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Abstract—The sample rate conversion with high resampling 

ratios requires low-pass digital filters with very narrow transition 

band which results in high computational complexity and makes 

filter design problematic. Therefore in this work we propose to 

use the FRM method, which breaks the filter with a narrow 

transition band into a group of filters with reduced design 

requirements. This decreases the number of non-zero coefficients 

and as a result the use of the FRM filter reduces the 

computational complexity of the resampler. 
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I. INTRODUCTION

In many digital signal applications it is convenient or 
necessary to change the sampling rate of the processed signal. 
In many cases such a task is relatively simple [1] and many 
sample rate conversion algorithms exist ([2], [3], [4], [5], [6], 
[7]), nevertheless, when the interpolation or decimation with 
high ratio is considered, then the resampling process requires 
digital lowpass filters with very narrow passband and transition 
band. Such requirements result in long impulse response which 
translates into high computational complexity of the 
interpolation or decimation algorithm. One of the solutions to 
this problem is the Frequency Response Masking (FRM) 
method ([8], [9]) which splits the resampling filter design 
problem  into design of several filters with less demanding 
specifications. In the result the number of overall non-zero 
coefficients of the obtained filter structure  is decreased which 
corresponds to lowered computational complexity of its 
implementation. In this paper the interpolator/decimator filter 
design with the use of FRM method is analyzed and the new 
structures of the interpolator and decimator based on the FRM 
filter are presented. It has been also demonstrated that the 
proposed structures allow for decrease in computational 
complexity in comparison to polyphase implementation of the 
interpolator or decimator with the resampling filter designed 
directly. 

II. CLASSIC INTERPOLATOR AND DECIMATOR

Fig. 1 presents classic interpolator and decimator. The first 
consist of up-sampler (𝐿 ↑) followed by the 1/𝐿-band lowpass 
filter 𝐻𝐿𝑃𝐹(𝑧). The up-sampler increases sample rate 𝐿 times
simply by inserting between every two input samples 𝐿 − 1 
zeroes. On the other hand, the 𝐿-fold decimator (Fig. 1b) 

consist of the 1/𝐿-band lowpass filter 𝐻𝐿𝑃𝐹(𝑧) followed by the
down-sampler, which for every 𝐿 input samples discards 𝐿 − 1 
samples.  

a) b) 

Fig. 1. Classic L-fold interpolator (a) and decimator (b). 

The main advantage of these approaches is their simplicity. 
Nevertheless, if high fidelity of sample rate conversion is 
required then the impulse response of the lowpass resampling 
filter 𝐻𝐿𝑃𝐹(𝑧) becomes very long. Additionally, the resampling
filter operates at higher sample rate 𝐹𝑠2 = 𝐿 ⋅ 𝐹𝑠1 (in case of the
interpolator this is the output sample rate and in case of the 
decimator this is the input sample rate), which results in very 
high computational complexity.  

A. Polyphase Strutures

Let us notice that in the interpolator only every 𝐿-th input
sample of the resampling filter is non-zero, while in the 
decimator all samples except every 𝐿-th output sample of the 
resampling filter are discarded. This means that most of the 
filter calculations can be omitted, which can be achieved with 
polyphase structures Fig. 2 ([2], [4], [5], [10], [11]) that have 
𝐿-times lower computational complexity then the classic 
structures. In these structures the resampling filter is split into 𝐿 
polyphase subfilters with impulse responses: 

 𝑔𝑖[𝑛] = ℎ𝐿𝑃𝐹[𝐿 ⋅ 𝑛 + 𝑖] 

where 𝑖 = 0,1, … , 𝐿 − 1 and ℎ𝐿𝑃𝐹[𝑛] is an impulse response of
the resampling filter. Notice, that 𝐿-fold interpolator and 𝐿-fold 
decimator can use the same resampling filter which means that 
they also can use the same polyphase filters. 

Since in both polyphase structures the polyphase filters 
operate at the lowest sample rate, input sample rate for 
interpolator and output sample rate for decimator, the number 
of multiplications and additions, per input sample in the 
interpolator and per output sample in the decimator, in 
polyphase structures is equal to the length of the impulse 
response of the resampling filter. 
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a) b) 

Fig. 2. Polyphase structures of the (a) interpolator and (b) decimator. 

B. Resampling Filter

The up-sampler in the interpolator results in a signal with
spectrum consisting of 𝐿 replicas of the original spectrum. 
Since usually only the first, baseband, replica is needed, the 𝐿th 
band lowpass filter is used to filter out the remaining replicas, 
which in the time domain results in the zeroes inserted by the 
up-sampler being replaced with the correct values of the 
interpolated signal. The down-sampler, on the other hand, 
results in the aliasing and the 𝐿th band lowpass input filter is 
necessary to remove the input signal components that would be 
aliased. As it can be seen, the up-sampling and related down-
sampling algorithms with corresponding specifications can use 
the same 𝐿th band lowpass resampling filter. This also means 
that polyphase filters, in case of the polyphase structures, are 
also the same. The same filter is simply used in a different 
manner in these two algorithms. 

Let us consider design of very high performance 𝐿-fold 
interpolator and decimator with 𝐿 = 16. The performance of 
the resampler directly depends on the resampling filter for 
which we assume following specification: passband ripples 
±0.1 dB, attenuation in the stop band 100 dB and the center of 
transition band located at 𝐹𝑠1/2 = 24 kHz.

Let us assume that the upper frequency of the passband of 
the resampling filter is 𝐹𝑚𝑎𝑥 = 20 kHz. These assumptions can
be readily satisfied with the resampling filter of length 
𝑁𝐿𝑃𝐹 = 379, thus the computational complexity of the
resampler is 379 multiplications and additions. Nonetheless, if 
the resampling algorithm performance requirements are 
increased significantly, for example selecting 𝐹𝑚𝑎𝑥 = 23.9
kHz, then the estimated length of the impulse response of the 
resampling filter is as high as 15106, which, apart from very 
high computational complexity, results in difficulty of such 

filter design. For example Matlab script firpm takes log time 
to finish the design and the filter attenuation is just 85dB. This 
means that obtaining the filter fulfilling the specifications 
requires us to solve two problems: limitation of computational 
complexity and finding a design method that would allow 
effective design of the resampling filter. 

III. FRM FILTER

An interesting solution for the design of filters with very 
narrow transition band is the FRM method ([8], [9]). The FRM 
filter (Fig. 3) forms its frequency response in the transition 
band with the help of the lowpass prototype filter with 𝐾-times 
wider transition band, where 𝐾 is an integer number selected 
by the designer. The 𝐾-fold narrowing of the transition band is 

achieved by increasing 𝐾-times delays of all the delayers in the 
structure of the prototype filter. The resulting shaping filter 
with transfer function 𝐻𝑝(𝑧𝐾) has exactly the same

computational complexity as the prototype filter but its 
frequency response is a 𝐾-fold repetition of the 𝐾-times 
narrowed frequency response of the prototype filter. Now, it is 
enough to place the masking filter 𝐻𝑚𝑝(𝑧) after the shaping

filter to remove the excess replicas from its frequency 
response. In the basic variant, when the only baseband replica 
of the narrowed frequency response is retained, the FRM 
method simplifies to the I-FIR (Interpolated FIR) method 
([12], [13]) offering the filter with the following transfer 
function: 

 𝐻𝐼𝐹𝐼𝑅(z) = 𝐻𝑝(𝑧𝐾) ⋅ 𝐻𝑚𝑝(𝑧) 

In turn, if we leave more than one replica of the narrowed 
frequency response of the prototype filter, obtaining the desired 
lowpass filter needs "patching" the gaps between these replicas. 
This problem is solved by adding the second branch in the 
FRM structure (Fig. 3) in which the second masking filter 
𝐻𝑚𝑐(𝑧) eliminates the excess replicas from the frequency
response of the filter complementary to the shaping filter. The 
complementary filter ideally fills the gaps in the frequency 
response of the shaping filter and needs just one addition. With 
this approach the structure implements the filter with the 
following transfer function: 

𝐻𝐹𝑅𝑀(𝑧) = 𝐻𝑝(𝑧𝐾) ⋅ 𝐻𝑚𝑝(𝑧)

+ (𝑧𝑝

−𝐾𝜏𝑝 − 𝐻𝑝(𝑧𝐾)) ⋅ 𝐻𝑚𝑐(𝑧), 

where 𝜏𝑝 is the net delay of the prototype filter 𝐻𝑝(𝑧).

Fig. 3. FRM filter structure. 

The FRM structure benefits from the fact that 𝐾-fold wider 
transition band of the prototype filter significantly decreases 
number of coefficients of its impulse response. Moreover, with 
properly selected 𝐾 the width of transition bands of masking 
filters is also wider than the width of the transition band of the 
filter being designed. This decreases the complexity of 
component filters design and reduces the total number of non-
zero coefficients of the structure, which in turn reduces the 
computational complexity of the FRM filter implementation. 

A. Prototype Filter Specification

The main problem in FRM filter design is selection of the
transition band location of the prototype filter. It is important 
that this band location must be selected in such a way that one 
of the transition bands of the shaping filter or the filter 
complementary to the shaping filter corresponds to the 
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assumed location of the transition band of the resampling filter 
being designed.  

Let us assume that the transition band of the resampling 
filter is extracted from falling slopes of the frequency response 
of the shaping filter 𝐻𝑝(𝑧𝐾). Since the frequency response of

the prototype filter is compressed and replicated the transition 
band of the shaping filter, which we are interested in, it is 

located in one of the ranges (𝑓𝑝, 𝑓𝑠) with:

 𝑓𝑝 = (𝑖 + 𝑓𝑝,𝑝)/𝐾 and 𝑓𝑠 = (𝑖 + 𝑓𝑠,𝑝)/𝐾, 

where 𝑖 = 0,1,2, … (𝑖 = 0 in I-FIR case) and the range 
(𝑓𝑝,𝑝, 𝑓𝑠,𝑝) determines the desired location of the transition band

of the prototype filter. Thus, in this case, the edge frequencies 
of the prototype filter should be selected based on the 
following formulae: 

 𝑓𝑝,𝑝 = 𝐾 ⋅ 𝑓𝑝 − 𝑖and𝑓𝑠,𝑝 = 𝐾 ⋅ 𝑓𝑠 − 𝑖 

where parameters 𝐾 and 𝑖 must be selected so that the 
following condition is met: 

  𝑓𝑝,𝑝 < 𝑓𝑠,𝑝 ∈ (0,0.5) (6)

Similarly, when we assume that the transition band of the 
resampling filter is extracted from falling slopes of the 
frequency response of the filter complementary to the shaping 
filter 𝐻𝑝(𝑧𝐾), which are the rising slopes of the shaping filter,

the transition band of the shaping filter is located in the ranges 

(𝑓𝑝, 𝑓𝑠) specified with the following formulae:

 𝑓𝑝 = (𝑖 − 𝑓𝑝,𝑝)/𝐾and𝑓𝑠 = (𝑖 − 𝑓𝑠,𝑝)/𝐾 

where 𝑖 = 1,2, …. From this the edge frequencies of the 
prototype filter should be selected based on the following 
formulae: 

 𝑓𝑝,𝑝 = 𝑖 − 𝐾 ⋅ 𝑓𝑝 and𝑓𝑠,𝑝 = 𝑖 − 𝐾 ⋅ 𝑓𝑠 

where 𝐾 and 𝑖 must result in fulfilling condition (6). 

Fig. 4. Edge frequencies of the transition band of the prototype filter for 

different values of 𝐾 parameter. 

Now, let us consider the possible edge frequencies of the 
transition band of the prototype filter for both aforementioned 
cases for specification of the resampling filter given in sec. II.B 
with 𝐹𝑚𝑎𝑥 = 20 kHz. Fig. 4 presents these frequencies in
function of the parameter 𝐾. As we can see, the higher 𝐾 is the 
wider transition band of the prototype filter becomes. Since 

edge frequencies tend to be pushed outside of the (0,0.5) range 
not all values of 𝐾 are allowed (Fig. 4). 

Apart from selecting edge frequencies of the prototype 
filter it is necessary to determine ripple size for its passband 
and stopband. The problem is that even though the use of the 
complementary shaping filter in the FRM structure does not 
require additional computations, it forces the use of the same 
ripple size in both passband and stopband. This is because the 
passband ripples in the shaping filter translate directly into 
stopband ripples in its complementary filter. At the same time, 
typically the required passband ripples of the resampling filter 
are significantly lower than the stopband ripples. This means 
that the limitation translates into increased requirements for the 
shaping filter and thus into larger number of coefficients of its 
impulse response. On the over hand, for the assumed maximum 
ripple size in the passband of the overall filter this allows to 
move the whole assumed ripples range to the requirements into 
the ripples size of the passband of the masking filters. 

The exception to the above rule is the 𝑖 = 0 case, that is 

the I-FIR filter case ([12], [13]), in which the complementary 

filter is not used. This allows independent selection of the 

ripple size in the passband and stopband of the prototype filter. 

Thus the specification for the prototype filter can be made less 

demanding on the expense of the masking filter specification.  

B. Masking Filters Specifications

In Fig. 6 we can see magnitude responses of the shaping
filter and its complementary filter for 𝐾 = 24. For such 𝐾 the 
transition band of the resampling filter is formed based on the 
first falling transition band of the shaping filter. Thus both 
masking filters need to pass the first passbands of the shaping 
and the complementary filters so the passband of the shaping 
filter fills the gap in its complementary filter. Nevertheless the 
filter masking the shaping filter 𝐻𝑚𝑝(𝑧) has the narrower

passband than the filter making the complementary filter 
𝐻𝑚𝑐(𝑧). It is also worth noticing that masking filter 𝐻𝑚𝑎(𝑧)
needs to preserve the shape of the last transition band of the 
shaping filter since it needs to stay being complementary to the 
first transition band of the filter complementary to the shaping 
filter. In case of the other masking filter, 𝐻𝑚𝑐(𝑧), we do not
need to be so strict, since the last transition band preserved by 
it will not have its complementary counterpart.  

In this case, when the transition band is extracted from the 
filter complementary to the shaping filter (case presented in 
Fig. 6), the edge frequencies of transition band of the masking 
filter 𝐻𝑚𝑝(𝑧) are specified as follows:

 𝑓𝑝,𝑚𝑝 =
2𝑖−1

𝐾
−

𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
 and𝑓𝑠,𝑚𝑝 =

𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
 

which corresponds to the range from the end of the slope of 

the last preserved replica in the frequency response of the 

shaping filter till the beginning of the next replica, which at 

the same time is the beginning of the slope we want to 

preserve. Similarly, for the other masking filter, 𝐻𝑚𝑐(𝑧):

 𝑓𝑝,𝑚𝑐 = 𝑓𝑠,𝑚𝑝 =
𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
 and𝑓𝑠,𝑚𝑐 =

2𝑖

𝐾
−

𝐹𝑝1−𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
 
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which corresponds to the beginning of the slope being 

preserved till the beginning of the next replica. The parameter 

𝑖 takes value determined during selection of the prototype 

filter specification. 

By analogy, if the transition band is extracted from the 

shaping filter, the edge frequencies of the transition band of 

the masking filter 𝐻𝑚𝑝(𝑧) are following:

 𝑓𝑝,𝑚𝑝 =
𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
and 𝑓𝑠,𝑚𝑝 =

2𝑖+1

𝐾
−

𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
, 

which corresponds to the range from the end of the preserved 

slope till the beginning of the next replica. In case of 𝐻𝑚𝑐(𝑧)
filter we get: 

 𝑓𝑝,𝑚𝑐 =
2𝑖

𝐾
−

𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
 and𝑓𝑠,𝑚𝑐 =

𝐹𝑚𝑎𝑥

𝐿⋅𝐹𝑠1
 

which corresponds to the range from the end of the preserved 

replica till the next replica which is at the same time the 

beginning of the transition band of the filter being designed.  

C. Design Example

In this subsection we will analyze the design example for
the aforementioned specification of the resampling filter. Let us 
select 𝐾 = 24 for which 𝑖 = 1. The magnitude responses of the 
prototype filter 𝐻𝑝(𝑧) and its complementary filter 𝐻𝑐(𝑧) are

presented in Fig. 5.  

Fig. 5. Magnitude responces of the exemplary prototype 𝐻𝑝 and 

complementary 𝐻𝑐 filters.

Since the transition band is very wide, the length of the 
impulse response of the prototype filter is just 𝑁𝑝𝑟𝑜𝑡 = 23.

Nevertheless, since the shaping filter and its complementary 
filter incorporate in the range (0, 0.5), 𝐾/2 replicas of the 
desired frequency response, masking filters are necessary (Fig. 
6). This time, however, the transition bands of masking filters 
are more tighter and thus their impulse responses are 
significantly longer (𝑁𝑚𝑎 = 397 and 𝑁𝑚𝑐 = 199).

Let us notice that in this case different transition band 
widths of the masking filters resulted in different impulse 
response length. This leads to masking filters delay disparity 
which needs to be compensated. Such compensation is a simple 
task if only the length for both masking filters are either even 
or odd. In such a case it is enough to add, before or after the 
shorter filter, the delayer with delay equal to: 

 𝜏𝑐 =
|𝑁𝑚𝑎−𝑁𝑚𝑐|

2
 

a) 

b) 

Fig. 6. Magnitude responses of shaping and masking filters for (a) a shaping 

filter and (a) a complementary filter for 𝐾 = 24. 

Nonetheless, let us notice that the frequency responses 
obtained in the upper and lower branches of the FRM filter 
(Fig. 7a) add up to the proper frequency response fulfilling our 
assumptions (Fig. 7b). 

a) 

b) 

Fig. 7. Magnitude responses of  upper and lower branch of (a) the FRM filter 

and (b) overall magnitude response of the FRM filter for 𝐾 = 24. 

D. FRM Structure Efficiency

If we consider overall number of coefficients 𝑁𝑎𝑙𝑙 =
𝑁𝑝𝑟𝑜𝑡 + 𝑁𝑚𝑎 + 𝑁𝑚𝑐 = 619 of the FRM filter designed in the

previous subsection we see that the number is actually one and 
a half times the number received for the direct design of the 
resampling filter where 𝑁𝐿𝑃𝐹 = 379. In Fig. 8a we can see how
the number of coefficients depends on the parameter 𝐾. Let us 
notice that although the 𝐾 = 24 offers the almost the best 
results for FRM structure, the better results can be obtain for I-
FIR structure, for example with 𝐾 = 8 where the estimated 
overall number of coefficients 𝑁𝑎𝑙𝑙 = 124. This is significant
improvement when compared with direct resampling filter 
design, but to make resampler implementation based on such 
filter competitive to the polyphase structure the resampler 
using I-FIR filter needs to be restructured [14].   

In Fig. 8 we can see that even though the increase of 𝐾 
parameter decreases the number of prototype filter coefficients, 
at the same time it results in more denser replicas in frequency 
response of the shaping filter, which in turn results in high 
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increase in number of coefficients of masking filters. Thus the 
benefits of the application of the FRM filter can be seen only if 
it is necessary to use the resampling filter with very narrow 
transition band as in Fig. 8b where 𝐹𝑚𝑎𝑥 = 23.9 kHz.

This time the smallest number of coefficients 𝑁𝑎𝑙𝑙 = 1249
(𝑁𝑝𝑟𝑜𝑡 = 585, 𝑁𝑚𝑎 = 330 and 𝑁𝑚𝑐 = 334) is achieved for

𝐾 = 40 (Fig. 8b). Now, this is not only more than 12 times less 
than the estimated length of the impulse response in the direct 
design 𝑁𝐿𝑃𝐹 = 15106, but at the same time, contrary to the
direct approach, the required FRM structure subfilters lengths 
allow easy design. Moreover, this effect is stronger if the 
transition band width decreases. The Fig. 9 presents overall 
magnitude response of the FRM filter designed for the 
aforementioned case. 

a) 

b) 

Fig. 8. The overall number of coefficients of the FRM structure 𝑁𝑎𝑙𝑙 and its 

component filters (prototype filter 𝑁𝑝𝑟𝑜𝑡, masking filter of the shaping filter 

𝑁𝑚𝑝 and masking filter of the complementary filter 𝑁𝑚𝑐) versus 𝐾 for (a) 

𝐹𝑚𝑎𝑥 = 20kHz and (b) 𝐹𝑚𝑎𝑥 = 23.9kHz.

Fig. 9. Magnitude response of FRM filter with 𝐹𝑚𝑎𝑥 = 23.9 kHz for 𝐾 = 40. 

IV. RESAMPLING WITH FRM FILTER

The goal of use of the FRM (or I-FIR) filter in a resampler 
is to decrease its computational complexity which can be 
related to a number of non-zero coefficients of the resampling 
filter. For example for 𝐹𝑚𝑎𝑥 = 20kHz the lowest number of
coefficients offers 𝐾 = 6 (I-FIR case), for which 𝑁𝑎𝑙𝑙 = 114.
It must be noticed, however, that the use of the FRM filter, 
even if it offers lower number of coefficients, is not always a 
good choice. Nevertheless, as it has been mentioned before, if 
the resampling structure has to be competitive to the polyphase 
structures, it is necessary to redesign the resampler structure to 
utilize the properties of the I-FIR [14] or FRM filter [15]. In 
this case it means that it is better to use 𝐾 = 8 with 𝑁𝑎𝑙𝑙 = 124
because of the better relation between resampling coefficient 
𝐿 = 16 and parameter 𝐾. Since we cannot use 𝐾 that is an 
integer multiple of 𝐿, the next best option is 𝐾 that is equal to 

an integer multiple of 𝐿/2. Of course only integer values o 𝐾 
can be used. 

This is similar with FRM filter structure, for which overall 
number of coefficients is close to local minima for 𝐾 = 𝑘 ⋅ 𝐿/2 
where 𝑘 = 1,3,5, …. In the next subsection the optimized 
structures of the FRM interpolator and decimator obtained for 
the aforementioned assumption are presented.  

A. FRM Interpolator

The FRM interpolator structure [15] is presented in Fig. 10.
The polyphase filters 𝐺𝑝𝑖(𝑧) are obtained with twofold

polyphase decomposition of 𝐻𝑝𝑟𝑜𝑡(𝑧2𝐾/𝐿) filter whose impulse

response contains 2𝐾/𝐿 − 1 zero valued samples between 
every pair of non-zero samples. Omitting calculation for zero 
valued  samples of impulse responses of these filters and 
utilizing polyphase structures (Fig. 2a) in implementation of 
masking filters the proposed structure computational 
complexity is as low as: 

 Θ = 𝑁𝑝𝑟𝑜𝑡 + 𝑁𝑚𝑐 + 2 ⋅ max (𝑁𝑚𝑎 , 𝑁𝑚𝑐) 

multiplications and additions per input sample. For example for 
the filter from Fig. 9 with 𝐾 = 40 this number is Θ = 1587. 
Which is almost ten times less than the computational 
complexity of polyphase implementation of the directly 
designed resampling filter of length 𝑁𝐿𝑃𝐹 = 15106. Of course
if such a filter was successfully designed. 

Fig. 10. Diagram of the interpolator based on the FRM filter. 

B. FRM Decimator

The decimator structure corresponding to the interpolator
shown in Fig. 10 can be readily obtained with its transposition. 
In the results we obtain the structure presented in Fig. 11 with 
the same subfilters as in the FRM interpolator. Since now the 
masking filters can be implemented using the polyphase 
decimator structure (Fig. 2b) the computational complexity of 
the proposed decimator structure is the same as in case of the 
interpolator. 

Fig. 11. Diagram of the decimator based on the FRM filter. 
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V. CONCLUSIONS

In this paper the problem of design of the resampling filter 
with narrow transition band has been discussed with relation to 
the FRM structure. It has been demonstrated that the FRM 
structure approach can be efficiently used only for very narrow 
transition bands. Nevertheless in such cases such an approach 
allows practical implementation of interpolator or decimator of 
very high sampling rate conversion performance requirements. 
The proposed approach results in significant decrease of 
coefficients number and with the proposed FRM interpolator 
and FRM decimator structures a high reduction in 
computational complexity can be obtained in comparison to the 
standard polyphase structures. 
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