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Abstract—The paper addresses a problem of quadrotor un-
manned aerial vehicle (so-called X4-flyer or quadrocopter) utility
model identification for control design purposes. To that goal
the quadrotor model is assumed to be composed of two ab-
stracted subsystems, namely a rigid body (plant) and four motors
equipped with blades (actuators). The model of the former is
acquired based on a well-established dynamic equations of motion
while the latter is to be identified as a static relationship from
laboratory experiments data. Moreover, the actuator model is
to account for the on-flight battery power source voltage drop
effects. The actuator parameter identification algorithm is kept in
a set-membership framework. In addition a mechanism to reduce
the conservativeness of the solution is proposed and applied.
Numerical illustration of the results is provided.

Keywords—quadrotor, robust, modelling, identification, X4-flyer.

I. INTRODUCTION

In recent years man-operated Unmanned Aerial Vehicles
(UAVs) have become a tool of modern industry as well as
commerce and constitute an ever growing branch of ‘scale’
modelling and the so called do-it-yourself (DIY) projects with
a lot of the ‘modelling community’ support. One of the most
popular construction in this field is a quadrotor UAV also
addressed as a quadrocopter and/or X4-flyer [1].

The goal of this work is to deliver utility model of the
quadrotor for robust control design purposes. In principal, the
quadrotor flight controller synthesis is a non-trivial task due to
the nonlinear plant dynamics and its structural instability [2].
These features make mathematical modelling an important step
frequently utilised to propose a control system design solution.
A variety of control schemes have been proposed in literature
and they range from applications of classical regulators such
as proportional-integral-derivative output compensators (PIDs)
e.g. [3] up to optimal and model-based predictive control
(MPC) based approach driven control solutions e.g. [4].

The problem of a quadrotor model identification for the
control design purposes has been addressed in literature on
many occasions. In general, in order to classify the available
model structures let us assume that the model is composed
of two subsystems, namely a rigid body (plant) and a motor
(actuator) subsystems. Then it follows that the general ap-
proach to rigid body model construction follows the Euler-
Lagrange modelling method [5] gives equations of motion in
three-dimensional space (6 degrees in freedom) e.g. [6]–[8].
The main differentiation is in the manner the actuator system
is addressed. Three general approaches can be distinguished.
First ones deals with the ‘ideal’ models which neglect the
effects of the actuators on the overall quadrotor dynamics e.g.

[9], [10]. Second, is the static relation characterisation of the
motor-blades pair e.g. [11]. Third, structurally most complex,
is when the dynamics relation is pursued e.g. [12], [13].
The further categorisation can be made based on the fact of
including/excluding the so-called gyro effects in the actuators
due to the motor rotor axis movements and the consequent
changes in rake angle of the propeller e.g. [14]. In this work
a model of a second type is proposed, namely the Euler-
Lagrange dynamic equations of motion with a static actuator
system model formulated using a set-membership framework
to account for the vast uncertainty impact. The key model
feature is that it enables one to encompass the effects of the
on-flight power source voltage drop due to the battery drain.

The proposed model identification method is as follows.
Firstly, the general model identification problem is posed
using a non-parametric framework. Secondly, by structuring
the parameter space the general problem is decomposed into
three independent tasks. Thirdly, assumptions on the quadrotor
operational conditions are formulated and used to reintroduce
the tasks in a more tractable parametric identification frame-
work. Finally, an efficient method for solving these tasks is
proposed. The method originates from the set-membership
estimation theory [15]. A priori knowledge of the problem is
exploited by using bounded models of uncertainty to construct
a so-called Feasible System Set (FSS) in the model joint
parameter and measurement space. Then, using the assumed
available model structure and the measurements of model
inputs and outputs contained in the measurement space the
set is mapped (using optimisation tools) into the solution space
from which the robust characterisation of the model parameters
follow. The resulting set is a hypercube in the parameter space
with edges parallel to the basis vectors. Henceforth, under
unfavourable conditions this results in introducing a certain
amount of conservatism into the obtained result which leads
to enlargement of the parameter bounds [15]. The advantage
of the proposed approach is that at each step a ‘classical’
optimisation tasks with a guarantee of finding a global solution
in finite number of steps is obtained. In addition a conservatism
reduction mechanism is proposed which in general is based on
manipulating the structure of the parameter space.

The paper is organised in the following manner. In Sec-
tion II the problem formulation is given. Section III addressed
the main result. Section IV illustrates the obtained numerical
results. Section V concludes the work.

II. PROBLEM FORMULATION

Let us start that by taking Lagrange equation obtained
from a difference between the kinetic and potential energies



of the quadrotor mechanical structure (see Fig. 1), which in
fact is reduced to main body (P), arms (Rs) and motors (Ss),
the solution yields the Newton–Euler equations of motion.
The P is assumed to be a rigid body of evenly distributed
mass composed of i.e: chassis, battery (B), dedicated (ARM-
based) flight controller. The connected Rs are assumed to be
weightless beams of length l. A single S is mounted at the end
of each R and powered by a dedicated converter (Z). Moreover,
each S is equipped with a propeller. The rotary motion of
each propeller is a source of thrust and moment of rotation:
(Fc i, Mrot i)

def
= (Fc i (·) , Mrot i (·)), ∀i ∈ 1, 4, respectively.

Fig. 1. Quadrotor

Suppose (Fc i,Mrot i) (u, e), ∀i, where u is the pulse
point modulated (PPM) control signal (hence physically is
represented by a quantity which has the interpretation of
length of time period and is scaled in µs e.g. [7]) and e is
the B voltage level. Then based on the Systems Theory the
quadrotor’s control oriented utility model structure abstraction
is proposed — see Fig. 2. This system structure results form
the low measurement information availability under the notion
of reduction of quadrotor on-board mass.

Z S quadrotor body
×4
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Fig. 2. Quadrotor block diagram

Let us now formulate the assumptions originating from the
quadrotor operating conditions and structural characteristics.

Assumption 1. Coordinates x, y and z are to be neglected in
utility model structure.

The justification for Assumption 1 is that the quadrotor
is to be man-operated vehicle so that the operator is to be
responsible for maintaining desired position in space (x, y and
z coordinates adjustment).

Assumption 2. The internal dynamics of actuators, namely:
the power system, motor and propeller is considered negligible.

The Assumption 2 is verified true from a simple fact
that the dynamics of the actuator system is much faster in
comparison to that of the plant.

Assumption 3. The uncertainty due to the difference of phys-
ical structure in between the four acting actuator subsystems
(motor and propeller) is considered negligible.

The Assumption 3 results from a fact that the construction
and means of manufacturing of motor and propeller guar-
antee high accuracy and reproducibility of their parameters.
Therefore, the uncertainty due to these factors is relatively
small (negligible) in comparison to the other acting sources of
uncertainty addressed in the following paragraphs. This also
has been verified experimentally during the laboratory experi-
ments. Hence, it follows that: ∀i∈1,4Fc i = Fc, ∀i∈1,4Mrot i =
Mrot.

Assumption 4. It is assumed that the physical structure of the
quadrotor is symmetric.

From Assumption 4 it follows that the moment of inertia
with respect to axis x and y coincide, thus: Ix

def
= Ixy, Iy

def
=

Ixy.

Considering this setup, Assumptions 1–4 and including
the forces and torques generated by the rotation of propellers
(with respect to the generalised forces vector [5]) yields the
following quadrotor model formulation:

φ̈ = θ̇ψ̇
Ixy − Iz
Ixy

+
l

Ixy
(−Fc 2 + Fc 4) , (1a)

θ̈ = φ̇ψ̇
Iz − Ixy
Ixy

+
l

Ixy
(Fc 1 − Fc 3) , (1b)

ψ̈ =
l

Iz

4∑
i=1

(−1)iMrot i. (1c)

where: φ, θ, ψ ∈ R are the Tait-Bryan angles typically ad-
dressed as yaw, pitch and roll angle, respectively; Iz denotes
the moment of inertia with respect to the basis of quadrotor‘s
coordinate frame. In order for the utility model to be well-
defined it is crucial to identify the parameters of the derived
structure, namely: pd

def
= [Ixy, Iz, l]

T as well as the shape and
parameter of the functions Fc, Mrot. It is also prudent to
emphasise that the model and the parameters are subject to
the uncertainty i.e. due to the stated Assumptions. Indeed, the
effect of errors in understanding the true nature of Fc, Mrot

results in structural error. Determining the exact structure of
Fc, Mrot is a nontrivial task due to cumbersome mathematical
model underlying the principals of the motor – propeller pair
and how it contributes to structure of Fc, Mrot. Henceforth, the
problem at hand is a non-parametric identification task where
the parameter ‘sub-vectors’ pF and pM that correspond to Fc

and Mrot, respectively, have in fact infinite number of entries.

The goal of this work is to assess (robustly) the region
containing all the parameters p def

=
[
pTq , p

T
F , p

T
M

]T
of quadrotor

which in general can be done as:

∀
ip

p+ip
def
= max

p∈FSSp

pip , (2a)

∀
ip

p−ip
def
= min

p∈FSSp

pip , (2b)

where: FSSp is FSS which aggregates all the information a
priori that is available on p and pip is the ipth element of p.

Taking FSSp
def
= FSSq × FSSF × FSSM, the (2) can

be decomposed into the three independent parameter identi-
fication tasks addressing: construction (Task 1), thrust force
function (Task 2) and rotation moment function (Task 3).
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Task 1: Similarly to (2) construction parameter identifica-
tion task yields:

∀
iq

p±q iq
(ẋ, u)

def
= ± max

pq∈FSSq

±pq iq , (3)

where: pq id is the iqth element of pq and iq ∈ 1, 3. Since
the physical elements of the construction are measurement
available (in terms of their mass and physical dimensions)
thus the resulting parameters and the derived variables can
be directly obtained from the measurements as:

FSSq
def
=
{
(Ixy, Iz, l) : Ixy = 2msl

2 + 1/12mMl
2
M,

Iz = 4msl
2 +

1

6
mMl

2
M,m

−
M ≤ mM ≤ m+

M,

l−M ≤ lM ≤ l
+
M, l
− ≤ l ≤ l+,m−s ≤ ms ≤ m+

s

}
, (4)

where: m±M, l±M, l±, m±s denote the physical structure param-
eter intervals due to measurement uncertainty of mM, lM, l,
ms, respectively (see Table I in Section IV).

Task 2 and 3: The non-parametric tasks set up in order to
determine the influence of actuator system are as follows:

∀
iF

p±F iF

def
= ± max

pF∈FSSF

±pF iF , (5)

∀
iM

p±M iM

def
= ± max

pM∈FSSM

±pM iM , (6)

where: FSSF and FSSM denote the feasible system set and
pF iF , pM iM are the iFth, iMth element of pF, pM, respectively.

Now in order to rewrite the non-parametric identification
tasks using (more tractable) parametric identification frame-
work observations done during laboratory experiments and the
knowledge from literature e.g. [6]–[8], [11]–[14] is used to
formulate the following assumptions regarding Fc and Mrot

structures.

Assumption 5. Suppose Fc and Mrot have imposed struc-
tures:

Fc (u, e) = b (e) (u− c)2 , (7)

Mrot (u, e) = d (e) (u− c)2 , (8)

where: c = 1000µs corresponds to null speed and is a result
of an offset in the PPM communication channel.

Assumption 6. Assume that b(e) and d(e) have linear struc-
ture.

Indeed, under Assumptions 5 – 6 the non-parametric tasks
become the parametric identification problems to be handled
by the proposed identification algorithm — see Fig. 3. The
proposed procedure is a two step algorithm. At first, the
problem feasible sets are to be constructed and the dedicated
parametric optimisation problems are to be solved in order to
deliver information on the optimised parameter bounds. The
second step is to be applied conditionally. The condition term
identifies the shape of the problem feasible set and based on its
geometry with respect to the bounding hypercube the problem
is either considered solved or reformulated and solved once
more. The reformulation is the second step of the proposed
method. It is based on the manipulation of the parameter space
by applying in principal a translation and rotation transfor-
mations. Under these transformations a new set of decision

variables and problem feasible sets are obtained. Solving the
resulting new robust parameter identification problem yields
a less conservative result. The proposed method is applied to
each of the two remaining tasks. The technical details for the
considered case of quadrotor are given in Section III.

Assumption 7. It is assumed that the joint uncertainty due to
measurement and structural error is as large as to guarantee
the existence of the estimates (or FSS(·) 6= ∅).

Start

Construct
feasible solution set in parameter space

Solve
initial parameter identification task

Reduce
conservatism?

Reparameterize

Solve
modified identification task

Stop

yes

no

Fig. 3. Identification procedure

III. APPROXIMATE SOLUTION

The result given in this Section is to be delivered in two
steps. Firstly, an approximate solution is pursued by parametri-
sation of (5) and (6). Secondly, a conservatism reduction
methods is invoked by manipulating the geometry of FSS.

A. Initial Parameter Identification Tasks

In both Fc and Mrot parameter identification cases the
decision input space is two dimensional. In this work authors
propose to discretise and sample this space in the dimension
of e and for each e(·) of the voltage scenario set a parameter
identification task with respect to u is solved. Thereafter, based
on the obtained results the model of the relation with respect
to e is imposed to acquire the full information of the actuator
model (in terms of both e and u).

First is the assessment of the impact of the control signal
on the parameter bounding box. Second addresses the problem
of power-source voltage drop in an analogous context.

1) Impact of the Control Signal: Under Assumption 4 it
follows that the identification task becomes structured and the
parametric approach can be applied if and only if e is amended
as it still remains a free variable in the task. For that reason
multiple optimisation tasks are to be solved for the different
values of e due to the battery discharge during quadrotor flight.
This yields:

∀
ie∈1,ne

b±ie
def
= ± max

bie∈FSSF ie

±bie , (9)
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∀
ie∈1,ne

d±ie
def
= ± max

die∈FSSM ie

±die , (10)

where: b±ie and d±ie are the parameters related to ieth battery
voltage level, ne is the total number of voltage level scenarios,

FSSF ie
def
=

{
b ∈ R : ∀

iu∈1,nu

b ≥ 0,

−εF ≤ Fcuiu ,eie
− Fc (uiu , eie) ≤ εF

}
, (11)

FSSM ie
def
=

{
d ∈ R : ∀

iu∈1,nu

d ≥ 0,

−εM ≤Mrotuiu ,eie −Mrot (uiu , eie) ≤ εM
}
, (12)

where: Fc iu,ie , Mc iu,ie are the measured thrust and torque with
respect to iuth control signal and ieth voltage level scenario,
respectively, εF, εM denote thrust and torque uncertainty level,
respectively, nu is the total number of control signal scenarios.
It follows from (11) that FSSF ie is a set of feasible non-
negative values of parameter b and there exists an element
in FSSF ie for which the experimental data (input–output
data pairs, namely

(
(uiu , eie) , Fcuiu ,eie

)
) is explained by

Fc (uiu , eie) with accuracy of no less than εF. Analogous
reasoning holds for d ∈ FSSM ie . Notice that both (11) and
(12) are structurally linear due to Fc(·) and Mrot(·).
Remark 1. The solutions of (9) and (10) are not equivalent
to (5) and (6).

2) Impact of Power-source Voltage drop: At this point
the domain of Fc and Mrot is discrete due to the way
identification procedures were conducted. In this Subsection
the continuous relation of Fc and Mrot are to be proposed by
approximating the results obtained from solving (9) and (10)
under Assumption 6. To that goal an analogous method to the
one given in Subsection II is to be applied. Firstly, a structure
of b (e) and d (e) is to be imposed. Secondly, a parameter
identification task is to be solved as:

∀
ib∈1,nb

p±b ib
def
= ± max

pb∈FSSb

±pb ib , (13)

∀
id∈1,nd

p±d id

def
= ± max

pd∈FSSd

±pd id , (14)

where:

FSSb
def
=

{
pd : ∀

ie∈1,ne

b−ie ≤ b (eie) ≤ b
+
ie

}
, (15)

FSSd
def
=

{
pd : ∀

ie∈1,ne

d−ie ≤ d (eie) ≤ d
+
ie

}
, (16)

pb ∈ Rnb and pd ∈ Rnd are the parameters of b (e) and d (e),
respectively.

B. Conservatism Reduction

Due to the estimated parameter set geometry the identifi-
cation tasks yield conservative results. To reduce the conserva-
tiveness of the results a transformation of base in the parameter
space is proposed as:

pb (pbb)
def
=
p+b + p−b

2
+Rb pbb, (17)

pd (pdd)
def
=
p+d + p−d

2
+Rd pdd, (18)

where: pbb ∈ Rnb i pdd ∈ Rnd are the new parameters with
corresponding matrices Rb ∈ Rnb×nb and Rd ∈ Rnd×nd .
In consequence the identification tasks (13) and (14) are
reformulated as:

∀
ibb∈1,nb

p±bb ibb

def
= ± max

pbb∈FSSbb

±pbb ibb , (19)

∀
idd∈1,ndd

p±dd idd

def
= ± max

pdd∈FSSdd

±pdd idd , (20)

where:
FSSbb

def
= {pbb : pb (pbb) ∈ FSSb} , (21)

FSSdd
def
= {pdd : pb (pdd) ∈ FSSd} , (22)

pbb ibb and pdd idd are the ibbth and idd th element of pbb and
pdd, respectively.

IV. RESULTS

The results of the quadrotor’s physical dimensions mea-
surements have been given in Table I.

In order to measure the thrust and moment of rotation the
laboratory stand has been equipped with two working nests. In
both of the addressed cases the measurement of the quantity
of interest has been done in terms of the pressure force as
presented in [7]. The detailed description and results of the
laboratory measurement campaign for both thrust and torque
have been given in Tables 2 and 3 in [16].

The optimisation tasks (3) are characterised by nonlinear
constraints. However, since they can be solved separately one
can neglect one of the nonlinear constraints (in case of Ixy
and Iz identification) or two (in case of l identification). This
can be done by utilising the values at the beginning or end of
the uncertainty interval as:

p−d 1 = 2m−s
(
l−
)2

+
1

12
m−M

(
l−M
)2
, (23a)

p−d 2 = 4m−s
(
l−
)2

+
1

6
m−M

(
l−M
)2
, (23b)

p−d 3 = l−, (23c)

TABLE I. QUADROTOR’S PHYSICAL DIMENSIONS MEASUREMENTS

Element Items Parameter Value Min Max SI

body 1 mM 0.465± 0.001 0.464 0.466 kg
lM 0.10± 0.01 0.09 0.11 m

arm 4 l 0.24± 0.01 0.23 0.25 m
motor 4 ms 0.066± 0.001 0.065 0.067 kg
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p+d1 = 2m+
s

(
l+
)2

+
1

12
m+

M

(
l+M
)2
, (24a)

p+d2 = 4m+
s

(
l+
)2

+
1

6
m+

M

(
l+M
)2
, (24b)

p+d3 = l+. (24c)

Since tasks (9) and (10) share analogous structures, thus
the same methods can be applied in order to solve them.
Since under Assumption 5 the (7) and (8) are linear in their
parameters thus (11) and (12) are convex and in consequence
(9) and (10) are in fact linear programming (LP) problems.
In consequence the task can be solved in the finite number of
steps by applying simplex algorithm. Under Assumption 7 it
follows that eF = 65 [g], eM = 12 [g] in order to account for
not only the measurement but also the structural uncertainty.
Assuming such a setup the results of measurement recon-
struction accuracy have been illustrated in Figs. 4 and 5. The
bounding boxes of the parameters b and d obtained with respect
to the ieth power source voltage level scenario, namely: b+ie ,
b−ie and d+ie , d−ie have been depicted in Figs. 6 and 7.

Remark 2. In general, very small values of eF, eM can yield
an empty set of feasible solutions which justifies Assumption 7.

It can be seen that the uncertainty related to the a priori
knowledge of the problem results in situation in which the
effects of power-source voltage drop are negligible under low
values of u and comparable to the effects of uncertainty in the
u‘s upper part of admissible range. Henceforth, at this point it
cannot be decided if the effects of power-source voltage drop
have significant impact on the overall plant performance. How-
ever, the observed differences (see Figs. 4 and 5) indicate that
the matter requires more attention for the decisive conclusion
to be made.

Fig. 4. Thrust characteristics

The estimated parameter sets have been illustrated in
Figs. 6 and 7. These results tend to justify the Assumption 6
thus it follows that:

b (e) = pb 1e+ pb 2, (25)

d (e) = pd 1e+ pd 2. (26)

In consequence the solution to (13) and (14) can be obtained
by applying LP. Unfortunately this yields a conservative pa-
rameter bounding set estimates:p+b , p−b and p+d , p−d , as depicted
in Figs. 6 and 7. This is a result of a certain conservativeness
in approximation of FFSb and FFSd (see Figs. 8 and 9).

Fig. 5. Rotation moment characteristics

Fig. 6. Thrust case

Fig. 7. Rotation moment case

This conservativeness can be reduced by re-parametrisation
(see Subsection III-B) by applying (17) and (18) with:

Rb =

[
p+b1 − p

−
b 1 p−b 2 − p

+
b2

p−b 2 − p
+
b2 −(p+b1 − p

−
b 1)

]
, (27a)

Rd =

[
p+d1 − p

−
d 1 p−d 2 − p

+
d2

p−d 2 − p
+
d2 −(p+d1 − p

−
d 1)

]
. (27b)

The result is the four lines corresponding to the corners (limits)
of estimated parameter set — see Figs. 8 and 9. The only
drawback of the approach is that the new parametrisation
is less intuitive during identification procedure as the direct
physical interpretation is somehow ‘lost’.

This task can still be solved using LP tools, since the
affine transforms (17) and (18) did not modify the class
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Fig. 8. Thrust case

Fig. 9. Rotation moment case

of the problem. The obtained results of robust parameter
identification illustrate the impact the model structure can
exert on the results of the identification procedure. It has
been shown that the most direct approach to set membership
parameter estimation can lead to an empty feasible set of
solutions and/or conservative results. However, when problem
is properly addressed, constructive results can be obtained
using simple and well defined tool-set. This, however, requires
(comes at a price) of certain amount of assumptions that have
to be made.

V. CONCLUSIONS

In principal the key aspects in the quadrotor design is to
keep low mass and power consumption in order to extend
flight time under limited battery capacity. The consequence
i.a. is a reduced amount of measurement information available.
Considering such a problem setup a utility model (dedicated
for control design purposes) identification problem has been
posed. The parameter estimation has been carried out in a set
membership framework in order to find the quadrotor model
parameter set as well as the model of the power-source voltage
drop. To reduce the conservativeness of the results obtained in
the latter case the parameter space transformation has been
proposed. The obtained decrees in the uncertainty impact on
the identification solutions have been found very promising.
However, in order to take full advantage of this result a new
actuator system model structure is required on the one hand
as the amount of uncertainty in a priori knowledge at this
point propagate in a manner that disables one to track the
effects of the power-source voltage drop. On the other it is
not excluded that the overall effects of power-source voltage

drop will remain in comparison to the acting uncertainty. The
future work in the field is to investigate this matter.
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