimensionality. Consider a camera placed inside a car with a modest (by current
standards) resolution – 800x600 pixels. The dimensionality of the input size would
be 800 * 600 * 3 (RGB channels) = 1,4440,000. When working with such high
dimensional data, reducing its dimensionality by projecting the data to a lower-
dimensional subspace is important [32]. Looking at Fig. 2.2, one can also view
the whole architecture consisting of feature extraction and classification. CNNs
are responsible for extracting feature vectors from the input image. In the last
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fully connected layer, an image is classified as belonging to one of the classes, as in
logistic regression. Computer vision has a long history of useful computing features
for image processing, and nowadays, CNNs are commonly used in many computer
vision pipelines.

As a side note, it is worthwhile drawing a connection to the classic algorithms
in computer vision (before the application of neural networks). Different filters
(e.g., Gaussian, and gradient filters) are commonly used in various computer vision
pipelines, such as the Canny algorithm’s edge detection [40]. In modern CNNs,
on the other hand, the filters are learned by the machine learning algorithm itself.
Interestingly, there is some evidence that filters in the early layers of the CNNs work
as edge detectors, while filters in the deeper layers respond to high-level concepts
(such as objects parts) [41, 42].

2.1.3 Training

Where no closed-form solution is available, machine learning algorithms are
typically trained using the stochastic gradient descent (SGD) algorithm to minimize
the objective function J(w). It is a stochastic approximation of the gradient descent
method as the gradient is computed over some small subset of the training examples
(called a mini-batch) instead of the gradient computed over the entire dataset. The
first step includes computing the gradient loss concerning the model parameters.
The gradient can be computed using the chain rule because all operations in the
neural networks are differentiable. In the gradient descent method, the gradient is
computed on the whole dataset, which is very computationally expensive:

∇wJ(w) =
1

n

n�

i=1

∇wL(xi, yi, ŷi, w) (2.11)

On the opposite side is stochastic gradient descent, which computes the gra-
dient using only a single data point:

∇wJ(w) ≈ ∇wL(xi, yi, ŷi, w) (2.12)

While this can be efficiently computed, it results in much more noisy gradi-
ent estimation. Mini-batch gradient descent combines those two approaches and
computes the gradient over a mini-batch of m examples:

∇wJ(w) ≈
1

m

m�

i=1

∇wL(xi, yi, ŷi, w) (2.13)

which results in fast and robust optimization of the objective function. In modern
machine learning, the mini-batch size m usually ranges from 2 to a few hundred
(in computer vision) and is the default setting known as simply stochastic gradient
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descent.

Once the gradient loss is computed, the model parameters w can be updated:

w = w − η ∗ ∇wJ(w;x
i:i+m; yi:i+m) (2.14)

where η is the training step (learning rate), which is often the most important
hyperparameter to be chosen for the training. A common approach is to reduce
the learning rate in the later stages of the training or use learning rate annealing
to improve model convergence [43]. Model weights are updated in iterations, where
training samples are sampled from the training dataset (usually without repetition).
An epoch is a machine learning term that indicates passing over the entire training
dataset. Modern machine learning models (especially high-capacity neural networks)
often contain millions of parameters that can easily overfit the training data [18].
Hence, a standard technique is to split the dataset into training and validation
parts. While the gradient descent optimizes the loss in the training part, the loss
(or accuracy) in the validation set is monitored. Model for testing is then chosen
using the best performance on the validation part. The model performance is then
usually reported on some other test dataset that was not used during training. The
performance on the test datasets is then used as a proxy for the model’s ability
to generalize to new data. Cross-validation can also be viewed as a regularization
technique that helps to improve model generalization properties, which is a central
problem in machine learning, so it is explored in the next subsection.

2.1.4 Bias-variance trade-off

Machine learning is about creating a model that works well on the training
set and performs well on the unseen test data, which is called generalization, which
is a fundamental problem. In machine learning, the training and test data are
often assumed to be independently and identically distributed (i.i.d. assumption).
Samples in the dataset are produced by a data generating process, which itself is a
probability distribution. It means that the samples in each dataset (training and
test) should be drawn from the same distribution [44].

While the training error is optimized during training, the goal is to find a
model with minimal test error. It turns out that the relation between these two is
nuanced. In particular, one can obtain a model that achieves zero training errors
but performs poorly on the test set. For example, consider that data points obtained
from a noisy signal correspond to a sine curve. Trying to reconstruct that line, one
could use polynomial regression (which is a special case of linear regression), that
is, to approximate the signal with the equation:

f(w) = w0 + w1 ∗ x+ w2 ∗ x2 + w3 ∗ x3... (2.15)

Before solving the equation, one needs to decide on the degree of the polyno-
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Figure 2.3: Modelling sine curve with polynomial regression of different degrees
(K). The left column shows an example of underfitting and the right column of
overfitting. Only the center model has appropriate capacity.

mial, which corresponds to controlling the model capacity. If the degree is too small,
the fitted curve will not be well approximated (Fig. 2.3 – first column), which is
called underfitting. If the degree is too big, the curve will be well fitted, including
all of the underlying noise in the signal (overfitting, column on the right in Fig. 2.3).
Finding an optimal model is also known as a bias-variance trade-off.

While underfitting might not be a problem, since many modern neural net-
works have many parameters, overfitting is an important issue. It was shown that
neural networks have a large capacity, which allows them to fit even a random noise
[18], with zero training error. Model capacity is only one of the many crucial factors
that impact the final model generalization properties. To optimize the trade-off,
several regularization techniques are used:

• regularization of neural network weights. Additional loss is added to the norm
of the matrix weights, which penalizes large weights (eq. 2.1),

• Dropout regularization [45]. During training, some weights of the neural net-
work are removed (their weights are set to zero), which forces the model to
focus on many input features, instead of overfitting to just a few ones,

• data augmentation prevents models from memorizing data points. In the case
of image processing using random affine transformations (translation, scale,
rotation), image flipping, and changing colors during training is standard prac-
tice,

• cross-validation,

• model ensembling. Aggregating the outputs of many models has been shown
to be a highly effective approach [24].

Currently, measuring the performance of machine learning algorithms on an
i.i.d. test set is standard practice; however, this can be very misleading, especially
for the models deployed to the real world. This is because it is often impossible
to gather data that represents all situations encountered after deployment in the
real world. In the case of autonomous driving systems, after deployment, they will
often be faced with situations that were not available in the training dataset, e.g.,
adverse weather conditions (fog, heavy rain, or a combination of both), different
types of road crossings, and a new type of vehicles. Furthermore, machine learning
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algorithms are very vulnerable to even slight changes in the distribution during test-
time [46, 47], which will be discussed in more detail in section 2.5. While i.i.d. test
set validation is an important evaluation practice, it can often produce a false sense
of security [17]. Recently, testing algorithms on various datasets (in cross-dataset
setting) and using out-of-distribution data (o.o.d) has been gaining more attention
and is followed throughout this work.

2.2 Object Detection

Object detection is a highly active field of computer vision for both academia
and real-world applications such as autonomous driving, security monitoring, robot
vision, and many more. It is also an intermediate step in other computer vision
tasks, such as object tracking, image captioning, and instance segmentation. Object
detection aims to discover visual instances of certain classes (humans, vehicles, etc.)
in digital images. While previous sections describe solving classification or regres-
sion tasks, object detection is an example of a multi-task problem: the goal is to
find whether some classes are visible in the image (classification) and localize those
objects (regression problem). The fundamentals of modern object detectors are out-
lined in the following sections, and Faster-RCNN [48], a popular object detection
algorithm, is presented in more detail.

2.2.1 Modern Object Detectors

The development of object detection methods is often divided into two groups:
traditional methods and deep learning-based methods (starting from 2014). A typ-
ical object detector consists of the following components: feature extraction, region
of interest proposals generation, and regions of interest classification. In the early
days of computer vision, feature extraction was a critical part of the systems, which
gained a lot of attention from the research community, as there was no standard
feature extraction method.

The first successful object detector described by Paul Viola and Michael Jones
[49] in 2001 was based on Haar-like features for real-time face detection. The al-
gorithm used the simplest method for region proposals generation, namely sliding
window. For each image, an exhaustive list of bounding boxes at predefined positions
are generated and further classified as containing a human face or not. Proposals
are also generated at different scales and aspect ratios to incorporate variations of
objects in the image region. It results in a substantial number of region proposals,
which is the biggest drawback of the sliding window approach. Intuitively, most re-
gion proposals will not contain any object, and it should be possible to discard such
proposals efficiently. This is the main idea behind the Viola-Jones detector, which
uses a cascade of gradually more complex classifiers. Early classifiers in the cascade
consist of simple classifiers, which can efficiently discard simple negative windows.
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More complex classifiers in deeper layers of the cascade are only used to classify more
complex image proposals. It allows the classifier to run in real-time efficiently, and
the idea of cascaded predictions is also used in modern machine learning pipelines
[50].

Another important work was the Histogram of Oriented Gradients (HOG)
feature descriptor successfully applied in 2005 for human pose estimation [51]. The
descriptor counts occurrences of gradient orientation over a dense grid of uniformly
spaced cells. Compared to previous approaches, such a descriptor increased the
scale, translation, and illumination invariance and was successfully applied to the
pedestrian recognition task. While such an approach can work well for “easy” cases,
occlusions or objects seen in rare poses are still particularly challenging. This ap-
proach was further extended using a deformable-part model (DPM), removing some
of the limitations [52]. DPMs work by decomposing an object into a collection of
smaller components (object parts). However, this comes at the cost of tuning sev-
eral parameters by the user (e.g., number of components, and number of component
types), complicated optimization procedure, and increased computational budget.

Over the years, many different approaches have been described for the task of
object detection. Considerable progress in visual recognition took place after 2012
when a Convolutional Neural Network (CNN), AlexNet, won the ImageNet Large
Scale Visual Recognition Competition (ILSVRC) by a large margin [5]. Shortly
after that, CNNs were also used in object detection by R. Girshick et al. using the
Region-Based Convolutional Neural Networks (RCNN) model [53]. The idea behind
the RCNN is quite simple. Firstly, a large set of candidate object boxes are extracted
from the image using specialized algorithms (e.g., selective search algorithm [54]).
Then each candidate box is rescaled to fixed image size, for which features are
extracted using a CNN (backbone) and classified using a linear SVM into one of the
object classes (or background). This approach improved the mean average precision
metric (mAP) over previous DPM models from 33.7% to 58.5%. Note that the
DPM model also used SVM for optimization, which shows how effective are the
CNNs features. The whole pipeline was further improved by using Region Proposal
Network to generate region proposals (instead of a selective search algorithm) and
a classification layer to classify regions of interest in one large neural network [48].

Such a two-stage architecture (region proposal computation and classification)
was very influential in the object detection community. Some researchers further
optimized the overall architecture to reduce the inference time. Region proposals
can be sampled at the regular grid (similar to the sliding window approach) and
the model is also responsible for adjusting initial proposals to match the object
localization. This is the main idea behind so-called one-stage object detectors (e.g.,
YOLO [55], SSD [56]), which allowed them to significantly increase the algorithm
speed, with a small accuracy decrease.

Those two types of architectures dominate the object detection community
paradigms, which are used as the starting point for developing new algorithms.
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Figure 2.4: Architecture of a two-stage object detector (i.e., Faster R-CNN) con-
sists of CNN backbone, regional proposal network (RPN), ROI pooling layer and a
classifier.

Faster R-CNN is a very influential object detection neural network, commonly used
by the research community and throughout this thesis. In the next subsection, the
details of the Faster R-CNN are given.

2.2.2 Faster R-CNN

Faster R-CNN consists of two main modules: firstly, regions of interests are
generated using Region Proposal Network (RPN). Then, in the second stage, the
proposals are classified and refined. The main novelty was introducing the Regional
Proposal Network (RPN), which efficiently computes a set of candidate boxes, for
which the feature vector computation is shared with the classification network. The
overall architecture is presented in the Fig. 2.4.

Let us define a true class label u ∈ {0, 1,…, C} where C is the number of classes
being classified, and by convention, the zero label corresponds to the background
class. The RPN predicts a set of candidate boxes (anchors), for which it predicts
the probability that an anchor is an object and its coordinates. Anchor is defined
by bounding box coordinates xa, ya, wa, ha, which denote pixel coordinates of the
bounding box centre (xa and ya) and it width wa and height ha. The following
parameterization is used for the coordinates of the bounding boxes [53]:

tx =
x− xa
wa

, ty =
y − ya
ha

, tw = log(
w

wa
), th = log(

h

ha
) (2.16)

where x, y, w, h are the ground truth coordinates. Given a set of anchor proposals
the RPN is trained using the following loss [48]:

L({p̂i}, {t̂i}) =
1

Ncls

�

i

Lcls(p̂i, pi) +
λ

Nbox

�

i

pi smoothL1(t̂i − ti) (2.17)

where t̂i are predicted parametrized bounding boxes, ti are corresponding ground
truth coordinates, p̂i are the predicted probabilities of the anchor being an object,
and pi is a ground truth label with a value of 1 if the anchor corresponds to an
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object and 0 otherwise. Index i iterates over region proposals. Ncls normalizes the
equation – the mini-batch size, and Nbox – the number of anchors (e.g., 2400). Lcls

is simply the log loss over two classes (object vs. not object). The smoothL1 loss
is a differentiable version of the L1 loss, which the authors of the cited paper also
claim works better for the task of detection (compared to the L1 loss):

smoothL1(x) =




0.5, if |x| < 1

|x|− 0.5, otherwise

A result of this stage of computation is a list of region proposals, which are
further classified and refined by the final layers in the network. Before this can
be done, a feature vector for each region proposal must be computed. This is not
trivial since the region proposals are of varied sizes. Region of Interest Pooling is
a computational block that allows the computation of fixed-size feature vectors per
region [57]. ROI Pooling splits the input feature map into k similar-sized regions and
then applies Max-Pooling to every region, resulting in a feature vector of length k.
Each region proposal is processed by classification and regression layers in the final
stage. The first outputs a probability distribution p = (p0, p1,…, pC) over all classes
(per ROI). The second outputs bounding-box regression offsets for each of the C

object classes, initial class-agnostic candidate boxes, are refined to match ground
truth boxes more accurately. Each ROI corresponds to ground truth class u and
regression offset v. The multi-task loss function combines the losses of classification
and bounding box regression [57]:

L(p, u, v̂u, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(v̂u, v) (2.18)

v̂u are the predicted regression offsets for ground truth class u and λ is a balance
term between the classification and localization loss. The classification loss is the
log loss for ground truth class u:

Lcls(p, u) = −logpu (2.19)

The Iverson bracket indicator function [u ≥ 1] evaluates to 1 when u ≥ 1 and 0

otherwise, and hence the localization loss is only computed for the non-background
objects, using the smoothL1 distance between the predicted and target regression
offsets:

Lloc(v̂u, v) =
�

i∈x,y,w,h

smoothL1(v̂ui, vi) (2.20)

The generated bounding boxes can highly overlap each other. Non-maximum
suppression (NMS) algorithms are applied, as it is common to remove redundant
boxes in the object detection task. If the intersection over union (IOU) between
two boxes is higher than some threshold (for example, 0.7), the one with a lower
confidence score is discarded. The same applies to the regions generated by the
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RPN.

In Faster R-CNN, the whole pipeline is trained end-to-end within one large
neural architecture. Currently, Faster R-CNN is commonly used. Thanks to their
improvement in object detection, they have become widely used in the industry. One
of the areas where object detection is important is in the automotive industry. The
next subsection describes algorithms models for the task of semantic segmentation.

2.3 Semantic Segmentation

Semantic segmentation is a pixel-wise classification problem, intending to as-
sign a predicted category c ∈ {1,…, C} to each pixel. The list is usually extended
by adding a background class. Popular use cases of semantic segmentation include:

• medical applications. Finding abnormal regions in CT, MRI, etc. scans (in-
cluding 3D scans).

• Robotics. Segmenting images in the camera helps the robot to navigate the
environment.

• separating the foreground from the background (e.g. blurring the background
when using an online communicator).

An important aspect of semantic segmentation is that it does not differentiate
between different object instances (e.g., all vehicles in the image are given the same
label). This is a task for instance-aware semantic segmentation, which also labels
each pixel with the object identifier.

Semantic segmentation has a long history in computer vision, and similar to
other tasks in computer vision, CNN-based methods are currently dominating the
field. Before the introduction of deep nets, traditional methods included threshold
segmentation [58], clustering [59], and graph theory [60], with some of those methods
being unsupervised. However, accuracy is key for many applications (medicine,
robotics), and so supervised methods are the dominant approaches. In the case of
semantic segmentation, the labeling cost is usually higher when compared to the
object detection task. To reduce the labeling costs, initially trained models (using
available data) are usually used to provide initial segmentation on new data, and
then human labelers refine the segmentation masks. The cost of labeling is extremely
high in the case of 3D medical scans.

For conciseness, in this section, the focus is on a CNN-based semantic segmen-
tation, which will be further used in section 5. The first successful application of
neural networks to the task of semantic segmentation was the Fully Convolutional
Network (FCN) [61]. It introduced many important ideas, which were the basis for
further generations of semantic segmentation models. The main idea here was to
create a fully convolutional model by replacing fully connected layers with convolu-
tions of appropriate size. A learned upsampling operator is used to obtain a dense
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classification layer, which makes it possible for the output to match the input image
resolution. Those changes allow the input to be of arbitrary size.

The FCN architecture consists of the encoder part (squeezing the input in-
formation into a condensed feature map) and the decoder part (computing a full-
resolution semantic segmentation map from the feature map). For the encoder, a
standard image classification architecture can be used, which allows the semantic
segmentation models to be pretrained using the image classification task (for which
a lot of annotated data exists). For the decoder, the FCN paper uses a transposed
convolution, which is also known as an upsampled convolution and allows to produce
an output that is larger than the input.

However, because the spatial resolution of the bottleneck is downsampled by
a factor of 32, the decoder struggles to produce accurate segmentation. To address
this issue, a skip connection from earlier layers (before downsampling) was added
as additional input to the decoder, which improved the segmentation quality signif-
icantly. To train the model a pixel-wise cross-entropy loss was used [62]:

LCE = − 1

N

N�

i=1

C�

c=1

(yi = c)log(p(ŷi = c)) (2.21)

where (yi = c) ∈ {0, 1} indicates whether class c is the correct class for pixel i and
p(ŷi = c) is a predicted probability for class c at pixel i, andN is the number of pixels.
For each pixel model returns a logit vector zi ∈ RC . Further a softmax function
is applied pi = softmax(zi), which returns a list of predicted class probabilities for
a given pixel. The class with the highest probability is used as the predicted class
with an associated probability score.

As the FCN was very successful, its architecture was a basis for many other
semantic segmentation models, with many of the improvements focusing on the
decoder architecture. In the U-Net architecture [63], the decoder contains multiple
steps of upsampling operations, which are symmetrical to the encoder. Such a u-
shaped architecture was very successful, especially in medical imaging applications.
Over the years, many different architectures have been developed, and currently, the
DeepLab models family [64, 65] is dominating and will be used in section 5. The
DeepLab models introduced several specific improvements such as:

• Spatial pyramid pooling was used to deal with different input image sizes,

• Atrous convolution incorporated a larger context without increasing the num-
ber of parameters,

• Depth-wise separable convolution was used to increase computational effi-
ciency.

While there was a large progress in the accuracy of object detection and se-
mantic segmentation models, the progress would not have been possible without the
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availability of large-scale datasets, and in the next subsection, the datasets used
throughout this thesis are presented.

2.4 Datasets

Creating large-scale datasets with annotated images is time-consuming and
costly [66]. At the same time, large-scale datasets are essential for training modern
visual recognition models. In this thesis, the datasets related to autonomous driving
are mostly used because of data availability and because robustness is essential for
autonomous driving.

While early datasets usually focused on some narrow tasks (e.g., pedestrian
detection), modern datasets have a larger focus (objects detection, semantic seg-
mentation) and focus on gathering varied data (i.e., different weather conditions).
Furthermore, while early datasets were created mostly by universities, as the datasets
became larger (and thus more expensive), nowadays, more and more datasets are
owned by companies that sell licenses to them.

An early example of large scale-dataset was the Caltech pedestrian dataset,
which consists of approximately 10 hours of video recorded in a vehicle driving in
an urban environment [67], mostly in good weather conditions. There are 350,000
pedestrian boxes annotated, which gives a ratio of 1.4 pedestrians per frame. While
the Caltech dataset focused on pedestrian detection, other datasets such as KITTI
[68] and Cityscapes [69] focused on general object detection. Those datasets contain
bounding box annotations for each object belonging to 8 different classes: person,
rider, car, truck, bus, train, motorcycle, and bicycle. Both datasets also contain
dense pixel annotations, which can be used for semantic segmentation tasks. The
KITTI dataset also includes data from LiDAR sensors and is more often used for
multi-sensor object detection. Hence, the Cityscapes dataset is used in this thesis,
which is very popular for visual-based object detection.

The Cityscapes dataset was recorded in 27 cities from 3 countries, with dense
pedestrian scenes (more than six pedestrians per frame). Cityscapes is an important
and challenging benchmark, with heavy occlusion being the challenge and the fact
that the test dataset includes cities that were not part of the training set. However,
the whole dataset was again recorded in mostly good illumination and weather
conditions, limiting generalization to the real world. In section 3, a CityPersons [70]
dataset was used, providing refined bounding box annotations for pedestrians and
cyclists on Cityscapes images.

As such, further benchmarks were developed and EuroCity Persons [71] im-
proved the diversity of pedestrian detection datasets. It was recorded in 31 cities in
12 European countries. Data were collected during all seasons in changing weather
conditions (rain, fog). In total, there are around 238,200 person instances annotated
in over 47,300 images. A subset of 7,000 images recorded during the night-time was
a novelty at the time of the release of the dataset.
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Dataset Number
of frames

Classes Pedestri-
ans per
image

Conditions

Caltech [67] 250,000 pedestrians 1.4 dry, day-time
Cityscapes
[69]

5,000 8 classes 7.0 dry, day-time

ECP [71] 47,337 2 classes
(pedestrians,
riders)

4.6 dry, wet, day and
night-time

Nightowls
[72]

279,000 3 classes
(pedestri-
ans, cyclists,
motorcyclists)

0.2 dry, wet, night-
time

BDD [73] 100,000 10 classes 1.2 Dry, wet (includ-
ing snow), fog,
day and night-
time

Table 2.1: Comparison of various object detection datasets for autonomous driving

On the other hand, the NightOwls dataset focused on night-time pedestrian
detection, providing 40 annotated video sequences [72]. In comparison to day-time
images, it is a much more challenging task due to the illumination variation, light
reflections, blur artifacts, and changes in contrast. In total, there are 279,000 anno-
tated frames from 3 countries. Night-time pedestrian detection is very important for
robust vision applications. However, the author showed that pedestrian detectors
do not perform well at night, even when trained on night-time data.

One of the biggest datasets is Berkeley Deep Drive (BDD) [73] which contains
100,000 short driving videos. Within each video, one frame has object annotations.
Altogether there are over 1 million cars and 129,000 pedestrians annotated. It also
includes images recorded with larger weather diversity than previous benchmarks.

Table 2.1 shows a summary of selected autonomous driving datasets. It is
by no means a comprehensive list of datasets for autonomous driving applications.
Other recent examples include the Waymo Open Dataset [74] and nuScenes [75].
Both datasets were developed by automotive companies and focus on large-scale
data, diversity, and multi-task learning (such as lane detection).

Also, some of the datasets from Table 2.1 contain semantic segmentation labels
(Cityscapes, BDD), which will be used in chapter 5. As semantic segmentation
labels are even more costly to obtain, using synthetic labels was also considered
in this thesis. Data collected from the simulation, i.e., a modern computer game
(Grand Theft Auto), was used for that purpose. Using data from a simulation and
increasing its realism is another important research direction to reduce annotations
costs.

While this thesis focuses mostly on autonomous driving datasets, the meth-
ods developed here can be used for general visual recognition. Some experiments
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are also performed on the COCO dataset [76], which is a large-scale (328K im-
ages) dataset for general purpose object recognition (91 different classes, including
animals, household items, food, etc.).

It is important to realize that no matter how big the datasets are, they will
never cover all combinations of situations in the real world (for example, snow at
night). As such, testing on the above datasets may not be sufficient for predicting the
real-world performance of visual recognition systems. In the next section, techniques
for approximating the model’s generalization properties are reviewed.

2.5 Model Robustness

The generalization to new environments and situations is an important trait
of the human visual system. Humans can easily recognize objects when viewed in
different contexts or when the input signal is noisy (to some extent). However,
creating computer vision algorithms with similar capabilities is a great challenge.
Some studies compared the generalization properties of humans and algorithms,
i.e., sensitivity to the input noise, concluding that the current algorithms are far
behind human perception [30, 31].

Machine learning models perform well when the test-time distribution of data
matches or is close to the training-time distribution, otherwise the model can make
unexpected predictions under the distributional shift. A well-known example of
“failing” visual systems are so-called adversarial examples [77]. By having access to
the machine learning model, it is possible to compute the smallest distortion in the
input image that will cause a change in the outcome of the model. However, those
changes are usually invisible to the human eye, and they question whether machine
learning models can be trusted. Adversarial examples artificially change the input
distribution of the images, resulting in undesired outcomes of the classifier.

What is more, some adversarial attacks seem to transfer to different architec-
tures [78]. Defending against adversarial attacks is an important research area in
the community that could help build trust in machine learning systems. However,
creating adversarial examples requires having access to the model. Hence, an in-
teresting question arises: can one easily fool a machine learning algorithm without
accessing the model?

An important work in this area was done by Hendrycks et. al in [79], where
a Common Corruptions benchmark was created. It contains 15 types of distortions,
which are meant to be used only during testing to measure model robustness. They
found that current machine learning models are very vulnerable to even tiny noises,
for example, adding salt & pepper noise can easily fool the detector. Fig. 2.5
presents the selected type of noises applied to an image from Cityscapes dataset,
applied at different severity intensities. As one can see, even though the image’s
semantics have not changed, such minor distortions can easily fool modern visual
perception systems.
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Figure 2.5: Examples of different corruption types from Common Corruptions bench-
mark with different severity. Note that at the lowest severity distortions are barely
visible whereas at the highest severity they are clearly visible, however semantics of
the images are not changed.

Furthermore, some works show that models are also vulnerable to small trans-
lations and rotations of the input image [47, 80], small changes in distribution [12]
and cannot recognize known objects from an unusual perspective [81]. These are
just a few examples of neural networks’ vulnerability to cases of slight changes in the
input image. One of the hypotheses is that current neural networks tend to learn
superficial features that work well within the dataset but fail to generalize outside
of the training distribution [13, 17]. As a result, decisions made by the classifier
are sometimes based on just a few pixels. Furthermore, they tend to heavily exploit
the background context [82], which explains why objects in a new context are often
erroneously detected.

It was also shown that the decisions made by the classifiers are mainly based
on the object texture (low-level feature), while the object shape (high-level feature)
is mostly ignored [14]. Therefore, the authors applied neural style transfer data
augmentation to focus on high-level features, generalizing them better. Neural style
transfer is a technique that applies the style of one image to the content of another
image, and as a result, an image is obtained with the same content but in a different
style (texture) [83]. As a result of such training on stylized images, the neural
network was more texture invariant and more robust to distinct types of noises.

Data augmentation traditionally plays a key role in improving the robustness
of the machine learning models. A quite simple method, CutOut, works by randomly
erasing patches of the input image [84]. Such augmentation forces the model to look
at the whole image instead of focusing on some small patches, which might be highly
predictive within the dataset. Adding diverse types of noises, e.g., Gaussian noise
and blur, also proved to be an efficient data augmentation method [85]. However,
adding noise to the whole image might decrease the clean data performance (while
improving the robustness). It was also proposed to apply Gaussian noise only to the
input image patches [86]. As mentioned earlier, style-transfer data augmentation is
also very efficient at increasing models’ robustness [14, 9].

One of the methods that also consequently works well is large-scale pretrain-
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ing. For example, The Facebook company pre-trained their classification model on
3 billion Instagram images where the goal of the network was to predict social me-
dia hashtags [87]. Such (very costly) training showed state-of-the-art performance
for transfer learning. Similarly, pretraining a model on many datasets containing
people annotations in pedestrian detection yielded satisfactory performance [88].
Large-scale self-supervised pretraining also proved to work well [89]. In general,
presenting a model with a lot of data (also during the pretraining stage) provides
reliable results. It was also shown that using bigger models brings improvement in
the model’s robustness [79]. This is an essential context because, throughout this
thesis, the goal is to find robust models which are computationally efficient.

An important challenge is evaluating the robustness of machine learning mod-
els. The general idea is to use various out-of-distribution (o.o.d.) tests [17, 90],
which have recently gained much attention. The simplest scenario is testing models
in a cross-dataset setting. Unfortunately, this is often not sufficient, as all collected
datasets contain some biases, which the learning algorithm may utilize. For ex-
ample, the datasets mentioned in the previous section were collected in developed
countries and urban areas. As such, cross-dataset evaluation is an important metric
but might not be good enough for real-world deployment.

Another type of evaluation includes testing the model’s sensitivity to dis-
tortions in the input image. It includes creating synthetic distortions, which are
then used during testing to evaluate model robustness. For example, the afore-
mentioned Common Corruptions benchmark consists of 15 varied corruption types,
grouped into 4 categories: blur (defocus blur, frosted glass blur, motion blur, zoom
blur), noise (Gaussian noise, shot noise, impulse noise, salt-and-pepper noise), digital
(elastic transformations, pixelation, JPEG lossy compression) and weather distor-
tions (snow, fog, brightness, contrast). Adversarial examples are another example
of synthetic distortions. An attacker intentionally designed those images to fool the
machine learning model with the smallest changes in the input data [77] and can be
seen as an example of worst-case noise. However, sensitivity to corruptions might
be more important for autonomous driving and is used throughout this thesis [9].

While synthetic distortions are a particularly useful tool, it is unclear whether
robustness to synthetic distortions transfers well to the distributional shifts in real
data [91]. Another way of measuring robustness is testing algorithms on natural
shifts: such as day-to-night transition. For example, the model is trained using
“clean” data (day-time images) and evaluated under natural distributional shift (for
example, night-time or foggy images) [9]. However, the problem with this approach
is that it requires large and diverse datasets with diverse types of natural distortions,
which are not always feasible.

Robustness is also related to the problem of algorithmic fairness. Distribu-
tional shifts often degraded performance on minority subpopulations of the data.
For example, it was shown recently that computer vision algorithms work signifi-
cantly better at recognizing household items from developed countries because the
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training data were mostly collected in those countries [92]. There are specialized
algorithms that address improving accuracy on minority subgroups, but this is be-
yond the scope of this thesis [93, 94]. However, in section 4, standard data balancing
methods are used to improve the accuracy in models with reduced capacity.

In summary, distributional shifts are a great challenge for machine learning
algorithms deployed to the real world. Ideally, large-scale test data with rare events
such as heavy snow and car accidents should be collected to evaluate model robust-
ness to conditions unseen during training. However, as this is often unfeasible, it is
possible to approximate model robustness using synthetic and natural distortions or
cross-dataset evaluation. None of these methods is sufficient on its own; however,
combining them is the best thing that can currently be achieved, and they will be
used throughout this thesis.

2.6 Evaluation Metrics

In this section, the evaluation metrics used in object detection and semantic
segmentation are presented. Section 2.6.2 focuses on quantifying model uncertainty.

2.6.1 Model Accuracy

Object detection. The first step in the object detection pipeline is filtering
out low-confidence predictions. The threshold value has to be determined manually;
typically, a threshold value of 0.5 is used. To decide whether the given predictions
are correct (true positive - TP) or not (false positive - FP) an intersection-over-
union (IoU) between the predicted bounding box p and the corresponding ground
truth g is computed:

IoU(u, p) =
Area(g) ∩Area(p)

Area(g) ∪Area(p)
(2.22)

If the IoU is bigger than some fixed threshold (for example, 0.5 as in the
popular Pascal VOC challenge [95]), the prediction is correct. Several detections
may be matched with ground truth. In that case, only the most confident detection
is matched, and the other detections are considered false positives (FP). Now, it is
possible to compute precision and recall metrics[96]:

Recall =
TP

TP + FN
(2.23)

Precision =
TP

TP + FP
(2.24)

However, such point estimates do not give a full picture of detector reliability.
Creating precision-recall curves, where the precision (y-axis) and the recall (x-axis)
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are plotted for different confidence thresholds, is more informative. The area under
the precision-recall curve is called the average precision metric (AP). Similarly, the
IoU threshold can also be varied, for example, AP0.75 accepts only predictions with
an IoU higher than 0.75 and is more restrictive than the 0.5 value used in the Pascal
VOC challenge. Mean average precision (mAP) is simply average precision for all of
the classes and is the most commonly used metric in the object detection community

An IoU threshold of 0.5 is widely used in pedestrian detection because of big
deformations and articulations in pedestrians’ bodies. Furthermore, in pedestrian
detection, special attention is put into reducing the number of false negatives to
increase pedestrian safety. As a result, the miss-rate (mr) and false positives per
image (fppi) are popular metrics:

mr(c) =
fn(c)

tp(c) + fp(c)
(2.25)

fppi(c) =
fp(c)

Nimg
(2.26)

Threshold c is used for adjusting the ratio between false positives, false negatives,
and true positives, and Nimg is the number of images. Both of the above metrics
can be combined in the popular log-average miss rate (LAMR) metric, which is
computed by averaging at nine fppi rates spaced equally in the log-space in the
range 10−2 to 100, as it is done in the community [67]:

LAMR(c) = exp(
1

9

�

f

log(mr( argmax
fppi(c)<=f

fppi(c))) (2.27)

Semantic Segmentation. Problem formulation makes the metrics used in
semantic segmentation very easy to define. The most basic metric is pixel accuracy,
which simply reports the number of correctly classified pixels:

pixacc =
TP

Npixels
(2.28)

The main problem with this metric is that it is biased toward common classes; it is
possible to obtain very high accuracy but to still not detect rare classes at all. To
compute accuracy for a given class a IoU metric (Jaccard index) or F1-score (Dice
score) can be computed as follows:

IoU =
TP

TP + FP + FN
(2.29)

Dice =
2TP

2TP + FP + FN
(2.30)

The final result is then an average of all classes, for example, mean intersection over
union (mIoU ), which computes per-class IoU values and then reports their average.
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mIoU is commonly used metric in semantic segmentation. Compared to the Dice
score, the IoU metric more heavily penalizes instances of bad classification. Also,
some specialized metrics exist for semantic segmentation, such as Boundary IoU,
which focuses on the quality of the boundary [97].

2.6.2 Quantifying uncertainty

Providing reliable uncertainty estimates is an essential element of safe au-
tonomous systems [8] and could also be useful in other high-stakes applications,
such as machine learning-aided medical diagnosis. However, current machine learn-
ing models are often overconfident in their predictions [98], and the effect is more
apparent in the out-of-distribution setting [99].

Expected Calibration Error (ECE) is one of the metrics used to compute the
uncertainty calibration of the model. The intuition behind model calibration is that
when a well-calibrated model predicts a bounding box (or pixel class) with 95%
confidence, it should be accurate in 95% of the cases. ECE can be easily computed
by partitioning predictions into M bins based on their confidences:

ECE(c) =

M�

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (2.31)

where Bm is the set of prediction indices for which the confidence falls into the mth

bin. A lower ECE score means better model calibration.

To sum up, the background knowledge in machine learning and computer
vision was introduced. Further, modern CNN-based models for object detection
and semantic segmentation were presented. It was shown that the generalization
of machine learning algorithms to the real world is an open problem. In the next
chapter, the model’s robustness will be evaluated for pedestrian detection, and the
data augmentation methods will be used to improve model performance in terms of
accuracy and quantifying uncertainty.
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Chapter 3

Towards Robust Pedestrian
Detection with Data
Augmentation

The literature review in the previous chapter shows that modern neural net-
works for visual recognition achieve impressive performance, but only when the
test-time conditions are like those encountered during training. It is, however, a
too strong assumption for the models deployed to the real world, for example, au-
tonomous driving systems. In this chapter, the safety of the most vulnerable road
user - pedestrians, is considered. Furthermore, this chapter explores different ways
of evaluating models’ robustness. Further, the robustness and uncertainty calibra-
tion of several data augmentation methods is evaluated, and based on the insights
from experiments, a new data augmentation scheme is proposed. Work described in
this chapter is based on the article [100].

3.1 Introduction

Even though CNN-based models surpassed human performance on some of
the benchmarks [101], the application of deep learning methods in safety-critical ap-
plications like medicine or autonomous vehicles has been limited [8]. This is because
CNNs often fail to generalize outside of the training data distribution. Vulnerability
to tiny changes in the input might be explained by the fact that neural networks
tend to exploit non-robust, high-frequency patterns in the training dataset, which
causes them to fail under the distributional shift [77, 46, 47, 80, 102, 12].

A popular approach to improve model robustness is employing data augmen-
tation techniques, i.e., using style-transfer data augmentation [14, 103]. Meanwhile,
the use of only stylized representation may hurt performance on clean (original)
data; hence a popular strategy is to use both clean and stylized samples during
training [9, 104]. Removing part of the image during training has also improved
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model accuracy [84]. Instead of occluding a portion of an image, an approach called
CutMix replaces a portion with a patch from a different image [105]. AugMix ap-
proach uses different image augmentations and interpolates between them to obtain
training samples [106]. It is also possible to learn augmentation policy; however,
such a process tends to be very costly [107]. Other approaches include using self-
supervision [89], adversarial training [108], or using large-scale pretraining [109].

Pedestrian detection is an essential topic in the context of autonomous driving.
It is an important component of advanced driver-assistance systems (ADAS) and
is crucial in reaching autonomous vehicles. This topic traditionally borrows a lot
from standard object detection models; current state-of-the-art models like Faster-
R-CNN [48] and Mask R-CNN [110] are used for that purpose. In addition, there
exist specialized models which modify the loss function to handle occlusions [111],
run multi-step prediction for improved localization [112], simultaneously predict the
full and visible boxes of pedestrians [113], or utilize low variance in an aspect ratio
of visible pedestrians [114]. However, as it was shown, a general-purpose Faster R-
CNN provides very competitive results [70, 88]. Another line of research is dedicated
to using thermal images for pedestrian detection at night [115, 116, 117].

Providing reliable uncertainty estimates is essential for safe autonomous sys-
tems [8]. The previous finding of the poor model calibration was confirmed in the
context of object detection from LiDAR data [118]. In this chapter, uncertainty
calibration is evaluated the context of pedestrian detection under the distributional
shift. In this chapter, the following experiments are described:

• the impact of the distributional shift on the accuracy of pedestrian detection
models is analyzed, i.e., detection models are evaluated in cross-dataset setting,
by adding different types of image distortions, and also while testing on night-
time images,

• popular data augmentation methods are evaluated in terms of model robust-
ness, and a new relatively simple scheme for data augmentation is proposed,

• uncertainty calibration of existing models is evaluated experimentally.

3.2 Pedestrian detection model

A pedestrian (object) detection task is to associate a list of bounding box
coordinates with the predicted class and its score with an image. Faster R-CNN is a
standard algorithm in generic object detection, which is commonly used in pedestrian
detection [88, 70]. Therefore, it is a strong baseline utilized in this chapter. Faster
R-CNN was described in section 2.2.2. For pedestrian detection also specialized
architectures exist, and a Center-Scale-Prediction (CSP) [114] is a recent model that
achieves state-of-the-art results. It simplifies the object detection pipeline by simply
predicting the center of the objects and their scale. Such an anchor-free framework
does not require defining anchors hyperparameters, i.e., the sizes of anchors or the
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Original CutOut Stylized Proposed

Figure 3.1: Different augmentation strategies. The second column shows random
region removal with CutOut, and the third column shows a stylized version of the
original image. The last column shows the proposed augmentation that combines
CutOut with style augmentation.

number of scales (as in Faster R-CNN), and works very well for pedestrian detection.
Both architectures are used in this chapter.

Style-transfer is a popular technique that allows transferring style (texture)
from one image into another image. While such image synthesis is not perfect, many
studies have shown that using style-transfer data augmentation can improve the
robustness of the model [14, 104]. A problem with style-transfer data augmentation
is that whereas it increases the robustness of models, it can decrease the accuracy
of clean data since the stylized image differ quite significantly from real images. As
such, a popular approach is to train a model using a 1:1 ratio of stylized and original
images [9]. Here, a popular approach in the literature is followed, and as a source
of style, images from Kaggle’s Painter by Numbers dataset [119] are used.

Proposed augmentation. There is a growing literature of research that,
during training, augments only patches of the image. CutOut, for example, removes
random patches from the image that shows positive for model accuracy [84]. In
CutMix, on the other hand, random patches are cut and pasted among training
images [105]. Inspired by data augmentation which works on regions of the image
[86, 84] here, we propose to apply style data augmentation only to random patches
of the input image. Our method works by adding a patch of the stylized image
to the original image to the same location. The center of the patch is sampled to
be within the image and the method allows for varying the patch size. Details are
presented in the Alg. 1 diagram. Fig. 3.1 shows proposed data augmentation in
comparison to other methods.

Gaussian augmentation. Using Gaussian augmentation also proved to be
successful in increasing model robustness; therefore it is also used for our experi-
ments. Two variants (parametrized by σmax) are evaluated:

• Gaussian augmentation. Firstly for each pixel sample σ from uniform distri-
bution - σ ∼ U(0,σmax]. Add noise to each pixel sampled from N [0,σ].

• Patch Gaussian augmentation [86]. Same as above, but the Gaussian noise is
added only to the random patch of the image.
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Algorithm 1 Proposed data augmentation
Input: Input image I, Stylized image S,

Image width IW , Image height IH ,
Patch width PW , Patch height PH

Output: Augmented Image Iout
%Compute patch localization

1: x1 ← random.normal(0, IW − PW − 1)
2: y1 ← random.normal(0, IH − PH − 1)

%Compute masks
3: mask[H][W ] ← {0}
4: mask[y1 : y1 + PH ][x1 : x1 + PW ] ← {1}
5: mask_inverse[H][W ] ← {1}
6: mask_inverse ← mask_inverse−mask

%Compute final image
7: Iout ← mask_inverse ∗ I +mask ∗ S
8: return Iout

3.3 Experiments

Implementation details. MMdetection library [120] is used for the Faster R-
CNN model, with ResNet-50 backbone. All models are pre-trained on ImageNet [7].
Stochastic Gradient Descent with an initial learning rate of 0.002 and a momentum
of 0.9 is used. The training lasts for 40 epochs, and the learning rate drops by
a factor of 10 after 25 epochs. All models are trained on the Cityscapes dataset.
Data from 3 cities (Darmstadt, Mönchengladbach, and Ulm) from the training set
are moved into trainval set similar as in the literature [121]. The model with the
best accuracy on the trainval set is used for testing. Since no ground truth data is
publicly available for all the datasets, results are reported on their validation sets.
All models used the same training settings. Standard random vertical flipping and
resizing of the image are used for data augmentation. For the CSP architecture,
the code published by the paper authors is used [114]. A training protocol from the
original paper is followed, i.e. model is trained for 37.5K iterations and then used for
the validation. The only difference is that a single GPU was employed for training
(instead of two). During the evaluation, each training is repeated 5 times, and the
mean accuracy is the final score. For evaluation, the so-called reasonable setup [70]
is used. It means that only pedestrians whose height is bigger than 50 pixels and
the occlusion level are smaller than 0.35 are used for training and evaluation.

In the experiments, firstly, the effect of patch size on the model accuracy
with the proposed data augmentation scheme was analyzed. Then, robustness and
uncertainty calibration of several data augmentation methods was evaluated using
different robustness tests.
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Figure 3.2: Log-average miss rate for pedestrian detection accuracy (lower is bet-
ter) on CityPersons dataset using proposed data augmentation as a function of the
patch size. Note that the most left data point corresponds to the baseline trained on
original data, while the most right data point is a model trained using only stylized
images.

3.3.1 Patch-size selection

First, hyperparameter search for the optimal size of the stylized patch is run. A
too small patch size might reduce the positive effects of using style-transfer for model
robustness, whereas a too big size of the patch might reduce the clean accuracy. In
the experiment the stylized patch is of size kW x kH pixels, where k�[0, 1]. Note that
when k = 0, it means that style transfer augmentation is not used at all, whereas
when k = 1, only stylized-images are used.

Figure 3.2 plots the model accuracy as a function of patch size on the CityPer-
sons dataset. It can be noticed that the model accuracy firstly increases with the
size of the patch. However, after the size of the patch is bigger than 0.3 of the image
size, then accuracy decreases. This is expected as the model is biased more towards
stylized images, and as a result, accuracy on the clean data decreases. All of the
remaining experiments are conducted with the selected patch size (k = 0.3).

3.3.2 Evaluation under distributional shift

In this section, different data augmentation methods are evaluated with regard
to the model robustness. In particular, the following models are evaluated:

• Baseline model corresponds to the model trained with standard data augmen-
tation,

• Sin [14] is a model trained on both clean data and the stylized version using
1:1 ratio,

• StyleOnly model is trained using only stylized data,
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Table 3.1: Accuracy comparison of Faster R-CNN models trained with different aug-
mentation strategies on clean data (first column) and related to specific corruption
types from the Common Corruptions benchmark (the remaining columns). LAMR
is reported (lower is better). For models that used Gaussian augmentation, values
in the noise column are marked in grey color because the tested corruption type was
a part of the training.

Name Clean Noise Blur Weather Digital
Baseline 17.86 94.72 69.61 54.05 51.78
CutOut 16.91 91.04 66.72 49.97 50.61
StyleOnly 24.03 78.02 63.88 49.3 44.16
Sin 17.83 76.14 59.63 44.43 42.36
Ours 16.09 76.17 61.46 42.74 43.12
Gaussian_0.1 17.58 45.73 63.97 48.85 39.56
Gaussian_0.5 21.19 39.33 60.17 49.52 38.46
PatchGaussian_0.1 16.25 52.9 66.71 50.28 46.00
PatchGaussian_0.5 16.41 45.71 63.72 48.91 41.65
Combined augmentations
Ours + PatchGaussian_0.5 16.28 47.55 61.55 42.73 40.5
Sin + PatchGaussian_0.5 18.11 43.27 59.64 44.86 37.27

• Ours corresponds to the proposed augmentation model,

• CutOut [84] model with the same patch size as Ours model. It serves as
another baseline to the proposed data augmentation and as a sanity check to
make sure that similar gains cannot be obtained by simply removing patches
of the image,

• Gaussian data augmentation with σmax�{0.1, 0.5},
• PatchGaussian data augmentation with σmax�{0.1, 0.5}. The same patch size
is used for the Ours and CutOut model.

Table 3.1 shows the accuracy of the trained models on the original CityPer-
sons dataset and as well on the Common Corruptions benchmark grouped by dis-
tortion category. First, the results emphasized the importance of robustness testing.
While the Baseline provides reasonable accuracy on the clean data, it constantly has
worse accuracy on all corruption types by a large margin. Furthermore, different
data augmentation provides the best accuracy on different corruption types. Ours
data augmentation best performs on clean data, noise corruption (together with
Sin model), and weather-related corruption types. The Sin model performs the
best also on blur corruptions, whereas Gaussian augmentation helped the most with
digital noise. The findings of other authors [86] are confirmed, and it was shown
that while Gaussian augmentation improves robustness, it may hurt performance on
clean data (21.19% LAMR when σ = 0.5), whereas using only patches of Gaussian
noise provides a balance between clean accuracy and robustness. Finally, it can be
observed that combining Style-Transfer using Ours or Sin models with PatchGaus-
sian provides the best accuracy across all corruption types. However, many of the
corruptions still drastically degrade the performance, so there is a large room for
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Table 3.2: LAMR for each corruption type of Faster R-CNN models.

Noise Blur Weather Digital
Model shot impulse gauss defocus glass motion zoom snow fog frost bright contrast elastic pixel jpeg
Baseline 92.69 97.06 94.42 55.25 67.32 60.68 95.22 89.3 30.24 66.32 30.32 47.64 14.47 72.75 72.26
Sin 72.25 79.2 76.99 43.88 54.27 48.57 91.83 76.1 28.35 49.87 23.39 43.77 20.93 46.66 56.39
Ours 72.4 79.39 76.73 44.85 56.89 52.31 92.54 75.52 25.97 49.39 20.06 39.12 20.84 54.17 58.37
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Figure 3.3: Detection samples for baseline and augmented (Ours + PatchGaus-
sian_0.5) models for different corruption types. The first column - motion blur
(severity intensity of 4), the second column - Gaussian noise (severity intensity of
2), third column - artificial snow with a severity intensity of 2. Note that the distor-
tion for Gaussian noise is almost imperceptible, yet it greatly reduces accuracy of the
model. Augmented model is more robust, however in the last column pedestrians
on the right are missed by both models.

improvement in terms of increasing model robustness.

Also, it is interesting to directly compare Ours and Sin data augmentations
as they are competitive approaches. For that purpose, those two approaches are di-
rectly compared for each corruption type. Table 3.2 shows that the proposed model
provides the most significant gains for fog, brightness, and contrast deformations.
This is very interesting in light of findings by Yin et al. [46] where they perform
Fourier spectral analysis of different distortion types and find that the aforemen-
tioned distortions are concentrated in low-frequencies components of images. This
means that the proposed data augmentation might be particularly useful for low-
frequency distortions types.

Fig. 3.3 shows example detections for the Baseline model and a model trained
with proposed augmentation and Patch Gaussian. In general, data augmentations
significantly improve model accuracy, however, there are still many situations when
the model lacks robustness. Some types of distortions (especially noise), drastically
change the output of the detection model even at the low distortion severity, when
the input image is only slightly changed. Even though our best-trained models are
more robust than the Baseline model, the problem is still far from being solved.
In previous experiments, synthetically generated distortion types were used for the
evaluation. However, it is very important to test a model on a different dataset be-
cause even if the datasets look similar, there still will be a lot of differences regarding
data collection protocol (e.g., camera sensor and its placement inside a vehicle, ge-
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Table 3.3: Accuracy comparison of Faster R-CNN models trained with different
augmentation strategies on day-time and night-time images from the ECP dataset
as well on NightOwls dataset (night-time). LAMR values are reported.

Name ECP-day ECP-night NightOwls
Baseline 25.05 45.5 76.23
CutOut 21.93 41.25 70.23
StyleOnly 26.83 36.2 58.22
Sin 21.22 30.69 56.51
Ours 21.04 29.89 56.1
Gaussian_0.1 23.17 32.25 56.21
Gaussian_0.5 26.11 32.22 47.55
PatchGaussian_0.1 23.6 34.24 64.4
PatchGaussian_0.5 22.31 32.61 58.87
Combined augmentations
Ours + PatchGaussian_0.5 20.35 26.13 52.34
Sin + PatchGaussian_0.5 20.62 28.80 49.08

ECP-day ECP-night Nightowls
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Figure 3.4: Detection samples for baseline and augmented model. The augmented
model is more accurate on the night-time images, however some pedestrians are still
not detected.

ographical location) which might affect final accuracy. Furthermore, synthetically
generated distortions are only approximations of real-world adverse conditions that
is why the models are also tested on night-time images.

Table 3.3 shows the accuracy of the models for different datasets. First, a
significant drop in accuracy for all the models can be noticed, i.e., Baseline model
LAMR increases from 17.86% to 25.05% when tested on ECP-day compared to
CityPersons. It can be explained by the fact that the ECP dataset is more challeng-
ing for both but also because of the dataset shift. Accuracy further drops when mod-
els were tested on night-time images - for the Baseline model, the average miss-rate
is almost doubled. For data augmentation based on stylization or Gaussian noise,
the decrease is not that severe, and for the best performing combination (Ours +
PatchGaussian_0.5) the average miss-rate increases only from 20.35% to 26.13%.
The drop in accuracy for NightOwls dataset is bigger than for the night-time im-
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Table 3.4: Comparison of CSP models accuracy trained with different data aug-
mentations, on various datasets, and on specific corruption types from the Common
Corruptions benchmark applied to Cityscapes dataset (columns 2-5). For models
that used Gaussian augmentation, values in the noise column are marked in grey,
because the tested corruption type was part of the training. LAMR values are
reported.

Name City Noise Blur Weather Digital ECP-day ECP-night NightOwls
Baseline 12.37 95.54 63.67 52.89 49.77 22.06 60.83 65.48
CutOut 12.17 95.06 63.39 51.52 49.83 23.31 60.52 67.13
Sin 13.85 83.24 51.45 41.23 37.63 19.48 31.25 51.16
Ours 12.44 84.21 54.72 40.91 41.56 18.24 31.17 52.71
Gaussian_0.5 17.99 34.64 55.74 59.59 36.22 32.11 66.32 60.72
PatchGaussian_0.5 12.47 43.64 59.31 49.95 39.99 20.06 47.20 58.42
Combined augmentations
Ours + PatchGaussian_0.5 12.62 44.21 53.13 40.44 37.41 18.39 28.99 52.21
Sin + PatchGaussian_0.5 14.12 44.27 50.69 40.72 33.73 19.15 30.08 49.88

ages from the ECP dataset. On that benchmark, simple Gaussian augmentation
obtained the best result - this might be, because the NightOwls dataset contains a
lot of noise due to the very low light intensity. It is also worth noting the effect of
the Cutout data augmentation on the accuracy of the clean data, however, it only
slightly affected the robustness, especially when compared to the PatchGaussian
and style data augmentations. Finally, the proposed data augmentation provides
the same or better accuracy compared to Sin across all benchmarks. Fig. 3.4 shows
example detections. Again model accuracy is improved, but the augmented model
still lacks robustness for some situations (last column).

3.3.3 Center Scale Prediction

Table 3.4 shows obtained results on all of the benchmarks for the CSP archi-
tecture. Some interesting observations can be made. Firstly, in most cases, the new
architecture provides better accuracy than the Faster R-CNN, i.e., LAMR decreases
for the Baseline model from 17.86% to 12.37% on the Cityscapes dataset and 25.05%
to 22.06% on the ECP day-time images. Surprisingly the new model is worse than
the Faster R-CNN when testing the Baseline model on ECP night-image images.
When stylized data augmentation is used, the new model is better or on par with
Faster R-CNN except for the performance under noise corruption (LAMR increases
from 76.14% to 83.24% for the Sin data augmentation).

Interestingly, while testing on the Cityscapes dataset (no distributional shift)
standard data augmentation already provides a strong baseline and only CutOut
augmentation can slightly improve over that. The proposed data augmentation
obtains the best result (by a significant margin) when testing on ECP day-time im-
ages. When testing on night images, both stylized augmentation provides the best
accuracy. For different types of corruption, the best methods are the same as in
the Faster R-CNN model. Experiments on the CSP architecture confirm that the
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Table 3.5: Comparison of ECE for selected Faster R-CNN models on different
datasets (lower value means better calibration).

Name CityPersons ECP-day ECP-night NightOwls
Baseline 0.1418 0.1468 0.1985 0.3765
Sin 0.1434 0.166 0.1429 0.3393
Ours 0.1429 0.1569 0.1572 0.331

proposed data augmentation allows for competitive results across different bench-
marks and offers a good balance between accuracy on the clean dataset and under
distributional shift

3.3.4 Uncertainty estimation

Providing reliable uncertainty estimates is an essential aspect of safe au-
tonomous systems. In this section, the ECE score is measured using cross-dataset
evaluation. It was found that stylized and Gaussian augmentations help to improve
prediction confidence with no clear leader between them, so for conciseness Table
3.5 shows ECE scores of Faster R-CNN models for the Baseline, Sin, and for Ours
models.

Ideally, the ECE score would be a constant and small value across different
datasets, which would mean that the model “knows what it does not know.” How-
ever, for the Baseline the ECE score goes up when testing on night-time images
(jump from 0.1468 to 0.1985 on ECP dataset). Ours model has almost constant
calibration error when switching to night-time images on the ECP dataset, whereas
Sin model has an even smaller calibration error. Note from the previous section that
the model accuracy drops in that case, which means that the improved calibration
cannot be only attributed to the improved model accuracy. All of the models are sig-
nificantly worse calibrated for the NightOwls dataset, because it is more challenging
in general and because the distributional shift is greater in this case.

Fig. 3.5 shows calibration plots. It can be observed that the Baseline model
has worse uncertainty calibration when switching from day to night-time images,
especially in the area of high confidence predictions, which means that the model is
underconfident in its predictions. However, for the proposed model (and other styl-
ized and gaussian augmentations), there is no apparent difference in the calibration
plot between day and night-time for the ECP dataset.

CSP architecture shows similar findings - using data augmentation usually
improves model calibration, especially for the large distributional shift (night-time
images). Interestingly, however, it was found that CSP models have worse calibra-
tion, e.g., for the Cityscapes dataset Faster R-CNN Baseline model has an ECE
score of 0.1418, whereas the CSP model has a score of 0.2446 (Fig. 3.6).
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ECP-day ECP-night

B
as
el
in
e

A
ug
m
en
te
d

Figure 3.5: Calibration plots for selected Faster R-CNN models for day-time and
night-time images on ECP dataset. Accuracy near diagonal means perfect calibra-
tion.

3.4 Conclusions

In this chapter, the examination was performed of pedestrian detection models
in the real-world setting when test-time data come from a different distribution than
in training: using cross-dataset evaluation, testing the model by switching illumina-
tion conditions (day to night), and through testing it on synthetic distortions. It was
confirmed that such testing is crucial for a realistic evaluation of the model since the
accuracy of the baseline model drops drastically. Further, it was shown that data
augmentations in the form of stylized and Gaussian augmentations significantly im-
prove the robustness of the model. Furthermore, a new data augmentation scheme
was proposed that uses stylization but only on patches of the original image, and
it was shown that such augmentation offers competitive accuracy. Finally, it was
demonstrated that the use of data augmentations also improves the classification
calibration of the pedestrian detection models.

It was shown that data augmentation is a simple and highly effective way
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Faster R-CNN CSP

Figure 3.6: Calibration plots for Faster R-CNN and CSP architectures on Cityscapes
dataset.

of improving model robustness to novel conditions encountered during the testing
phase. At the same, the problem is challenging and remains far from being solved.
Nevertheless, this chapter showed that using distinct types of tests is essential for
realistically evaluating model performance, and using a limited number of tests may
result in an over-optimistic estimation of model accuracy.
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Chapter 4

Robustness in Compressed
Neural Networks for Object
Detection

In this chapter, the robustness of machine learning models again provides the
main topic, but this time the focus is also on computational efficiency. Recent works,
shown that it is possible to efficiently compress the neural networks (by removing
neurons or whole filters) without accuracy loss [122]. It is an attractive method that
would allow reducing computational cost during deployment significantly. However,
most methods were only evaluated using the in-distribution testing, shown in the
previous chapter to provide an over-optimistic estimation of model performance.
Here a closer look at the accuracy of compression methods is taken in the out-of-
distribution setting and when using per-class evaluation, and a method to mitigate
some of the found issues is proposed. The work description contained in this chapter
is based on the article [123].

4.1 Introduction

Optimization of the size of visual recognition models is of great importance,
e.g., for autonomous driving, because of energy consumption and hardware cost.
Typical methods to reduce the computation cost include deploying specialized ar-
chitectures [21], model compression techniques such as reducing model precision
(quantization) [20], and/or setting the number of weight or filters to zero (pruning)
[19]. For example, Han et al. showed [122], that it is possible to reduce the size of
the VGG network by a factor of 13 when benchmarking on the ImageNet dataset
[7] with no loss in accuracy.

The most popular approach is magnitude pruning which removes several small
magnitude weights resulting in only a small decrease in accuracy [122, 124]. However,
to reduce the computational cost of such pruned models, specialized hardware is

67

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


required to optimize sparse operations. As a result, structured pruning was proposed
where entire filters and/or layers are removed [125, 126, 127]. Standard approaches
to model compression assume training the base model, pruning, and then fine-tuning
[122] or gradually pruning the model during training [124, 127]. For the task of visual
recognition, model compression has mostly been applied to image classification, with
very few works on the task of object detection [128]. Since object detection is a more
complex task than image classification and has significant application potential, it
is important to evaluate model compression methods in the object detection task.

Model compression is also an interesting problem from a research perspective.
It is well-known that current machine learning models are heavily over-parameterized,
allowing them to fit random labels [129] easily, which is exploited but the compres-
sion techniques, to greatly reduce the model size, with only a small decrease in
inaccuracy. But, investigating only the mean accuracy might not give the full pic-
ture of compression methods’ impact on model predictions. Highly accurate models
(in terms of average precision) can still fail in rare and atypical cases [93, 94]. Yet,
most of the works in model compression focus on clean test-set accuracy, ignoring
model robustness, such as out-of-distribution (o.o.d.) accuracy, which is crucial for
systems operating in the real world.

It was only recently shown that pruning significantly affects robustness in
the image classification task and might disproportionately impact different object
classes [22, 130]. This chapter starts with those observations and applies them to
object detection from RGB images. Further, the effect of naturalistic data augmen-
tation on compressed models was analyzed. It was demonstrated that measuring
out-of-distribution performance or per-class accuracy is crucial in safety-critical ap-
plications.

A parallel work to ours also investigates the effects of model compression in an
out-of-distribution setting and confirms that such testing is critical in the context
of safety-critical systems [131]. This chapter focuses on the object detection task
(which was not investigated yet) and measures its impact on both synthetic and real
distributional shifts and per-class accuracy.

4.2 Methodology

Model Compression. In experiments, standard magnitude pruning ap-
proaches were utilized. While more advanced approaches exist, magnitude pruning
has been shown to consistently achieve excellent results across a number of datasets
and tasks [132]. Another advantage is that magnitude pruning is a very general
method that can be easily applied to a wide range of tasks and architectures. The
automatic gradual pruning technique is used during training, which progressively
increases the sparsity in the network throughout the training, up to the desired
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Figure 4.1: Examples of augmented images: color drop (top left image), color dis-
tortion (top right), overexposed image (bottom left), gaussian noise (bottom right).

compression rate. Specifically, the sparsity st at epoch t is computed as [124]:

st = sf + (si − sf) ∗ (1− t− t0
nΔt

)3 for t ∈ {t0, t0 +Δt, ..., t0 + nΔt} (4.1)

where n is the number of pruning steps, Δt is the pruning frequency, sf is a final
sparsity value, si an initial sparsity value (usually 0) and t0 is an epoch at which
pruning starts. At each iteration, L1−norm is computed for each tensor and tensors
with the lowest norm are zeroized, such that the desired level of layer sparsity st

at a given epoch is achieved. Similarly, for structured pruning, the L1−norm is
computed at the filter level, which weights are set to 0.

Data augmentation. Several data augmentation techniques have been pro-
posed to improve model robustness, in particular, style-transfer data augmentation
is quite often used, as was also shown in the previous chapter. However, it might be
possible that using simpler data augmentation, which distorts the texture informa-
tion, might work as well, which was confirmed in recent work [133]. Namely, during
training, the following augmentation is used in the pipeline (Fig. 4.1):

• Color distortion with a probability of 50%. This includes changes in the bright-
ness, contrast, saturation, and hue of the image as specified in [39].

• Color drop (grayscale image) with a probability of 20%.

• Gaussian blur with a probability of 50%.

• Gaussian noise with a probability of 50%.

Imbalanced Data. Real-world datasets often follow a long-tail distribution:
a few dominant classes are represented by a great number of examples, significantly
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higher than of other less represented classes. As a result, models trained on such
datasets provide poor accuracy on the underrepresented classes [134]. Significant
research exists on dealing with such data imbalance, which can be categorized into
re-sampling and cost-sensitive learning. For example, some of the training examples
for the minority classes are repeated [135] or examples from dominating classes are
undersampled). Cost-sensitive learning deals with the problem by assigning a rela-
tively higher cost to the minority classes, e.g., computing the loss using the inverse
of the class frequencies [136] or the inverse of the effective number of samples [137].
In this subsection, a few techniques for handling imbalanced data are described,
the first technique is based on sampling, and the others are based on cost-sensitive
learning.

The repeat factor sampling (RFS) strategy was recently shown to yield
competitive results on class imbalance problems [138]. For each category c, let’s
define fc as a portion of images that contain at least one instance of object category
c. The category-level repeat factor is defined as:

rc = max(1,
�
(t/fc)) (4.2)

where t is a hyperparameter. Intuitively, this means that categories which frequency
fc is below threshold t, will be over-sampled. Then the image-level repeat factor is
computed as the maximum value over the categories in the image i:

ri = max
c∈i

rc (4.3)

Cost sensitive learning, on the other hand, applies class-specific weights
wc to the cross-entropy loss in the classification task. For a given observation, the
weighted cross-entropy can be computed as:

LwCE = −
C�

c=1

wc ∗ (y == c)log(ŷc) (4.4)

where (y == c) ∈ {0, 1} indicates whether class c is the correct class for given
observation and ŷc is a predicted probability for class c, and wc is a weighting factor
for every class. If wc = 1 for all classes then the above formulation relates to the
standard cross-entropy loss. Below, different approaches to computing wc for data
imbalance problems are briefly described.

Inverse square root of class frequency computes the wc in exactly the same way
as the repeat factor rc was computed for the RFS algorithm. For our experiments,
another variant was also tested where the weights were computed as wc =

�
(t/fc)

(so removing the max function), which allowed the weights of some frequent classes
to be smaller than 1.

Computing class weights by means of a category-level repeat factor, as defined
above, may yield suboptimal results, since some of the images may contain just
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one instance of a given category, while others may contain dozens of them. As
such, it was proposed in [137] to compute the weighting factors using the number
of instances. Our implementation follows the details provided in [139]. First, the
number of instances for each category Nc is computed. Then, the effective number
of samples En for each category c can be computed as:

En =
1− βNc

1− β
(4.5)

where β is the hyperparameter.

However, note that the above methods have mostly been tested on the image
classification task, and object detection brings further challenges. First, object de-
tection has a multi-task objective, and scaling classification loss may introduce side
effects to the overall performance (for example, changing accuracy of the regional
proposal network). Second, the above calculation does not take into account the
background class (because it is hard to estimate the “frequency” of the background
class, a class-weight of 1 is applied to the background class in all cases as in [139]).
Third, since foreground/background separation is a very important part of object
detection, one must be very careful when applying different class balancing methods.
Therefore, in the experiments section, experiments are also conducted with linearly
scaled variants of the above methods.

4.3 Experiments

Implementation details. The models were trained using the Faster R-CNN
general-purpose object detector. The Distiller package [140] was used for pruning,
using both structured and unstructured methods. Similar to [9], the Cityscapes
model was trained for 64 epochs, with a learning rate step reduction by a factor
of 10 at epoch 48. The initial learning rate was 0.01, and the batch size was 6 as
this is the maximum that the GPU used can concurrently process. The pruning
used the automated gradual pruning scheme [124] starting from the first epoch until
epoch 56. The model was trained for 11 epochs for ECP and BDD datasets, with a
learning rate step reduction by a factor of 10 at epoch 7. The pruning was gradually
starting from the first epoch until epoch 8.

The models were pruned at 30%, 50%, and 70% compression rates for the
structured pruning and at 50%, 80%, and 95% compression rates for the unstruc-
tured pruning. For each method, all of the compression rates can be considered to
be a reasonable setup, with the first compression rates being more conservative and
the last being more aggressive. Note that higher compression rates can be achieved
for the unstructured pruning, which is why the compression rates were higher in that
setting. The above models were trained 5 times, and the mean accuracy is reported.
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Table 4.1: Accuracy comparison for models trained with different pruning strategies
tested on the Cityscapes dataset (first column) and different corruption types from
the Common Corruptions benchmark (the remaining columns).

Model Clean Noise Blur Weather Digital
Baseline 0.352 0.0 0.049 0.152 0.146
Unstructured pruning (compression rate)
50% 0.351 0.0 0.047 0.151 0.14
80% 0.338 0.0 0.041 0.138 0.135
95% 0.323 0.0 0.029 0.115 0.118
Structured pruning (compression rate)
30% 0.352 0.0 0.037 0.134 0.135
50% 0.337 0.0 0.027 0.105 0.131
70% 0.33 0.0 0.023 0.088 0.125

Table 4.2: Accuracy comparison for models trained using day-time images and tested
on day-time images (first column) and night-time images (second column).

Model name ECP-day ECP-night
Baseline 0.468 0.392
Unstructured pruning (compr. rate)
50% 0.462 0.396
80% 0.45 0.383
95% 0.414 0.331
Structured pruning (compr. rate)
30% 0.457 0.382
50% 0.444 0.363
70% 0.431 0.34

4.3.1 Measuring impact of model compression on the robustness

Table 4.1 presents the results obtained for the models trained on the Cityscapes
dataset using different compression strategies and evaluated on the clean Cityscapes
dataset and its corrupted versions. For simplicity, in the evaluation, distortions
are applied at the medium intensity level. The results from the second to the last
column measure the robustness of the models (o.o.d. test). The first thing that can
be noticed is that the models lack robustness and are very vulnerable to different
distortions, as the mAP metric is very low for all distortion types. Further, for the
structured pruning, it was possible to prune 30% of the filters and still achieve the
same accuracy on the clean dataset (first column), however, models’ sensitivity to
different distortion types was already negatively affected.

While the previous experiment measured robustness to some synthetically gen-
erated distortions, using the ECP dataset, one can measure the robustness to nat-
ural distortion such as the transition from day to night (Table 4.2). Specifically, a
model trained on day-time images is evaluated on day-time images (first column)
and night-time images (second column, o.o.d. test). The decrease in mAP met-
ric is comparable for both tests compared to the baseline model, for both pruning
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Table 4.3: Accuracy comparison for models trained using naturalistic data aug-
mentation with different pruning strategies tested on the Cityscapes dataset and
corruption types from the Common Corruptions benchmark. Values in brackets
show accuracy change due to the added augmentation.

Name Clean Noise Blur Weather Digital
Baseline 0.367 (+0.015) 0.194 0.126 0.258 0.271
Unstructured pruning (compr. rate)
50% 0.364 (+0.013) 0.193 0.127 0.258 0.264
80% 0.359 (+0.021) 0.18 0.125 0.255 0.256
95% 0.326 (+0.003) 0.064 0.112 0.226 0.233
Structured pruning (compr. rate)
30% 0.36 (+0.008) 0.178 0.122 0.252 0.252
50% 0.352 (+0.015) 0.154 0.122 0.243 0.251
70% 0.324 (-0.006) 0.103 0.113 0.221 0.232

Table 4.4: Accuracy comparison for models trained using naturalistic data aug-
mentation on day-time images and tested on day-time images (first column) and
night-time images (second column). Values in brackets show accuracy change due
to the added augmentation.

Model name ECP-day ECP-night
Baseline 0.456 (-0.012) 0.419 (+0.027)
Unstructured pruning (compr. rate)
50% 0.453 (-0.009) 0.417 (+0.023)
80% 0.444 (-0.006) 0.407 (+0.024)
95% 0.399 (-0.015) 0.363 (+0.032)
Structured pruning (compr. rate)
30% 0.447 (-0.01) 0.407 (+0.025)
50% 0.433 (-0.011) 0.393 (+0.03)
70% 0.418 (-0.013) 0.381 (+0.041)

methods and evaluations (ECP-day and ECP-night).

4.3.2 Naturalistic data augmentation

A standard way to improve model robustness is using specialized data aug-
mentation, it is however unclear what the effect of such augmentation will be on
compressed models, especially at the highest compression rates. In this section, the
models’ robustness was again evaluated, but this time a naturalistic data augmen-
tation’ [133] was used during training. The results are presented in Table 4.3 and
Table 4.4. Overall, one can see that, as expected, the out-of-distribution detection
accuracy has greatly increased for both datasets for all models. For example, looking
at the structurally pruned model at the 50% compression rate, one can see that the
accuracy on the distortions unseen during training has greatly increased (0.243 and
0.251 mAP for weather and digital distortions compared to 0.105 and 0.131 mAP,
respectively). Also, the accuracy on the clean dataset (first column) has significantly
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Figure 4.2: Effect of structured pruning with different compression rates (x axis)
across different distortion types on a mAP metric, for a model using naturalistic
data augmentation.

increased for all models, except the structurally pruned model at the highest com-
pression rate, where the accuracy has slightly decreased. Interestingly, the effect of
using naturalistic data augmentation is smaller at the highest compression rates.

On the ECP dataset, the loss in accuracy on day-time images was significant
(0.15 and 0.13 at the highest compression rates for unstructured and structured
pruning), however, this might be because a similar decrease can be noticed for
the uncompressed model (decrease in mAP from 0.468 to 0.456). This shows that
one has to be careful when setting the data augmentation parameters, probably
using less aggressive augmentation on the ECP dataset would improve the results
for day-time images. Nevertheless, the results for the night-time images greatly
improved at all compression rates. For example, for the model structurally pruned
at the 50% compression rate, after using naturalistic data augmentation, the mAP
on the night-time images increased from 0.363 to 0.393. This shows that, in spite
of limited capacity, the compressed models were still able to learn more texture-
invariant representations of the objects.

It is also worth looking at how accuracies for specific corruptions is affected as
the compression rate increases (Fig. 4.2). A few very interesting observations can be
made. First, the accuracy for each corruption type was differently impacted by the
pruning, and models’ sensitivity to noise distortion was the most heavily impacted.
While the initial accuracy was fair (0.194 mAP without any compression), the ac-
curacy started to deteriorate very quickly when more than 30% of the filters were
pruned. On the other hand, the accuracy for the blur distortions was almost flat,
being only slightly reduced at the highest compression rates. Digital and weather
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Table 4.5: Per class accuracy of trained models. Aug stands for the naturalistic data
augmentation and INV for the inverse class frequency re-weighting method. For
the unstructured pruning, using data balancing methods bring similar gain across
different compression rates, here only the accuracy at the highest compression rate
is reported.

Name Person Rider Car Truck Bus Train Motorcycle Bicycle mAP
Cityscapes
Baseline + aug 0.39 0.404 0.577 0.265 0.495 0.222 0.256 0.329 0.367
Baseline + aug + INV 0.39 0.407 0.576 0.283 0.512 0.229 0.263 0.332 0.374
Unstructured (95%) + aug 0.359 0.38 0.552 0.205 0.454 0.16 0.228 0.312 0.331
Unstructured (95%) + aug + INV 0.354 0.378 0.546 0.221 0.466 0.186 0.233 0.31 0.337
Structured (30%) + aug 0.385 0.409 0.576 0.249 0.497 0.186 0.246 0.333 0.36
Structured (30%) + aug + INV 0.384 0.406 0.572 0.257 0.512 0.222 0.26 0.331 0.368
Structured (50%) + aug 0.378 0.402 0.57 0.251 0.473 0.176 0.236 0.332 0.352
Structured (50%) + aug + INV 0.379 0.399 0.567 0.256 0.502 0.214 0.245 0.331 0.362
Structured (70%) + aug 0.362 0.394 0.559 0.21 0.432 0.1 0.221 0.314 0.324
Structured (70%) + aug + INV 0.36 0.389 0.555 0.233 0.478 0.184 0.233 0.314 0.343
BDD
Baseline + aug 0.318 0.256 0.408 0.392 0.417 0.0 0.218 0.221 0.279
Baseline + aug + INV 0.317 0.26 0.404 0.396 0.428 0.031 0.232 0.222 0.286
Structured (70%) + aug 0.266 0.193 0.388 0.322 0.339 0.0 0.150 0.163 0.228
Structured (70%) + aug + INV 0.276 0.222 0.389 0.35 0.369 0.0 0.179 0.185 0.246

distortions were similarly impacted by model compression, comparably to the per-
formance of the original Cityscapes dataset. Relating the results to other work [8],
it is worth noting that different distortions had different Fourier statistics. Some of
them (i.e., shot and impulse noise) were concentrated in the high-frequency compo-
nents of the image, while others (e.g., brightness, contrast) were concentrated in the
low-frequency components. This might mean that pruning the visual recognition
changes the models’ sensitivity to the image’s high- and low-frequency components.

4.3.3 Per class evaluation

In this section, instead of observing only the mean accuracy of the model, a
per-class accuracy is also examined to see how the compression impacted different
classes to understand the impact of model compression methods fully. This section
conducted the experiments on Cityscapes and BDD datasets, as they provide ground
truth for many classes. Different classes were disproportionately affected by the
compression techniques (Table 4.5). Some classes were heavily impacted by the
compression (e.g., truck, train, bus), while others were less affected (i.e., car). Many
factors influence the final impact. One of those is the class imbalance (Fig. 4.3, i.e.,
car class is dominant in both datasets), but some classes were also inherently more
complex than others (because they were similar to other classes, occurred with high
occlusion rates, or were hard to distinguish from the background).

As some classes are more impacted than others, we have conducted experi-
ments using methods for imbalanced datasets, namely:

• Repeat factor sampling (RFS),
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Figure 4.3: Cityscapes dataset class histogram (logarithmic scale).

• Inverse squared class frequency re-weighting with (INVcap) and without (INV )
setting the minimal weight to be 1.0 (as described in sec. 4.2),

• Effective number of samples (ENS) with β = 0.99.

For the re-weighting methods, we also experimented with the linear variants of the
above methods using scaling factor λ ∈ {0.5, 1, 2}, and results are reported for the
best performing scale.

Overall, very interesting results were obtained. The best-performing method
utilized inverse class frequency re-weighting. Interestingly, while the effect of data
imbalance was relatively small without any compression (mAP increased from 0.367
to 0.374 on Cityscapes, similarly on BDD, Table V), the effect was much more
striking at the highest compression rates for the structurally pruned models. At
the 70% compression rate level, the accuracy significantly increased from 0.324 to
0.343 on Cityscapes and 0.228 to 0.246 on the BDD dataset. As a sanity check,
models have also tested at the 75% and 80% compression rates, confirming those
results - the overall accuracy increased by around 0.02 mAP in both cases. For the
unstructured pruning, the above finding was not observed. It might occur because
structured pruning is a harder problem, and in the case of a model pruned with the
unstructured method, it might be easier to accommodate different classes.

Fig. 4.4 compares different data balancing methods on the Cityscapes dataset.
It can be noticed that for some classes (i.e., train, truck), the accuracy greatly
increased after data balancing was applied, while on others, the accuracy remained
almost the same. In general, all methods improved the compressed model (i.e, for
the INV method, train accuracy increased from 0.1 to 0.184, and bus accuracy
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Figure 4.4: Per-class accuracy for models structurally pruned at the 70% compres-
sion rate using different class-balancing strategies.
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Figure 4.5: Detection samples for the baseline model and the model structurally
pruned at 70% compression rate. Detections on the original Cityscapes dataset
(first column), ECP dataset (second column) and noise distortion (third column).

increased from 0.432 to 0.478). Recent work studied models performance of the
minority groups and show that the overparameterized models seem to learn patterns
that generalize well on the majority groups but obtain inferior performance on the
underrepresented classes [46]. On the other hand, this section studies per class
accuracy on the real-world dataset in low-capacity models and shows that different
data balancing methods could be very effective (for structurally pruned models).

Fig. 4.5 shows some detection examples. In general, the compressed model
detects well visible objects in the image, however, the occluded objects might not
be detected (the first column, missed motorcycle detection). Additionally, pruned
models are more sensitive to noise distortion and might include more false positive
detections.
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4.4 Conclusions

This chapter showed that, despite limited capacity, compressed models could
make effective use of naturalistic data augmentation to learn more texture-invariant
representations, which significantly increased model robustness to synthetic distor-
tions and day to night transition. It was found that model compression affects
models’ sensitivity to different distortion types differently. Some of them, i.e., those
concentrated in the high-frequency domain such as Gaussian noise, were heavily af-
fected by pruning techniques, while for others (i.e., blur distortions) the impact was
much smaller.

In particular, it was demonstrated that data balancing methods might be
especially useful in structurally pruned neural networks. Inverse class frequency re-
weighting increased the overall mAP by 0.007 (a 1.9% relative increase). On the
Cityscapes dataset, at the 70% compression rate, in the case of structured pruning,
the mAP increased by 0.019 (5.9% relative increase). Similar results were obtained
for the BDD dataset. Both sampling-based methods (repeat factor sampling) and
cost-sensitive methods (i.e., inverse squared class frequency re-weighting) turned out
to be effective.

Overall, this work explores the relationship between model robustness and
compression techniques and provides insights into improving deployed models’ per-
formance and computational cost. It was shown that testing compressed models in
out-of-distribution settings or measuring per class accuracy for safety-critical sys-
tems is important to fully understand the effects of model pruning.

In general, this chapter again shows the importance of carefully evaluating
visual models: employing out-of-distribution testing and also by measuring per class
accuracy. Furthermore, as in the previous chapter, data augmentation strategies
were shown to play a crucial role in enhancing models’ robustness.
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Chapter 5

Closer Look at the Uncertainty
Estimation in Semantic
Segmentation under
Distributional Shift

In this chapter seeking robust methods for visual recognition is continued, this
time focusing on semantic segmentation task. Model ensembling is another popular
method for improving model accuracy. Consequently, it was used to understand
how well does it work in the o.o.d. setting, with varied level of distributional shift.
Further experiments focused on transferring the knowledge from model ensemble to
single model in the domain adaptation setting.

The work description contained in this chapter is based on the article [62]
and was done in collaboration with students with the following division of work.
K. Woźniak was responsible for conducting style-transfer experiments, R. Słowiński
for models’ evaluation and B. Wróblewski has conducted domain adaptation exper-
iments. The author of the thesis was responsible for obtaining baseline models and
has designed all of the experiments. The supervisor of the thesis, A. Czyżewski,
coordinated the joint effort.

5.1 Motivation

One of the problems with modern neural networks is that they are poorly
calibrated and tend to be overconfident in their predictions [98]. Improved model
calibration has many potential use cases as follows:

• It can be used to merge predictions from different modalities effectively,

• It can also be used offline, e.g., to annotate a new dataset automatically, and
flag images that the model is not confident about.
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In this chapter, methods for improving model calibration are of interest when no
assumption is made about the data (i.e., it may contain conditions not prevailing in
the training dataset).

Different techniques exist for improving estimates of predictive uncertainty.
A classical approach is called temperature scaling, where the model confidences are
scaled using a post-hoc procedure on the held-out validation set [141]. A popular
approximate Bayesian approach is a dropout-based model, where the predictive un-
certainty is computed based on the multiple outputs of the model on a given image
(with dropout enabled) [142]. Another sampling-based approach uses agreement
between an ensemble of models as a measure of model uncertainty. Interestingly,
using ensembles has been shown to yield the best results on uncertainty estimation
under the distributional shift [99, 143]. The ensembles’ common setup is to use
neural networks trained using different random initialization weights to induce di-
versity between the models [24]. This is because it has been shown that networks
pre-trained on the same dataset stay in the same basin in the loss landscape and
thus reduce variation in the models [144].

When the models are deployed to the real world, the encountered data usu-
ally comes from different (but similar) distributions. As such, many methods for
domain adaptation have been proposed which use unlabeled data from the target
domain to improve the accuracy of the model. Popular approaches include matching
image statistics between domains [145], learning shape-based representation [146],
self-learning [147], and using data from simulation [148, 149]. Using simulated data,
in particular, is interesting since a simulation allows numerous and diverse train-
ing examples to be generated. Simultaneously, the difference in data distribution
between the source and target domains is challenging for real-world problems, and
sometimes using labeled data can negatively impact performance (when there is a
large distributional shift) [150]. As such, it is important to evaluate the models’
performance under varying levels of distributional shift.

The self-learning method was used in this work, which works in two stages.
First, given a trained model, confident predictions are gathered for the target domain
called pseudo-labels. Then, in the next stage, the pseudo-labels are used to fine-tune
the model, which allows for domain adaptation. The potential problem with self-
learning is that the gathered pseudo-labels might contain erroneous predictions. It
was proposed to use an ensemble approach to gather the pseudo-labels, as ensembles
are known to have good accuracy and uncertainty estimation, which are crucial for
the efficient pseudo-labeling stage. Self-learning was also used by author of this
thesis, to adapt the model to the target domain (in traffic surveillance setting)
[151].

This chapter focuses on studying uncertainty estimation for semantic segmen-
tation, an important task with significant application potential. The uncertainty
calibration is studied in two different settings, namely:

1. when a model trained on the simulation is tested on real-world data (large
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distributional shift),

2. when cross-dataset evaluation (mild distributional shift) is used.

This chapter is aimed at the reality-check for uncertainty estimation and do-
main adaptation methods. Studying the varying domain shift performance for the
methods above is vital empirical work for real-world applications.

Similar to this chapter, [152] shows that an ensemble of models efficiently
improves uncertainty estimation in medical image segmentation. Additionally, the
effect of ensembles under distributional shift and their utility for the downstream
domain adaptation task was shown. Ensemble predictions on unlabeled datasets
were also used as soft targets for direct training supervision for the classification
problem [153]. Here, an alternative approach with hard labels was used, where the
least confident predictions are discarded during training for semantic segmentation.

A similar approach to ours [146] uses style-transfer data augmentation to train
a base model, which is further adapted to the target domain using self-training. It
was shown that simpler data augmentations could also be very efficient and that
ensemble of models makes the fine-tuning stage more efficient, which, in turn, makes
our work complementary.

5.2 Experiments

5.2.1 Methodology

Ensemble of models. The model ensemble was utilized to improve model
calibration, which has been shown to provide the best results among other methods,
especially under distributional shift [99]. In the case of the ensemble approach, it is
common to train models using randomly initialized networks to induce diversity be-
tween models [24]. However, it was found that semantic segmentation models trained
on the GTA or Cityscapes dataset without pretraining performs rather poorly. As
a result, ImageNet pretraining was used. However, different backbones and/or aug-
mentation methods were used to achieve diversity between the models. It was shown
in the literature that using as few as 5 models can provide excellent results [99], and
because of the computational budget, 5 models were used in experiments. Namely,
given M independently trained models, a final semantic segmentation pE for the
image x can be computed as the average of all models predictions:

pE(x) =
1

M

M�

m=1

pm(x) (5.1)

where pm is the prediction of the m-th model in the ensemble.

To improve the models’ adaptation to the distributional shift, style-transfer
data augmentation, and color jitter transformations were utilized, similarly to pre-
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Figure 5.1: Different augmentation strategies applied to sample images from the
GTA dataset. First column - color transformations, second column - style transfer.

vious chapters. However, using different augmentation strategies could also be ben-
eficial in the ensemble, as the models trained with different augmentations might
learn different representations. Fig. 5.1 shows examples of augmented images.

For the experiments, popular semantic segmentation datasets were used. They
contain dense pixel-level semantic annotations for the same 20 classes (including
the “ignore” class – usually representing the background). Experiments included
domain adaptation from simulation to real data (GTA-to-Cityscapes) and cross-
dataset evaluation (Cityscapes-to-BDD).

Implementation details. For all experiments, the DeepLabv3+ [65] net-
work was used with different backbones (ResNet-101, Xception41, Xception65) pre-
trained on ImageNet. Specifically, all models were trained on 2 GPUs for 100,000
steps with a batch size of 16. A polynomial decay learning rate was used, with an
initial learning rate = 0.01 and exponent parameter set to 0.9.

The data augmentations are consistent with the official implementation1, specif-
ically random scaling (in the range 0.5 to 2.0), and left-right flipping was applied
during the training procedure. All images were rescaled to the size of 512 x 1024
pixels. Color jittering was applied using TensorflowAPI with the following trans-
formations: random brightness (adjustment factor in the range [0, 0.25)), random
contrast (contrast factor in the range [0.5, 1.5)), random saturation (saturation fac-
tor in the range [1.0, 3.0)), and random hue (hue offset in the range [0, 0.25)). The
chosen hyperparameters were experimentally validated to provide visually diverse
images.

All models were evaluated using the validation sets (as the test sets’ ground

1https://github.com/tensorflow/models/tree/master/research/deeplab
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Table 5.1: Performance of DeepLabv3 using ResNet-101 backbone under different
evaluation settings. CJ models were trained using color jittering and SIN models
used style-transfer augmentation.

Model name mIoU pix. acc ECE mIoU pix. acc ECE
GTA-to-GTA GTA-to-Cityscapes

Baseline 80,8 96,6 0.16 25,4 60,1 23.36
CJ 80,6 96,4 0.21 40,4 83,7 6.5
SIN 77,2 95,9 0.21 40 83,9 5.06

Cityscapes-to-Cityscapes Cityscapes-to-BDD
Baseline 74,1 95,5 1.49 42,8 83,9 9.55
CJ 74,4 95,4 1.36 49,1 89,4 5.07
SIN 71,4 95 1.18 49,3 89,8 4.56

truth data are not publicly available). During the fine-tuning stage, the models were
trained for 25,000 steps as the training loss converged around 20,000 steps for all
models. CJ stands for a model trained using color jittering transformations when
reporting the results, while SIN stands for a model trained using style-transfer, as
in [14].

5.2.2 Baseline models

First, the DeepLabV3+ model with the ResNet backbone was trained on
both the GTA and Cityscapes datasets and further evaluated (Table 5.1). Sev-
eral observations can be made. First, there was a very significant drop in accuracy
when the models were evaluated under domain shift. The gap was larger for sim-
to-real adaptation (GTA-to-Cityscapes) compared to the cross-dataset evaluation
(Cityscapes-to-BDD). Further, it can be observed that evaluated data augmenta-
tions only slightly affected the performance on the source domain, but they showed
impressive performance in the domain adaptation setting. For GTA-to-Cityscapes,
the mIoU increased from 25.4 to 40.4, and similarly, for Cityscapes-to-BDD, the
mIoU rose from 42.8 to 49.1. Nevertheless, the domain gap was still quite large; a
model trained on the Cityscapes dataset achieved a mIoU of 74.1, compared to 40.4
achieved by a model trained on the GTA dataset.

Noticeably, applying simple color transformations worked as well as using
a more complicated style transfer technique, consistent with recent findings [133].
Looking at the model calibration, one can notice that all of the models were almost
perfectly calibrated when evaluated on the source domain, however when evaluated
under domain shift, the ECE metric greatly increased, e.g., for a model trained on
the Cityscapes dataset, the metrics increased from 1.49 to 9.55 when evaluated on
the BDD dataset instead of Cityscapes. Consistent with section 3, it was shown that
using texture-based data augmentation improved model calibration under domain
shift [16], with the SIN model obtaining slightly better results than using color
transformations. In general, using any of the data above augmentations was crucial
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Table 5.2: Xception models performance under cross-dataset setting.

Name mIoU pix. acc ECE
GTA-to-Cityscapes

Xception41 (CJ) 41.8 82.7 7.3
Xception41 (SIN) 43.7 86.2 4.05
Xception65 (CJ) 41.3 82.0 7.47

Cityscapes-to-BDD
Xception41 (CJ) 52.6 90.3 4.5
Xception41 (SIN) 51.1 90.9 3.74
Xception65 (CJ) 52.4 90.4 5.09

Table 5.3: Ensemble of models performance. Also, mean performance of all models
is reported.

Model name mIoU pix. acc ECE mIoU pix. acc ECE
GTA-to-GTA GTA-to-Cityscapes

M=3 81.9 96.8 0.81 43.2 84.7 2.45
M=5 81.4 96.7 1.02 44.5 86.3 1.1
Models mean 79.0 96.3 0.21 41.4 83.7 6.08

Cityscapes-to-Cityscapes Cityscapes-to-BDD
M=3 77.2 96.0 0.36 55.7 91.3 1.99
M=5 77.0 96.0 0.29 56.2 91.7 1.09
Models mean 73.8 95.4 1.16 49.3 89.8 4.56

in the domain adaptation setting.

5.2.3 Model calibration

Xception65 Ensemble

Figure 5.2: Calibration plots for Xception65 model and model ensemble (M=5)
evaluated on the GTA-to-Cityscapes adaptation. Note great calibration for the
ensemble of models.
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An ensemble of models method was used to improve model calibration, which
utilized three different backbones (ResNet-101, Xception41, Xception65) and two
different augmentation methods (color jitter and style-transfer). We also experi-
mented with the PNAS architecture [154], which is known to achieve great accuracy,
however, the performance was not satisfactory, as no pre-trained model is currently
available for that model. Table 5.2 shows the performance in the cross-dataset set-
ting for the Xception models. Comparing this to Table 5.1, one can see that Xception
models performed slightly better than models using ResNet-101 as the backbone.

Table 5.3 shows ensemble performance. The constructed ensemble consists of
M = 3 models, for which color jittering transformations were used during training
using ResNet-101 and Xception backbones. Further, two additional models were
trained using style transfer augmentation (ResNet-101 and Xception41 backbones)
and results in another ensemble variant with M = 5 models. While the results with
no domain shift were comparable, obtained results were better under the domain
shift when using 5 models. The mIoU increased from 43.2 to 44.5, and 55.7 to
56.2 on the Cityscapes and BDD datasets, when compared to the ensemble using 3
models.

Similarly, the ECE was significantly reduced on both datasets. It is also very
important to notice that the ensemble performance was better than its strongest
member, i.e., for the Cityscapes-to-BDD transfer, the strongest single model ob-
tained a mIoU of 52.6 (Xception41 - CJ), while the ensemble accuracy was 56.2.
Similarly, the ECE significantly improved for the ensemble under domain shift: for
the GTA-to-Cityscapes transfer, the ensemble ECE was 1.09, while the best result
from a single model was 4.05 (Xception41 – SIN). Additionally, Fig. 5.2 shows
the calibration plot, comparing the model calibration of the highest capacity model
(Xception-65) with the calibration of the ensemble. Overall, it was confirmed that
the ensemble improved both accuracy and uncertainty calibration, especially under
domain shift.

One of the potential usages of well-calibrated uncertainty estimation is self-
training. For this purpose, the precision/recall points for different confidence thresh-
olds t were evaluated (Fig. 5.3). Namely, such a curve approximates how many pixels
can be automatically annotated with a given precision. Overall, it can be noticed
that much higher recall values were obtained for the ensemble. For example, with
a precision of 95% for the Xception65 model, the recall was around 56.5%, while it
increased to 71.2% for the ensemble. This shows that ensembles are a potent tech-
nique. A complimentary work to ours shows that ensembles can be used to label
a new dataset efficiently [155]. The ensemble was there used to annotate new data
with high accuracy coarsely, and then human annotators were employed to refine
the initial predictions.
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Figure 5.3: Precision / recall points evaluated at different confidence threshold start-
ing from 0.1 (bottom-right points) to 0.995 (top-left points) on GTA-to-Cityscapes
transfer. Note that Y-axis (precision) starts at 0.7 value to provide more detailed
view.

5.3 Domain adaptation

As was shown, the ensemble of models improved the model precision in the
domain adaptation setting and greatly improved uncertainty estimation, which can
be efficiently utilized in the self-training setting. First, a semantic segmentation
model was used to obtain pseudo-labels on the target datasets, using some threshold
t. The threshold of value 0.9 is commonly used [146], and the same value was used
in the experiments. For the ensemble variant, such a threshold allowed 70.1% of the
pixels to be annotated with 92.6% accuracy on GTA-to-Cityscapes transfer. Fig.
5.4 shows obtained pseudo-labels. In general, it can be noticed that the ensemble’s
labels were less noisy, and the object boundaries were more tightly aligned around
the object of interest.

After the pseudo-labels were obtained for the target datasets, they were used
for model fine-tuning. In this section results for different models are presented:

1. ResNet-101 using standard data augmentation.

2. ResNet-101 trained using additional color jittering data augmentation.

3. The previous model fine-tuned on target datasets using pseudo-labels obtained
by that model (CJ + fine in the tables)

4. ResNet-101 fine-tuned on target datasets using pseudo-labels obtained by the
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Xception65 Ensemble

Figure 5.4: Examples of pseudo-labels obtained on GTA-to-Cityscapes transfer (first
row), and on Cityscapes-to-BDD transfer (second row).

Table 5.4: Domain adaptation results for our models with per-class evaluation.
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Gta to Cityscapes
Baseline 29.9 17.4 62.8 13.2 14.7 15.5 26.8 10.7 79.0 8.4 47.4 53.5 10.3 48.2 25.7 3.04 0. 11.4 4.5 25.4
CJ 80.3 28.9 80.9 30.9 22.5 25.8 37.0 17.5 83.8 31.0 76.6 58.4 19.6 83.0 28.7 24.7 0. 27.4 11.0 40.4
CJ + fine 86.1 36.4 83.1 24.9 28.7 27.8 39.6 19.4 85.7 38.4 79.5 56.9 13.0 86.5 31.0 23.6 0. 22.6 0. 41.2
CJ + ens 88.6 43.2 85.0 36.3 33.8 30.7 37.4 21.9 86.8 44.9 83.9 57.5 14.5 87.3 37.2 32.2 0. 15.0 0. 44.0
Cityscapes to BDD
Baseline 88.9 52.4 65.2 18.5 18.7 35.2 35.7 31.9 78.2 36.1 75.8 47.3 22.3 78.5 23.4 32.7 0. 41.2 32.0 42.8
CJ 91.8 54.5 79.9 19.8 27.1 41.9 43.3 43.8 82.5 39.1 91.4 58.2 29.7 85.2 27.7 25.5 0. 49.1 42.6 49.1
CJ + fine 93.2 60.4 81.4 18.7 36.6 37.4 40.5 44.2 83.0 42.0 91.7 62.2 43.7 85.1 36.4 23.6 0. 47.6 48.7 51.4
CJ + ens 94.4 62.5 81.0 17.5 37.7 38.6 38.6 45.5 85.0 43.2 92.2 63.2 46.8 87.1 42.6 54.7 0. 44.9 53.4 54.2

model ensemble (CJ + ens in the tables)

Table 5.4 shows the final results, including per-class evaluation. Firstly, con-
sistent with other works, the self-training approach improved the model accuracy
(from 40.4 to 41.2 and from 49.1 to 51.4 on the Cityscapes and BDD datasets, re-
spectively). When the pseudo-labels were collected using an ensemble approach, the
model accuracy was further greatly increased (from 41.2 to 44.0 on the Cityscapes
dataset and from 51.4 to 54.2 on the BDD dataset). Fig. 5.5 shows qualitative re-
sults. In general, it can be noticed that obtained segmentation maps are less noisy,
especially in more challenging cases (second and third row).

The fine-tuning was also performed on the highest-capacity model (Xcep-
tion65). In that case, the mIoU has increased from 41.3 to 45.3, and from 52.4
to 53.6 on Cityscapes and BDD datasets, respectively. This shows that an ensemble
approach is effective, also when the fine-tuned model is a very strong member of the
ensemble.
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Image Fine-tuned Ens. fine-tuned Ground truth

Figure 5.5: Qualitative results of trained models on GTA-to-Cityscapes transfer
(first row) and Cityscapes-to-BDD transfer (consecutive rows). White color corre-
sponds to the ignore label.

In general, the results are very promising. The ensemble approach turned out
to be very effective in terms out model accuracy and uncertainty estimation, even for
the large distributional shift (GTA to Cityscapes). On the other hand, ensembling
did not improve for classes with the lowest precision (bicycle, motorcycle, rider). It
might occur because the baseline model is a weak detector of such classes, so as a
result, there are very few pseudo-labels collected for those classes. Improving accu-
racy for such classes remains an open challenge in self-training methods. Another
important problem with an ensemble is that multiple models have to be trained and
evaluated, which is very costly. However, the recently introduced BatchEnsemble
method significantly reduced the computational and memory costs [156].

5.3.1 Conclusions

This chapter studied a calibration of predictive model uncertainty under dif-
ferent, realistic real-world application settings. It was shown that the ensemble of
models significantly improved the uncertainty estimation and overall accuracy, espe-
cially under domain shift. Notably, the performance gains are consistent even when
the domain gap is large (simulation-to-real transfer case).

Our ensemble consists of models using different backbones and/or data aug-
mentations. Interestingly, it was also shown that simple color transformations can
lead to a similar performance improvement as much more sophisticated style-transfer
augmentation. Both types of data augmentation are crucial in the domain adapta-
tion setting, which confirms and extends recent findings [39].

Further, the ensemble of models was utilized for domain adaptation using the
self-training method. The improved uncertainty calibration and model accuracy al-
lowed the fine-tuning stage to improve significantly since the mIoU increased from
41.2 to 44.0 and from 51.4 to 54.2 on the Cityscapes and BDD datasets. Further-
more, the proposed approach is complementary to other domain adaptation methods
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based on self-training. Thus it could be easily combined with them, providing an
interesting future work subject.

The main difficulty with applying model ensembles is its very high computa-
tional cost and the next chapter aims at reducing its cost while maintaining accuracy.
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Chapter 6

Robust Object Detection using
Multi-input Multi-output
Framework

The previous two chapters explored two apparently contrary methods. In sec-
tion 4, the model robustness was evaluated when compressing the models, which
reduced computational cost. On the other hand, chapter 5 explored model ensem-
bling, which improved model accuracy, but at the same time, it largely increased
computational budget. The research question in this paragraph seeks to determine
whether those two approaches can be efficiently combined. Work described in this
chapter is based on the article [157].

As shown in the previous chapter, sampling based-methods were shown to
obtain very good results in terms of accuracy, out-of-domain robustness, and im-
proving model predictive uncertainty [152, 99]. Unfortunately, this comes with a
high computational cost. As a result, several methods were developed to reduce the
high computational cost, such as test-time dropout [142] or batch ensemble [156].
Another competitive approach is the m-heads model [158], which can be viewed as
an ensemble with parameter sharing in the first layers of the network. Those meth-
ods, however, do not always match ensembling accuracy, as the success of sampling-
based methods lies in the diversity of the predictions, which is a challenging problem
[159, 160].

The literature on obtaining many predictions from one model using a single
inference step has recently increased. These methods were inspired by the compres-
sion methods, which show that it is possible to remove even 90% of the weights
without affecting the final model accuracy [122, 161], as was also shown in chapter
4. Therefore, instead of compressing the model, it should be possible to fit more
than one subnetwork within the main network. For example, [28, 27] uses a sin-
gle model in the multitask setting, and the latter approach retrieves a subnetwork
(from the main model) to efficiently solve the target task. Another method uses the
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Figure 6.1: Architecture of the proposed MIMO Faster R-CNN. Both images are
sampled independently during training, and each subchannel in the network is re-
sponsible for predicting boxes in the corresponding image. During testing, both
inputs to the network are the same, and the final results are obtained by running
aggregation on both channel results.

multi-input multi-output (MIMO) approach, where a single model makes multiple
predictions simultaneously. MIMO was shown to increase the computational cost
only slightly while matching the accuracy of model ensembling and was showcased
on the image classification task. Yet, whether the MIMO approach would work in
a multi-task setting such as object detection, particularly when regressing objects’
localizations. The MIMO method is adapted for object detection tasks and fur-
ther evaluated in this work. To summarize, the contributions of this chapter are as
follows:

• The multi-input/multi-output model was adapted to the object detection task,
and the architectural changes and implementation details are presented.

• The in-depth analysis of the MIMO approach was performed.

• The robustness of the MIMO approach is presented by comparing its results
to different Deep Ensemble approaches, which it outperforms (unless a larger
number of models are used for the Deep Ensemble) or matches in the accuracy.

6.1 Proposed architecture

Similar to previous chapters, standard object detection architecture was used,
namely Faster R-CNN. Recall, from chapter 2.2.2, that the standard Faster R-CNN
model consists of two main modules: first, region proposals are generated using a
Region Proposal Network (RPN), and in the second stage, the region proposals are
classified and refined using a Region of Interest Pooling network. Finally, computa-
tion of the feature map is shared between both networks and obtained using some
standard CNN architecture.

In this chapter, the multi-input multi-output approach is applied to the Faster
R-CNN model, the architecture overview is presented in Fig. 6.1. To adapt the
Faster R-CNN model into the MIMO framework following changes were applied:
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• Multiply the number of input channels by M (ensemble size).

• Region Proposal Network now outputs M sets of region proposals (each per
input image).

• The ROI Pooling layer independently processes M set of proposals and the
outputs need to be aggregated at test-time. This can be done using the stan-
dard non-maximum suppression (NMS) method or more advanced methods,
such as Weighted Boxes Fusion [162].

Note that the feature map (output from the convolutional backbone) is of the
same size as before, however, now it contains information about M images, without
forcing any explicit structure on how to share the information from different images.
Using that shared feature map RPN returnsM independent sets of region proposals,
which requires changing the RPN loss function to:

L({ ˆpim}, { ˆtim}) = 1

M

M�

m=1

(
1

Ncls

�

i

Lcls( ˆpim, pim)+
λ

Nbox

�

i

pi smoothL1( ˆtim − tim))

(6.1)

where i is the anchor index, andm is the index of input/output pair, ˆtim are predicted
parametrized bounding boxes, ˆpim are predicted probabilities of the anchor being an
object, and tim, pim are the ground truth counterparts. The equation is normalized
by Ncls - mini-batch size, and Nbox - number of anchors. Note that when M = 1,
this refers to the standard RPN loss in the Faster R-CNN (eq. 2.17). Similarly, the
loss for the ROI layer, now becomes a sum over M input/output pairs.

During training, each input is being sampled independently. However, during
testing, the input is repeated M times so that M possibly different outputs are
obtained for the same input image. It was empirically shown in the task of
image classification that each of the M outputs provides good accuracy on its own
and that the results are diverse enough, which allows them to be efficiently combined.
In practice, M = 2 is often used. For more complex tasks, the network capacity
does not allow processing a larger number of images in parallel. This agrees with
the literature on model compression, which shows that usually modest compression
rates (up to 50%) are achievable when using structured pruning (removing whole
filters) [122, 125].

After M sets of results are obtained, they need to be efficiently combined.
A standard approach in object detection to reduce redundant boxes is the NMS al-
gorithm, which clusters together detections with high overlap, and keeps only detec-
tions with high confidence. However, such a procedure might be non-optimal when
combining predictions from different models. Recently, the Weighted Boxes Fusion
(WBF) [162] method was proposed. It efficiently combines different predictions by
updating the final bounding box coordinates by using the confidence-weighted aver-
age of coordinates forming a cluster. Additionally, the final confidence score is also
an average of all boxes forming a cluster. In this work, both aggregation methods
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Figure 6.2: Mean average precision metric (mAP) on Cityscapes dataset as a func-
tion of probability p that the same images are sampled, when the model is trained
with M = 2 input/output pairs.

(NMS and WBF) are evaluated.

6.2 Experiments

Implementation details. In the experiments, the MMDetection framework
[120] was used. For the Cityscapes experiments, the models were trained for 64
epochs, using SGD optimizer, with an initial learning rate of 0.01 and a learning
rate step reduction by a factor of 10 at epoch 48, similar as in section 4. All
models were trained on a single GPU (Tesla V100) using a batch size of 6. During
the training standard vision-based augmentations are applied: horizontal flipping
and random resize. All of the models were pre-trained on ImageNet [7], as it is a
standard in the community. For BDD and COCO datasets, the training lasted for
12 epochs, with learning rate reductions at epochs 8 and 11. Results are reported
on the held-out validation sets.

The color jittering data augmentation was applied using the Albumentations
library [163] with default parameters and the following transformations: random
changes in brightness, contrast, saturation, and hue. In addition, style-transfer data
augmentation was also used for some models to improve the diversity of the ensemble
approach. For the style-transfer data augmentation, the same strategy was applied
as in previous chapters.

Standard MIMO architecture struggles with fitting more subnetworks, espe-
cially on more challenging datasets. For example, in [26] the authors found that
when training a ResNet-50 [164] classifier on the ImageNet dataset with M = 2,
the model performed worse than a baseline. It was hypothesized that this happens

94

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 6.1: Accuracy and computational cost of different methods.

Model mAP num. params. inf. time
Baseline 0.386 41.384M 0.088
MIMO (M=2) 0.409 41.397M 0.102
Deep Ensemble (M=2) 0.406 82.768M 0.176

when the main network does not have sufficient capacity to correctly classify two
independent images at once. To improve that, the authors proposed relaxing inde-
pendence between the inputs and added another hyperparameter p, which defines
the probability that the networks use the same data during training. Namely, when
p = 0, both images are sampled independently, and when p = 1, the training images
are the same. As a result, in the first experiments on the Cityscapes dataset, a
model with M = 2 input/output pairs was trained, and the p parameter was varied
to see how it affected the final model performance (Fig. 6.2).

At p = 0 the inputs were fully independent, however, the final performance
is limited by the network capacity. As the p grew, the subnetworks used the same
image during training (with p probability), which allowed some of the features to
be shared, which improved the performance. The performance peaked at p = 0.4

and then is slightly decreased. It is similar to that described in [26] when using
ResNet-50 for the ImageNet classification task. As a result, further experiments
were performed using M = 2, and p = 0.4.

Further, the results are compared with the standard Faster R-CNN model and
Deep Ensemble approach (also consisting of M = 2 models) (Table 6.1). First, the
MIMO Faster R-CNN outperformed a single model, improving the mAP score from
0.386 to 0.409. It also slightly outperformed the Deep Ensemble model. Impor-
tantly, the MIMO model brought only a slight increase in the parameters compared
to the standard Faster R-CNN (from 41.38M to 41.4M). Inference time (as measured
on a Tesla V-100 GPU) has increased by 15.9% (from 88ms to 102 ms per image).
Note that the increase in inference time was very small when applying the MIMO
framework to the image classification task (around 1%) [26]. For object detection, a
larger increase in the processing time is attributed to M -times larger number of pro-
posal regions being processed and the additional aggregation method. However, the
processing time was still significantly shorter when compared to the Deep Ensemble
method.

It is important to note that starting the training with ImageNet weights was
crucial for the Cityscapes dataset (for all models). Additionally, when training the
MIMO Faster R-CNN, one must also copy the ImageNet to the new filters (in the
first channel). For the Deep Ensemble approach, the WBF aggregation method
provided better results, yielding an improvement in the mAP score of 0.01, over
the NMS approach. Overall, the WBF method performed the same or better than
the NMS method, and all of the results were achieved using WBF aggregation.
Experiments were also conducted on the m-heads architecture [158], in which the
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Table 6.2: Models’ accuracy and calibration using different models and augmentation
methods. Last two columns present results for corrupted Cityscapes. CJ stands for
the color jittering augmentation and DE for the Deep Ensemble.

Model mAP ECE c-mAP c-ECE
Baseline 0.386 0.066 0.106 0.113
CJ 0.388 0.064 0.124 0.115
MIMO (M = 2) 0.409 0.045 0.172 0.075
MIMO (M = 2) + CJ 0.408 0.04 0.172 0.071
DE (M = 2, baseline) 0.406 0.068 0.116 0.124
DE (M = 2, CJ) 0.408 0.062 0.134 0.112
DE (MIMO, M=2) 0.426 0.05 0.184 0.087
DE (MIMO+CJ, M=2) 0.425 0.046 0.186 0.068
DE (baseline, M=5) 0.417 0.078 0.122 0.129
DE (CJ + style, M=5) 0.421 0.075 0.139 0.114

backbone was shared and the RPN and ROI nets were doubled. However, such an
approach resulted in poor performance (mAP score of 0.378) and a larger increase in
the number of parameters (55.9M). Such poor performance might be a result of the
non-optimal structure of the proposed m-heads approach, and as such other variants
could be explored.

6.2.1 Robustness and uncertainty

In this section, further experiments are described which focus on robustness
and uncertainty estimation. First, it can be noted that the accuracy in the o.o.d.
setting is severely impacted (Table 6.2), as was previously shown in the literature.
For the baseline model, the accuracy on the corrupted version of the dataset was
equal to 0.106. However, the accuracy was significantly improved when using the
MIMO approach (0.172), outperforming Deep Ensemble by a large margin (0.116).

Further, the impact of adding color jittering data augmentation was measured.
As expected, it improved the accuracy of the baseline model in the o.o.d. setting.
On the other hand, the MIMO approach did not result in significant changes, except
for slightly improving model calibration. Furthermore, deep Ensemble also benefited
from the added data augmentation, but it lacks the robustness of the MIMO ap-
proach (e.g., 0.134 mAP score in the o.o.d. testing, compared to the 0.172 of the
MIMO approach). Finally, when using color jittering, no significant changes were
observed when measuring the impact of the p-value on the final accuracy (as in Fig.
6.2), and as a result, p = 0.4 was further used.

It can also be noticed that the MIMO approach provided the best classification
calibration results above of the tested models. The ECE score on the clean dataset
equaled 0.045 (compared to 0.066 of the baseline model) and was further reduced to
0.042 when color jitter data augmentation was used. The ECE in the o.o.d. setting
was again the lowest out of the evaluated methods, significantly outperforming the
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Figure 6.3: Detection results for the baseline and MIMO Faster R-CNN on differ-
ent distortion types (motion blur, snow effect, Gaussian noise in the consecutive
columns). Note, smaller confidence values for the MIMO model (i.e., 1st column).
MIMO model performs on par or better than the standard model, however the
corruptions vulnerability remains challenging (3rd column). Best viewed in digital
format.

Deep Ensemble approach.

A potential critique of the evaluated Deep Ensemble approach is that a very
small ensemble size was used and that the models’ diversity is limited. As such, the
ensemble method was also tested when 5 models were used, which was shown in the
previous chapter to provide good results already. Additionally, one of the ensembles
consisted of models of which some used color jittering data augmentation, and some
used style-transfer data augmentation, to improve ensemble diversity. That setting
allowed the Deep Ensemble approach to obtain very competitive results (Table 6.2,
bottom part). The mAP increased to 0.421 and 0.139 on the clean and corrupted
versions of the Cityscapes datasets, respectively (note that the accuracy in the o.o.d.
is still worse than when using the MIMO approach). It was also checked whether
using a MIMO Faster R-CNN models ensemble could further improve the results.
When combining the outputs from two MIMO Faster R-CNN models, an impressive
mAP of 0.426 was obtained on the clean dataset, and 0.184 on the corrupted version,
which is an improvement over the Deep Ensemble approach consisting of 5 models.
The usage of color jittering has improved the model calibration. Overall, these
results further confirm the robustness of the MIMO Faster R-CNN model. Sample
detection is presented in Fig. 6.3.

It is also interesting to look at the accuracy of the MIMO Faster R-CNN
when using only one output. In such a scenario, model accuracy equals 0.405, which
is a 0.004 drop compared to the full MIMO approach, but it is still a significant
improvement over the baseline (0.386). This shows that the MIMO framework acts
as a strong regularizer during training, which leads to strong feature representations.

The proposed method was also evaluated on the BDD dataset (Table 6.3).
The model was trained using daytime images only and evaluated on daytime and
nighttime images in this setting. Overall, compared to the standard training, the
MIMO approach improved the accuracy on the clean daytime images from 0.293 to
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Table 6.3: Accuracy on BDD Dataset when training on daytime images. M = 2 was
used.

Model BDD-day BDD-night
Baseline 0.293 0.233
CJ 0.293 0.237
MIMO (p = 0.7) 0.301 0.244
MIMO + CJ (p = 0.7) 0.3 0.241
DE (baseline) 0.3 0.24
DE (CJ) 0.302 0.246

Figure 6.4: Accuracy of the standard and MIMO-based Faster R-CNN on the COCO
dataset when using only a fraction of the training dataset.

0.301 and nighttime images (o.o.d. test) from 0.233 to 0.244. The probability p of
sampling the same images during training also had to be further increased to observe
improvements when using the MIMO model. This might be because a BDD is more
challenging and includes a larger and more diverse set of images than the Cityscapes
dataset. In that setting, the results of the MIMO approach are very similar to those
obtained by Deep Ensemble. Looking at the single model accuracy within the MIMO
method, it was found that it achieved almost the same accuracy (0.3 mAP value)
as the full model. However, since the BDD dataset is very challenging, and the
probability p of sampling the same images had to be increased, the outputs from
single channels are no longer diverse, limiting the accuracy of the MIMO framework
for this dataset. Using a larger backbone (ResNet-101), provided a similar increase
over the standard model.

When evaluating the model on the COCO dataset no gains in accuracy were
observed. Given the hypothesis that significant gains of the MIMO approach come
from the regularization property, it should work better when using only the fraction
of the training dataset. In fact, such an observation was made, and it was shown
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that the MIMO approach was, in particular, useful in the low data regime (Fig. 6.4).
Each model was trained for the same number of steps. MIMO framework was, in
particular, effective when less than 50% of the training dataset was used, e.g., when
using 30% of the data, using the MIMO approach improved the accuracy from 0.291
to 0.315 of the mAP score.

6.2.2 Discussion

The experiments showed that the MIMO approach could significantly improve
accuracy compared to the standard training when using just M = 2 input/output
pairs. Further, using just one output from the MIMO approach significantly gains
the model accuracy. The MIMO approach was especially effective when using a
fraction of the original dataset on the COCO dataset. Given those observations,
we conjecture that training the model in multi-input multi-output works as a very
strong regularizer, which allows the model to build a robust feature representation,
and therefore even when using a small M , the model can work very well. A similar
observation was made in the literature for structured pruning, which showed that
model compression can also work as a regularizer [125]. This finding adds some more
context to the original MIMO paper [26], which attributed its excellent performance
mainly to ensembling diverse predictions.

It was also interesting to note that using specific data augmentation (for ex-
ample, style transfer, color jittering) was not essential for the MIMO model to
significantly improve the accuracy in the out-of-distribution setting. Again, this
might indicate that using such texture-invariant data augmentation is unnecessary
for the model to increase its robustness when its build representation is strongly
regularized. This can be viewed as a complementary finding to a recent work [165],
which shows that the increased shape bias (using the data above augmentations)
does not necessarily improve model robustness.

A potential drawback of the MIMO approach is that when the task or dataset
is especially challenging, it requires increasing the probability p of sampling the
same images during training. This reduces the diversity between model outputs and
diminishes the potential gains of having multiple outputs. The presented results
could be further improved. For example, it was shown that using batch repetition
during training for the MIMO framework has improved the results [26, 166], however,
this came at the cost of significantly increased training time. Also, no specific
optimization of the hyperparameters for MIMO was performed.

6.3 Conclusions

This chapter showed that using a multi-input multi-output approach can be
generalized to object detection on real-world datasets. The MIMO Faster R-CNN
model presented very competitive results in terms of model accuracy, uncertainty
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calibration, and-out-of distribution robustness when using onlyM = 2 input/output
pairs. The model adds only 0.5% of model parameters and increases the inference
time by 15.9%. Similar accuracy can also be obtained when using the Deep Ensemble
approach, but it requires a more significant number of models (and a significantly
higher computational cost). The MIMO approach works as a regularizer during
training, which significantly increases the accuracy of a single subnetwork compared
to the standard training. A current limitation of the MIMO framework is that
when the target dataset or task is challenging, the probability p of sampling the
same image during training must be increased, limiting the diversity of the MIMO
outputs. Some optimizations to the MIMO framework would be an interesting future
work on scaling that approach to such a setting.
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Chapter 7

Conclusions and Outlook

This thesis has explored different approaches to building efficient and robust
visual recognition systems through a series of publications. This section summarizes
the main results and discusses directions for future work.

7.1 Model Compression

In section 4, model compression methods are explored for the task of object
detection. It has been shown in the literature that even 90% of neurons could
be removed without hurting model accuracy [122]. Although we are interested in
finding efficient algorithms for visual recognition in this thesis, studying methods
that reduce computational cost is of great interest. In this thesis, unstructured
(removing neurons) and structured (removing whole filters) pruning were studied.
While unstructured pruning allows for high compression rates, it requires specialized
hardware to decrease the computational cost. In the case of the Cityscapes dataset,
for structured pruning, it was possible to remove around 40% of the filters without
hurting model accuracy. This result shows that structured pruning is an attractive
solution when one aims to reduce the computational cost. However, as was shown
in section 3, measuring model accuracy using only the i.i.d. test is not enough and
as a result, other measures of model accuracy were also utilized.

For that purpose, an o.o.d. benchmark, namely Cityscapes-C [79], was used. It
was found that compression methods disproportionately increase the model vulner-
ability to different corruption types. Some of the corruptions are heavily impacted
by the compression methods (i.e., additive noise), while others (blur effect) are only
slightly affected. It was shown that the sensitivity of compressed models to different
distortion types is nuanced and should be taken into account when deploying the
model to the real world.

Naturalistic data augmentation (color jittering, noise, and blur distortions)
was used to improve compressed models’ robustness. The experiments section
showed that, despite limited capacity, thanks to the added data augmentation, the

101

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


compressed models could significantly improve their robustness (even at the highest
compression rates). It is worth noting that using data augmentation is a common
theme across all publications in this thesis. The author believes that substantial
data augmentation is a crucial component of modern visual systems, which is often
omitted in publications. While in section 3, a style-transfer data augmentation was
used, in section 4, even much simpler data augmentations (color jittering, noise, and
blur distortions) were shown to be very effective for improving models’ accuracy. In
section 5, it was also shown that such data augmentation is a strong baseline in the
domain adaptation setting.

In further experiments, we took a closer look at the per-class accuracy. This
is another important characteristic of the models that is often omitted. Indeed, it
was found that compression techniques have a disproportionate impact on different
classes, even at moderate compression rates. It was hypothesized that one of the
reasons for this is data imbalance, a compressed model (with smaller capacity) will
firstly remove neurons responsible for the recognition of less-common data. The
experimental section found that using data balancing methods helped improve the
accuracy of some classes, and the effect was more striking at higher compression
rates for structured pruning, which confirmed the first thesis of this work.

As can be noticed, careful evaluation and results analysis is an important part
of this section, which is a common theme across all this thesis. There is no sin-
gle benchmark to measure model robustness, but different approaches were studied,
including cross-dataset evaluations, day-to-night-time transitions, and synthetic dis-
tortions. Additionally, in section 4, per-class accuracy was measured. The conducted
experiments showed that it is crucial to test algorithms using diverse evaluations.
For example, in section 3, it was demonstrated that CutOut data augmentation
achieves only mediocre performance on some o.o.d. tests while having good accu-
racy on i.i.d. tests. Similarly, in section 4, compression methods were shown to hurt
accuracy for noise-related distortions significantly, and some classes were shown to
be more vulnerable to model compression.

One of the main limitations of the presented work is that a flat compression
rate was used across layers; the same ratio compressed each layer. As has been
shown in the literature, later layers in the networks have a greater compression ca-
pability [126]. As such, the presented compression results could be further improved.
The presented work aimed to show the effect of compression methods at different
compression rates (rather than achieving the best possible accuracy). As there is so
single heuristic that obtains the best results for a given desired compression rate,
the author decided to use a flat compression rate.

Also, some of the experiments were conducted at quite aggressive compres-
sion rates (for example, a 70% compression rate for structured pruning). Of course,
it is improbable to use such a high compression factor, as it reduces model accu-
racy. However, the author believes that adding such experiments is worthwhile as
it increases our understanding of how neural networks work.
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7.2 Model ensembling

While the previous section focused on the robustness of models with low com-
putational cost, model ensembles are investigated in section 5, known because of
their remarkably high accuracy, which comes at a significantly increased computa-
tional cost. The first goal of the research was to find how well model ensembling
copes with distributional shift for semantic segmentation, which was missing in the
literature. The second goal was transferring the knowledge from the model ensemble
to a single model.

Semantic segmentation models are studied in the domain adaptation setting
under varying levels of the distributional shift to answer the first research question.
One scenario assumed cross-dataset evaluation (Cityscapes to BDD dataset), and
the other assumed a particularly challenging simulation to real transfer. When cre-
ating a model ensemble, inducing diversity between the models is a crucial [144]. In
our case, this was achieved by using models which used different backbones and/or
augmentation methods. The experimental section showed that a constructed ensem-
ble improved over a single model in all scenarios and in the challenging simulation
scenario to real adaptation.

Further, it was observed that uncertainty calibration improved in the distri-
butional shift scenario, which was an important finding. Firstly, well-calibrated
uncertainty estimation is important for models operating in a safety-critical envi-
ronment. Secondly, it can be efficiently utilized in the self-learning approach; an
idea that was followed up in further experiments.

A self-learning approach was utilized to efficiently transfer knowledge from the
model ensemble and improve single model accuracy in the target domain. It uses a
model trained on the source domain to generate labels on the target domain. Then,
those labels (usually filtered using model confidence) are used to fine-tune a baseline
model. Using a model ensemble, in this case, allowed the author to correctly label
a greater number of pixels in the target domain. The predictions, in general, were
better calibrated, which is essential for the self-learning approach. This produced a
significant gain in the final model accuracy, compared to the standard fine-tuning
(without ensemble), and confirmed the second thesis of this work. Additionally, it
was found (as in another section of the thesis) that using substantial data augmen-
tation is crucial for improving final accuracy.

One of the limitations of the work is a lack of a detailed ablation study. While it
was shown that using diverse ensembles consisting of models with different backbones
and/or augmentation methods resulted in high accuracy, the effect of each of those
interventions on final model accuracy is unknown. One of the main challenges when
working with the model ensemble is the computational cost, as each experiment
requires training M models (where M is the ensemble size). As the computational
budget was a significant constraint in this project, the author followed a strategy
that was expected to be close to optimal.
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While model ensemble significantly improved final accuracy in the domain
adaptation setting, it did not improve the accuracy of the classes for which the
source model was already inferior. That is because there were fewer high-confidence
predictions for those classes. Improving the accuracy of less common classes is a
known problem with the self-learning approach (and in machine learning in general)
and is important for future work.

7.3 Multi-input multi-output framework

Section 6 integrates the findings from two previous sections. In section 4, it
was shown that modern CNN-based visual recognition models are over-parametrized,
and careful strategies exist which allow them to be efficiently compressed (to some
extent). On the other hand, in section 5, model ensembling is a powerful strategy
for visual recognition, even under the large distributional shift between training and
testing domains. Those findings motivated the research question of whether those
two methods can be efficiently combined.

The starting point for the experiments is the recently introduced Multi-input
Multi-output architecture, which was shown to work very well for the image classifi-
cation task. It works simply by running multiple predictions (for many images) at the
same time. This is possible since current CNN-based models are over-parametrized.
During inference, all images are the same, and as a result, several potentially differ-
ent predictions are obtained for a single image. In the thesis, a design for MIMO
architecture in the object detection task was proposed and implemented. A proposed
model was evaluated on three datasets, and it showed a significant improvement over
the single model with a slight increase in the computational cost, which confirmed
the third thesis of this work. Overall, the results (including out-of-distribution ac-
curacy and uncertainty calibration) were similar to model ensembling, with a much
smaller computational cost.

The detailed analysis showed that one of the reasons for improved performance
is that training the model in the MIMO framework works as strong regularization.
Thus, when using just one output, this observation is similar to compression methods
that have been shown to increase the model accuracy at low compression rates.

An essential limitation of the work is that only two (M = 2) input-output pairs
were used in the experimental section, similar to the literature [26]. This is because,
when using a larger number of input-output pairs the model does not have sufficient
capacity to provide accurate prediction for all images at once. Additionally, each
dataset has its characteristics. For example, the independence between input images
during training was relaxed for a challenging BDD dataset. With the probability
p = 0.7, both images were the same. That reduced the output diversity and potential
benefits coming from having multiple predictions.

As a result, it was concluded that a MIMO approach is undoubtedly a very
efficient way to train CNN-based visual recognition models. It works as a strong
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regularizer during training and provides more than one output for the same image.
However, the independence between input images must be relaxed for more challeng-
ing datasets and tasks, limiting the method’s efficiency. This is an important future
work on how to effectively train MIMO models so that they provide diverse predic-
tions, including for more challenging datasets. Also, allowing using an M greater
than two would be beneficial.

7.4 Closing remarks

In this thesis, the author set a goal of finding methods for training efficient
and robust models for visual recognition that could work well when deployed to the
real world and potentially faced with several situations that never occurred in the
training dataset. One of the methods that turned out to be effective was model en-
sembling, which aggregates results from many potentially diverse predictions. This
improved the model accuracy and uncertainty calibration, which is essential for mod-
els operating in the real world. But a challenge remained: how to make ensembling
work with much smaller computational cost. Compression methods inspired the
solution, and as a result, it was shown that it is possible to obtain more than one
prediction for the same image by using a specific training procedure. Nevertheless,
it is expected that more work is possible in the area of efficient ensembling.

An essential aspect of that work was testing models out-of-distribution, which
showed that the evaluated models still lack the required robustness. Out-of-distribution
accuracy will play a crucial role in tracking progress that is made toward robust,
visual-based recognition models. Certainly, new methods will be developed here that
will bring machine vision closer to that of human perception. For the autonomous
driving industry, extra sensors (LiDAR, depth cameras) will be used to support
visual-based recognition models.

In spite of the recent progress, the generalization of trained models to the real
world is often unsatisfying. Certainly, further methods will be developed in this
area and the problem is being tackled from different perspectives. It is an exciting
research area and the future will show which methods will turn out to be the most
effective.
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